Field and Satellite Images-Based Investigation of Rivers Morphological Aspects
Abstract
Doi: 10.28991/CEJ-2022-08-07-03
Full Text: PDF
Keywords
References
Bollati, I. M., Pellegrini, L., Rinaldi, M., Duci, G., & Pelfini, M. (2014). Reach-scale morphological adjustments and stages of channel evolution: The case of the Trebbia River (northern Italy). Geomorphology, 221, 176–186. doi:10.1016/j.geomorph.2014.06.007.
Intergovernmental Panel on Climate Change. (2014). Climate change 2013: The physical science basis. Cambridge University Press, Cambridge, United Kingdom. doi:10.1017/CBO9781107415324.
Khan, A., Rao, L. A. K., Yunus, A. P., & Govil, H. (2018). Characterization of channel planform features and sinuosity indices in parts of Yamuna River flood plain using remote sensing and GIS techniques. Arabian Journal of Geosciences, 11(17). doi:10.1007/s12517-018-3876-9.
Spada, D., Molinari, P., Bertoldi, W., Vitti, A., & Zolezzi, G. (2018). Multi-temporal image analysis for fluvial morphological characterization with application to Albanian rivers. ISPRS International Journal of Geo-Information, 7(8), 314. doi:10.3390/ijgi7080314.
Caskey, S. T., Blaschak, T. S., Wohl, E., Schnackenberg, E., Merritt, D. M., & Dwire, K. A. (2015). Downstream effects of stream flow diversion on channel characteristics and riparian vegetation in the Colorado Rocky Mountains, USA. Earth Surface Processes and Landforms, 40(5), 586–598. doi:10.1002/esp.3651.
Rhoads, B. L., Lewis, Q. W., & Andresen, W. (2016). Historical changes in channel network extent and channel planform in an intensively managed landscape: Natural versus human-induced effects. Geomorphology, 252, 17–31. doi:10.1016/j.geomorph.2015.04.021.
Yousefi, S., Mirzaee, S., Keesstra, S., Surian, N., Pourghasemi, H. R., Zakizadeh, H. R., & Tabibian, S. (2018). Effects of an extreme flood on river morphology (case study: Karoon River, Iran). Geomorphology, 304, 30–39. doi:10.1016/j.geomorph.2017.12.034.
Boota, M. W., Yan, C., Idrees, M. B., Li, Z., Soomro, S. E. H., Dou, M., Zohaib, M., & Yousaf, A. (2021). Assessment of the morphological trends and sediment dynamics in the Indus River, Pakistan. Journal of Water and Climate Change, 12(7), 3082–3098. doi:10.2166/wcc.2021.125.
Pappas, O. A., Anantrasirichai, N., Achim, A. M., & Adams, B. A. (2021). River Planform Extraction from High-Resolution SAR Images via Generalized Gamma Distribution Superpixel Classification. IEEE Transactions on Geoscience and Remote Sensing, 59(5), 3942–3955. doi:10.1109/TGRS.2020.3011209.
Lin, C. P., Wang, Y. M., Tfwala, S. S., & Chen, C. N. (2014). The variation of riverbed material due to tropical storms in Shi-Wen River, Taiwan. The Scientific World Journal, 2014, 1–12. doi:10.1155/2014/580936.
Ermilov, A. A., Baranya, S., & Török, G. T. (2020). Image-based bed material mapping of a large river. Water (Switzerland), 12(3), 916. doi:10.3390/w12030916.
Al-Ansari, N. (2020). Water Resources of Iraq. Journal of Earth Sciences and Geotechnical Engineering, 15–34. doi:10.47260/jesge/1122.
Othman, K., & Deguan, W. (2004). Characteristics of Tigris River Bed at Mosul City, Iraq. Journal of Lake Sciences, 16(Z1), 61–70. doi:10.18307/2004.sup08.
Nama, A. H. (2011). Estimating the Sediment Transport Capacity of Tigris River within Al Mosul City. Journal of Engineering, 17(3), 473–485.
Othman, K., Bilal, A. A., & Sulaman, Y. I. (2012). Morphologic Characteristics of Tigris River with at Mosul City. Tikrit Journal of Engineering Sciences, 19(3), 36–54. doi:10.25130/tjes.19.3.12.
Al-Ansari, N., Ali, A. A., Al-Suhail, Q., & Knutsson, S. (2015). Flow of River Tigris and its Effect on the Bed Sediment within Baghdad, Iraq. Open Engineering, 5(1), 465–477. doi:10.1515/eng-2015-0054.
Ali, A. (2016). Three dimensional hydro-morphological modeling of Tigris River. PhD Thesis, Luleå University of Technology, Luleå, Sweden.
Shamkhi, M. S., & Attab, Z. S. (2019). Characteristics of Tigris River bed material at 67 Km Downstream Kut Barrage. Wasit Journal of Engineering Sciences, 7(1), 54–61. doi:10.31185/ejuow.vol7.iss1.114.
AL-Thamiry, H. A. K., & AbdulAzeez, T. M. (2017). Two–Dimensional mathematical model to study erosion problem of Tigris River banks at Nu’maniyah. Journal of Engineering, 23(1), 112-135.
Abbas, M. s, & Azzubaidi, R. Z. (2020). Current and Modified Flood Discharge Capacity of a Reach of Tigris River between Kut and Amarah Barrages. Journal of Engineering, 26(2), 129–143. doi:10.31026/j.eng.2020.02.10.
Asaad, B. I., & Abed, B. S. (2020). Flow Characteristics Of Tigris River Within Baghdad City During Drought. Journal of Engineering, 26(3), 77–92. doi:10.31026/j.eng.2020.03.07.
Ismaeel, A., Abbas, S., & Al-Rekabi, W. (2021). Numerical 3D Model of Suspended Sediment Transport Downstream Al-Amarah Barrage, Iraq. Basrah Journal for Engineering Science, 21(3), 73–80. doi:10.33971/bjes.21.3.9.
Buscombe, D., Masselink, G., & Rubin, D. M. (2009). Granular Properties from Digital Images of Sediment: Implications for Coastal Sediment Transport Modelling. Coastal Engineering, 1625–1637. doi:10.1142/9789814277426_0135.
Graham, D. J., Rollet, A.-J., Rice, S. P., & Piégay, H. (2012). Conversions of Surface Grain-Size Samples Collected and Recorded Using Different Procedures. Journal of Hydraulic Engineering, 138(10), 839–849. doi:10.1061/(asce)hy.1943-7900.0000595.
Suwarno, I., Ma’arif, A., Maharani Raharja, N., Nurjanah, A., Ikhsan, J., & Mutiarin, D. (2021). IoT-based Lava Flood Early Warning System with Rainfall Intensity Monitoring and Disaster Communication Technology. Emerging Science Journal, 4, 154–166. doi:10.28991/esj-2021-sp1-011.
Takechi, H., Aragaki, S., & Irie, M. (2021). Differentiation of river sediments fractions in uav aerial images by convolution neural network. Remote Sensing, 13(16), 3188. doi:10.3390/rs13163188.
Hossain, M. A., Gan, T. Y., & Baki, A. B. M. (2013). Assessing morphological changes of the Ganges River using satellite images. Quaternary International, 304, 142–155. doi:10.1016/j.quaint.2013.03.028.
Adib, A., Foladfar, H., & Roozy, A. (2016). Role of construction of large dams on river morphology (case study: the Karkheh dam in Iran). Arabian Journal of Geosciences, 9(15), 1-16. doi:10.1007/s12517-016-2693-2.
Pal, R., & Pani, P. (2019). Remote sensing and GIS-based analysis of evolving planform morphology of the middle-lower part of the Ganga River, India. Egyptian Journal of Remote Sensing and Space Science, 22(1), 1–10. doi:10.1016/j.ejrs.2018.01.007.
Boothroyd, R. J., Nones, M., & Guerrero, M. (2021). Deriving Planform Morphology and Vegetation Coverage from Remote Sensing to Support River Management Applications. Frontiers in Environmental Science, 9. doi:10.3389/fenvs.2021.657354.
Prasad, N. (1982). Some aspects of meandering streams of the barakar basin and their sinuosity indexes. Perspectives in Geomorphology, 4, 93–102.
Zámolyi, A., Székely, B., Draganits, E., & Timár, G. (2010). Neotectonic control on river sinuosity at the western margin of the Little Hungarian Plain. Geomorphology, 122(3–4), 231–243. doi:10.1016/j.geomorph.2009.06.028.
Stark, C. P., Barbour, J. R., Hayakawa, Y. S., Hattanji, T., Hovius, N., Chen, H., … Fukahata, Y. (2010). The Climatic Signature of Incised River Meanders. Science, 327(5972), 1497–1501. doi:10.1126/science.1184406.
Sipos, G., Kiss, T., & Fiala, K. (2007). Morphological alterations due to channelization along the lower Tisza and Maros Rivers (Hungary). Geografia Fisica e Dinamica Quaternaria, 30(2), 239–247.
Chabuk, A., Al-Madhlom, Q., Al-Maliki, A., Al-Ansari, N., Hussain, H. M., & Laue, J. (2020). Water quality assessment along Tigris River (Iraq) using water quality index (WQI) and GIS software. Arabian Journal of Geosciences, 13(14). doi:10.1007/s12517-020-05575-5.
Badowi, M. S., Rashid Abood, M., & Saleh, S. A. (2019). Geotechnical properties for sediment of Tigris River reach banks within Tikrit town/ Iraq. Tikrit Journal of Pure Science, 24(6), 65. doi:10.25130/j.v24i6.889.
UN-ESCWA, & BGR. (2013). Inventory of Shared Water Resources in Western Asia. Beirut. United Nations Economic and Social Commission for Western Asia; Bundesanstalt für Geowissenschaften und Rohstoffe. Available online: https://waterinventory.org/sites/waterinventory.org/files/chapters/00-shared-water-resouces-in-western-asia-web.pdf (accessed on March 2022).
Dong, L., Deng, S., & Wang, F. (2020). Some developments and new insights for environmental sustainability and disaster control of tailings dam. Journal of Cleaner Production, 269, 122270. doi:10.1016/j.jclepro.2020.122270.
Shareef, M. E., & Abdulrazzaq, D. G. (2021). River Flood Modelling For Flooding Risk Mitigation in Iraq. Civil Engineering Journal, 7(10), 1702–1715. doi:10.28991/cej-2021-03091754.
Jones, A. F., Brewer, P. A., Johnstone, E., & Macklin, M. G. (2007). High-resolution interpretative geomorphological mapping of river valley environments using airborne LiDAR data. Earth Surface Processes and Landforms, 32(10), 1574–1592. doi:10.1002/esp.1505.
Harmar, O. P., & Clifford, N. J. (2006). Planform dynamics of the Lower Mississippi River. Earth Surface Processes and Landforms, 31(7), 825–843. doi:10.1002/esp.1294.
Winterbottom, S. J. (2000). Medium and short-term channel planform changes on the Rivers Tay and Tummel, Scotland. Geomorphology, 34(3–4), 195–208. doi:10.1016/S0169-555X(00)00007-6.
Sarma, J. N., & Basumallick, S. (1986). Channel Form and Process of the Burhi Dihing River, India. Geografiska Annaler: Series A, Physical Geography, 68(4), 373–381. doi:10.1080/04353676.1986.11880187.
Miller, T. K. (1988). An analysis of the relation between stream channel sinuosity and stream channel gradient. Computers, Environment and Urban Systems, 12(3), 197–207. doi:10.1016/0198-9715(88)90022-1.
Ratzlaff, J. (1991). Sinuosity Components of the Upper Saline River Valley, Western Kansas. Transactions of the Kansas Academy of Science, 94(1-2), 46-57. doi:10.2307/3628040.
Julien, P. Y. (2018). River mechanics. Cambridge University Press, Cambridge, United Kingdom. doi:10.1017/9781316107072.
Ebisemiju, F. S. (1994). The sinuosity of alluvial river channels in the seasonally wet tropical environment: Case study of river Elemi, southwestern Nigeria. CATENA, 21(1), 13–25. doi:10.1016/0341-8162(94)90028-0.
Charlton, R. (2007). Fundamentals of fluvial geomorphology. Routledge, London, United Kingdom. doi:10.4324/9780203371084.
Brice, J. C. (1964). Channel patterns and terraces of the Loup Rivers in Nebraska. US Government Printing Office, Washington, United States. doi:10.3133/pp422d.
Rust, B. R. (1977). A classification of alluvial channel system. Modern Rivers: Geomorphology and Sedimentation, Fluvial Sedimentology, 187-198.
Germanoski, D., & Schumm, S. A. (1993). Changes in braided river morphology resulting from aggradation and degradation. Journal of Geology, 101(4), 451–466. doi:10.1086/648239.
Friend, P. F., & Sinha, R. (1993). Braiding and meandering parameters. Geological Society Special Publication, 75(1), 105–111. doi:10.1144/GSL.SP.1993.075.01.05.
Gil-Guirado, S., Pérez-Morales, A., Pino, D., Peña, J. C., & Martínez, F. L. (2022). Flood impact on the Spanish Mediterranean coast since 1960 based on the prevailing synoptic patterns. Science of the Total Environment, 807, 150777. doi:10.1016/j.scitotenv.2021.150777.
Sarma, J. N., & Acharjee, S. (2018). A study on variation in channel width and braiding intensity of the Brahmaputra River in Assam, India. Geosciences (Switzerland), 8(9), 343. doi:10.3390/geosciences8090343.
Rinaldi, M., Surian, N., Comiti, F., & Bussettini, M. (2011). Guidebook for the evaluation of stream morphological conditions by the Morphological Quality Index (IQM). Higher Institute for Environmental Protection and Research (ISPRA), Rome, Italy. Available online: https://www.isprambiente.gov.it/en/publications/handbooks-and-guidelines/guidebook-for-the-evaluation-of-stream-1 (accessed on March 2022).
Huang, S., Tang, L., Hupy, J. P., Wang, Y., & Shao, G. (2021). A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. Journal of Forestry Research, 32(1), 1–6. doi:10.1007/s11676-020-01155-1.
McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425–1432. doi:10.1080/01431169608948714.
Anyamba, A., Tucker, C. J., & Eastman, J. R. (2001). NDVI anomaly patterns over Africa during the 1997/98 ENSO warm event. International Journal of Remote Sensing, 22(10), 1847–1859. doi:10.1080/01431160010029156.
Partow, H., & Jaquet, J. (2006). Iraqi Marshlands Observation System. UNEP Technical Report. United Nations Environmental Program (UNEP), Nairobi, Kenya, 74.
Fisher, A., Flood, N., & Danaher, T. (2016). Comparing Landsat water index methods for automated water classification in eastern Australia. Remote Sensing of Environment, 175, 167–182. doi:10.1016/j.rse.2015.12.055.
Ji, L., Zhang, L., & Wylie, B. (2009). Analysis of dynamic thresholds for the normalized difference water index. Photogrammetric Engineering and Remote Sensing, 75(11), 1307–1317. doi:10.14358/PERS.75.11.1307.
Issa, I. E., Al-Ansari, N. A., Sherwany, G., & Knutsson, S. (2013). Trends and future challenges of water resources in the Tigris–Euphrates Rivers basin in Iraq. Hydrology and Earth System Sciences Discussions, 10, 14617–14644. doi:10.5194/hessd-10-14617-2013.
Diplas, P., & Sutherland, A. J. (1988). Sampling Techniques for Gravel Sized Sediments. Journal of Hydraulic Engineering, 114(5), 484–501. doi:10.1061/(asce)0733-9429(1988)114:5(484).
Fripp, J. B., & Diplas, P. (1993). Surface Sampling in Gravel Streams. Journal of Hydraulic Engineering, 119(4), 473–490. doi:10.1061/(asce)0733-9429(1993)119:4(473).
Laronne, J. B., Reid, I., Yitshak, Y., & Frostick, L. E. (1994). The non-layering of gravel streambeds under ephemeral flood regimes. Journal of Hydrology, 159(1–4), 353–363. doi:10.1016/0022-1694(94)90266-6.
W. C. Krumbein. (1941). Measurement and Geological Significance of Shape and Roundness of Sedimentary Particles. SEPM Journal of Sedimentary Research, Volume 11. doi:10.1306/d42690f3-2b26-11d7-8648000102c1865d.
Wentworth, C. K. (1922). A Scale of Grade and Class Terms for Clastic Sediments. The Journal of Geology, 30(5), 377–392. doi:10.1086/622910.
DOI: 10.28991/CEJ-2022-08-07-03
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Ala Hassan Nama
This work is licensed under a Creative Commons Attribution 4.0 International License.