Field and Satellite Images-Based Investigation of Rivers Morphological Aspects

Ala Hassan Nama, Ali Sadiq Abbas, Jaafar S. Maatooq


Worldwide and especially in less developed regions, process-based evaluations and/or geomorphological information on large-scale rivers are still scarce. Such investigation become of ‎urgent ‎need due to the climate change and expected occurrence of extreme floods and drought which ‎may ‎threaten the safety of nearby and downstream cities, especially in regions that are highly sensitive and ‎affected by climatic changes. The Tigris River, in Iraq, is one such river that has undergone significant alteration to its flow and morphologic aspects due to climate change and the construction of many dams. However, morphology and its change for many reaches of this river are still uninvestigated. To this end, field and satellite-based investigations into the morphology of a reach located between Makhool District and Tikrit City have been conducted. In addition to the cross-sectional survey-based determination of the reach geometrical aspects, a sinuosity indices-based evaluation of the reach planform was implemented, utilizing a satellite indices-based approach. Furthermore, the characteristics of bed material were identified through field sampling. Investigation results show that the reach has a steep bed slope and many islands of low altitude with an elongated shape. The reach has a mild sinuosity with alternating bars. The dominant particle sizes of the bed material are coarse and medium gravel with a dominant particle shape of disc particles. Moreover, the satellite-based change detection indicated the fading out and disappearance of some secondary channels, the growth of many islands, and the movement of some bends downstream. The percentage of changing parts for the period 1975–2021 is 14%. Most of this change, 11%, occurred after the construction of the Mosul Dam. This reveals the sensitivity of reach morphology to flow change due to the construction of dams. The conducted fieldwork and the applied methodology contribute to supporting efforts to add knowledge worldwide about uninvestigated rivers.


Doi: 10.28991/CEJ-2022-08-07-03

Full Text: PDF


Planform; Morphology; Satellite-Vased Indices Sinuosity.


Bollati, I. M., Pellegrini, L., Rinaldi, M., Duci, G., & Pelfini, M. (2014). Reach-scale morphological adjustments and stages of channel evolution: The case of the Trebbia River (northern Italy). Geomorphology, 221, 176–186. doi:10.1016/j.geomorph.2014.06.007.

Intergovernmental Panel on Climate Change. (2014). Climate change 2013: The physical science basis. Cambridge University Press, Cambridge, United Kingdom. doi:10.1017/CBO9781107415324.

Khan, A., Rao, L. A. K., Yunus, A. P., & Govil, H. (2018). Characterization of channel planform features and sinuosity indices in parts of Yamuna River flood plain using remote sensing and GIS techniques. Arabian Journal of Geosciences, 11(17). doi:10.1007/s12517-018-3876-9.

Spada, D., Molinari, P., Bertoldi, W., Vitti, A., & Zolezzi, G. (2018). Multi-temporal image analysis for fluvial morphological characterization with application to Albanian rivers. ISPRS International Journal of Geo-Information, 7(8), 314. doi:10.3390/ijgi7080314.

Caskey, S. T., Blaschak, T. S., Wohl, E., Schnackenberg, E., Merritt, D. M., & Dwire, K. A. (2015). Downstream effects of stream flow diversion on channel characteristics and riparian vegetation in the Colorado Rocky Mountains, USA. Earth Surface Processes and Landforms, 40(5), 586–598. doi:10.1002/esp.3651.

Rhoads, B. L., Lewis, Q. W., & Andresen, W. (2016). Historical changes in channel network extent and channel planform in an intensively managed landscape: Natural versus human-induced effects. Geomorphology, 252, 17–31. doi:10.1016/j.geomorph.2015.04.021.

Yousefi, S., Mirzaee, S., Keesstra, S., Surian, N., Pourghasemi, H. R., Zakizadeh, H. R., & Tabibian, S. (2018). Effects of an extreme flood on river morphology (case study: Karoon River, Iran). Geomorphology, 304, 30–39. doi:10.1016/j.geomorph.2017.12.034.

Boota, M. W., Yan, C., Idrees, M. B., Li, Z., Soomro, S. E. H., Dou, M., Zohaib, M., & Yousaf, A. (2021). Assessment of the morphological trends and sediment dynamics in the Indus River, Pakistan. Journal of Water and Climate Change, 12(7), 3082–3098. doi:10.2166/wcc.2021.125.

Pappas, O. A., Anantrasirichai, N., Achim, A. M., & Adams, B. A. (2021). River Planform Extraction from High-Resolution SAR Images via Generalized Gamma Distribution Superpixel Classification. IEEE Transactions on Geoscience and Remote Sensing, 59(5), 3942–3955. doi:10.1109/TGRS.2020.3011209.

Lin, C. P., Wang, Y. M., Tfwala, S. S., & Chen, C. N. (2014). The variation of riverbed material due to tropical storms in Shi-Wen River, Taiwan. The Scientific World Journal, 2014, 1–12. doi:10.1155/2014/580936.

Ermilov, A. A., Baranya, S., & Török, G. T. (2020). Image-based bed material mapping of a large river. Water (Switzerland), 12(3), 916. doi:10.3390/w12030916.

Al-Ansari, N. (2020). Water Resources of Iraq. Journal of Earth Sciences and Geotechnical Engineering, 15–34. doi:10.47260/jesge/1122.

Othman, K., & Deguan, W. (2004). Characteristics of Tigris River Bed at Mosul City, Iraq. Journal of Lake Sciences, 16(Z1), 61–70. doi:10.18307/2004.sup08.

Nama, A. H. (2011). Estimating the Sediment Transport Capacity of Tigris River within Al Mosul City. Journal of Engineering, 17(3), 473–485.

Othman, K., Bilal, A. A., & Sulaman, Y. I. (2012). Morphologic Characteristics of Tigris River with at Mosul City. Tikrit Journal of Engineering Sciences, 19(3), 36–54. doi:10.25130/tjes.19.3.12.

Al-Ansari, N., Ali, A. A., Al-Suhail, Q., & Knutsson, S. (2015). Flow of River Tigris and its Effect on the Bed Sediment within Baghdad, Iraq. Open Engineering, 5(1), 465–477. doi:10.1515/eng-2015-0054.

Ali, A. (2016). Three dimensional hydro-morphological modeling of Tigris River. PhD Thesis, Luleå University of Technology, Luleå, Sweden.

Shamkhi, M. S., & Attab, Z. S. (2019). Characteristics of Tigris River bed material at 67 Km Downstream Kut Barrage. Wasit Journal of Engineering Sciences, 7(1), 54–61. doi:10.31185/ejuow.vol7.iss1.114.

AL-Thamiry, H. A. K., & AbdulAzeez, T. M. (2017). Two–Dimensional mathematical model to study erosion problem of Tigris River banks at Nu’maniyah. Journal of Engineering, 23(1), 112-135.

Abbas, M. s, & Azzubaidi, R. Z. (2020). Current and Modified Flood Discharge Capacity of a Reach of Tigris River between Kut and Amarah Barrages. Journal of Engineering, 26(2), 129–143. doi:10.31026/j.eng.2020.02.10.

Asaad, B. I., & Abed, B. S. (2020). Flow Characteristics Of Tigris River Within Baghdad City During Drought. Journal of Engineering, 26(3), 77–92. doi:10.31026/j.eng.2020.03.07.

Ismaeel, A., Abbas, S., & Al-Rekabi, W. (2021). Numerical 3D Model of Suspended Sediment Transport Downstream Al-Amarah Barrage, Iraq. Basrah Journal for Engineering Science, 21(3), 73–80. doi:10.33971/bjes.21.3.9.

Buscombe, D., Masselink, G., & Rubin, D. M. (2009). Granular Properties from Digital Images of Sediment: Implications for Coastal Sediment Transport Modelling. Coastal Engineering, 1625–1637. doi:10.1142/9789814277426_0135.

Graham, D. J., Rollet, A.-J., Rice, S. P., & Piégay, H. (2012). Conversions of Surface Grain-Size Samples Collected and Recorded Using Different Procedures. Journal of Hydraulic Engineering, 138(10), 839–849. doi:10.1061/(asce)hy.1943-7900.0000595.

Suwarno, I., Ma’arif, A., Maharani Raharja, N., Nurjanah, A., Ikhsan, J., & Mutiarin, D. (2021). IoT-based Lava Flood Early Warning System with Rainfall Intensity Monitoring and Disaster Communication Technology. Emerging Science Journal, 4, 154–166. doi:10.28991/esj-2021-sp1-011.

Takechi, H., Aragaki, S., & Irie, M. (2021). Differentiation of river sediments fractions in uav aerial images by convolution neural network. Remote Sensing, 13(16), 3188. doi:10.3390/rs13163188.

Hossain, M. A., Gan, T. Y., & Baki, A. B. M. (2013). Assessing morphological changes of the Ganges River using satellite images. Quaternary International, 304, 142–155. doi:10.1016/j.quaint.2013.03.028.

Adib, A., Foladfar, H., & Roozy, A. (2016). Role of construction of large dams on river morphology (case study: the Karkheh dam in Iran). Arabian Journal of Geosciences, 9(15), 1-16. doi:10.1007/s12517-016-2693-2.

Pal, R., & Pani, P. (2019). Remote sensing and GIS-based analysis of evolving planform morphology of the middle-lower part of the Ganga River, India. Egyptian Journal of Remote Sensing and Space Science, 22(1), 1–10. doi:10.1016/j.ejrs.2018.01.007.

Boothroyd, R. J., Nones, M., & Guerrero, M. (2021). Deriving Planform Morphology and Vegetation Coverage from Remote Sensing to Support River Management Applications. Frontiers in Environmental Science, 9. doi:10.3389/fenvs.2021.657354.

Prasad, N. (1982). Some aspects of meandering streams of the barakar basin and their sinuosity indexes. Perspectives in Geomorphology, 4, 93–102.

Zámolyi, A., Székely, B., Draganits, E., & Timár, G. (2010). Neotectonic control on river sinuosity at the western margin of the Little Hungarian Plain. Geomorphology, 122(3–4), 231–243. doi:10.1016/j.geomorph.2009.06.028.

Stark, C. P., Barbour, J. R., Hayakawa, Y. S., Hattanji, T., Hovius, N., Chen, H., … Fukahata, Y. (2010). The Climatic Signature of Incised River Meanders. Science, 327(5972), 1497–1501. doi:10.1126/science.1184406.

Sipos, G., Kiss, T., & Fiala, K. (2007). Morphological alterations due to channelization along the lower Tisza and Maros Rivers (Hungary). Geografia Fisica e Dinamica Quaternaria, 30(2), 239–247.

Chabuk, A., Al-Madhlom, Q., Al-Maliki, A., Al-Ansari, N., Hussain, H. M., & Laue, J. (2020). Water quality assessment along Tigris River (Iraq) using water quality index (WQI) and GIS software. Arabian Journal of Geosciences, 13(14). doi:10.1007/s12517-020-05575-5.

Badowi, M. S., Rashid Abood, M., & Saleh, S. A. (2019). Geotechnical properties for sediment of Tigris River reach banks within Tikrit town/ Iraq. Tikrit Journal of Pure Science, 24(6), 65. doi:10.25130/j.v24i6.889.

UN-ESCWA, & BGR. (2013). Inventory of Shared Water Resources in Western Asia. Beirut. United Nations Economic and Social Commission for Western Asia; Bundesanstalt für Geowissenschaften und Rohstoffe. Available online: (accessed on March 2022).

Dong, L., Deng, S., & Wang, F. (2020). Some developments and new insights for environmental sustainability and disaster control of tailings dam. Journal of Cleaner Production, 269, 122270. doi:10.1016/j.jclepro.2020.122270.

Shareef, M. E., & Abdulrazzaq, D. G. (2021). River Flood Modelling For Flooding Risk Mitigation in Iraq. Civil Engineering Journal, 7(10), 1702–1715. doi:10.28991/cej-2021-03091754.

Jones, A. F., Brewer, P. A., Johnstone, E., & Macklin, M. G. (2007). High-resolution interpretative geomorphological mapping of river valley environments using airborne LiDAR data. Earth Surface Processes and Landforms, 32(10), 1574–1592. doi:10.1002/esp.1505.

Harmar, O. P., & Clifford, N. J. (2006). Planform dynamics of the Lower Mississippi River. Earth Surface Processes and Landforms, 31(7), 825–843. doi:10.1002/esp.1294.

Winterbottom, S. J. (2000). Medium and short-term channel planform changes on the Rivers Tay and Tummel, Scotland. Geomorphology, 34(3–4), 195–208. doi:10.1016/S0169-555X(00)00007-6.

Sarma, J. N., & Basumallick, S. (1986). Channel Form and Process of the Burhi Dihing River, India. Geografiska Annaler: Series A, Physical Geography, 68(4), 373–381. doi:10.1080/04353676.1986.11880187.

Miller, T. K. (1988). An analysis of the relation between stream channel sinuosity and stream channel gradient. Computers, Environment and Urban Systems, 12(3), 197–207. doi:10.1016/0198-9715(88)90022-1.

Ratzlaff, J. (1991). Sinuosity Components of the Upper Saline River Valley, Western Kansas. Transactions of the Kansas Academy of Science, 94(1-2), 46-57. doi:10.2307/3628040.

Julien, P. Y. (2018). River mechanics. Cambridge University Press, Cambridge, United Kingdom. doi:10.1017/9781316107072.

Ebisemiju, F. S. (1994). The sinuosity of alluvial river channels in the seasonally wet tropical environment: Case study of river Elemi, southwestern Nigeria. CATENA, 21(1), 13–25. doi:10.1016/0341-8162(94)90028-0.

Charlton, R. (2007). Fundamentals of fluvial geomorphology. Routledge, London, United Kingdom. doi:10.4324/9780203371084.

Brice, J. C. (1964). Channel patterns and terraces of the Loup Rivers in Nebraska. US Government Printing Office, Washington, United States. doi:10.3133/pp422d.

Rust, B. R. (1977). A classification of alluvial channel system. Modern Rivers: Geomorphology and Sedimentation, Fluvial Sedimentology, 187-198.

Germanoski, D., & Schumm, S. A. (1993). Changes in braided river morphology resulting from aggradation and degradation. Journal of Geology, 101(4), 451–466. doi:10.1086/648239.

Friend, P. F., & Sinha, R. (1993). Braiding and meandering parameters. Geological Society Special Publication, 75(1), 105–111. doi:10.1144/GSL.SP.1993.075.01.05.

Gil-Guirado, S., Pérez-Morales, A., Pino, D., Peña, J. C., & Martínez, F. L. (2022). Flood impact on the Spanish Mediterranean coast since 1960 based on the prevailing synoptic patterns. Science of the Total Environment, 807, 150777. doi:10.1016/j.scitotenv.2021.150777.

Sarma, J. N., & Acharjee, S. (2018). A study on variation in channel width and braiding intensity of the Brahmaputra River in Assam, India. Geosciences (Switzerland), 8(9), 343. doi:10.3390/geosciences8090343.

Rinaldi, M., Surian, N., Comiti, F., & Bussettini, M. (2011). Guidebook for the evaluation of stream morphological conditions by the Morphological Quality Index (IQM). Higher Institute for Environmental Protection and Research (ISPRA), Rome, Italy. Available online: (accessed on March 2022).

Huang, S., Tang, L., Hupy, J. P., Wang, Y., & Shao, G. (2021). A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. Journal of Forestry Research, 32(1), 1–6. doi:10.1007/s11676-020-01155-1.

McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425–1432. doi:10.1080/01431169608948714.

Anyamba, A., Tucker, C. J., & Eastman, J. R. (2001). NDVI anomaly patterns over Africa during the 1997/98 ENSO warm event. International Journal of Remote Sensing, 22(10), 1847–1859. doi:10.1080/01431160010029156.

Partow, H., & Jaquet, J. (2006). Iraqi Marshlands Observation System. UNEP Technical Report. United Nations Environmental Program (UNEP), Nairobi, Kenya, 74.

Fisher, A., Flood, N., & Danaher, T. (2016). Comparing Landsat water index methods for automated water classification in eastern Australia. Remote Sensing of Environment, 175, 167–182. doi:10.1016/j.rse.2015.12.055.

Ji, L., Zhang, L., & Wylie, B. (2009). Analysis of dynamic thresholds for the normalized difference water index. Photogrammetric Engineering and Remote Sensing, 75(11), 1307–1317. doi:10.14358/PERS.75.11.1307.

Issa, I. E., Al-Ansari, N. A., Sherwany, G., & Knutsson, S. (2013). Trends and future challenges of water resources in the Tigris–Euphrates Rivers basin in Iraq. Hydrology and Earth System Sciences Discussions, 10, 14617–14644. doi:10.5194/hessd-10-14617-2013.

Diplas, P., & Sutherland, A. J. (1988). Sampling Techniques for Gravel Sized Sediments. Journal of Hydraulic Engineering, 114(5), 484–501. doi:10.1061/(asce)0733-9429(1988)114:5(484).

Fripp, J. B., & Diplas, P. (1993). Surface Sampling in Gravel Streams. Journal of Hydraulic Engineering, 119(4), 473–490. doi:10.1061/(asce)0733-9429(1993)119:4(473).

Laronne, J. B., Reid, I., Yitshak, Y., & Frostick, L. E. (1994). The non-layering of gravel streambeds under ephemeral flood regimes. Journal of Hydrology, 159(1–4), 353–363. doi:10.1016/0022-1694(94)90266-6.

W. C. Krumbein. (1941). Measurement and Geological Significance of Shape and Roundness of Sedimentary Particles. SEPM Journal of Sedimentary Research, Volume 11. doi:10.1306/d42690f3-2b26-11d7-8648000102c1865d.

Wentworth, C. K. (1922). A Scale of Grade and Class Terms for Clastic Sediments. The Journal of Geology, 30(5), 377–392. doi:10.1086/622910.

Full Text: PDF

DOI: 10.28991/CEJ-2022-08-07-03


  • There are currently no refbacks.

Copyright (c) 2022 Ala Hassan Nama

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.