The Influence of Nanoclay and Powdered Ceramic on the Mechanical Properties of Mortar
Abstract
Doi: 10.28991/CEJ-2022-08-07-08
Full Text: PDF
Keywords
References
Meyer, C. (2009). The greening of the concrete industry. Cement and Concrete Composites, 31(8), 601–605. doi:10.1016/j.cemconcomp.2008.12.010.
Pacheco-Torgal, F., & Jalali, S. (2010). Reusing ceramic wastes in concrete. Construction and Building Materials, 24(5), 832–838. doi:10.1016/j.conbuildmat.2009.10.023.
Naceri, A., & Hamina, M. C. (2009). Use of waste brick as a partial replacement of cement in mortar. Waste Management, 29(8), 2378–2384. doi:10.1016/j.wasman.2009.03.026.
Lavat, A. E., Trezza, M. A., & Poggi, M. (2009). Characterization of ceramic roof tile wastes as pozzolanic admixture. Waste Management, 29(5), 1666–1674. doi:10.1016/j.wasman.2008.10.019.
Binici, H. (2007). Effect of crushed ceramic and basaltic pumice as fine aggregates on concrete mortars properties. Construction and Building Materials, 21(6), 1191–1197. doi:10.1016/j.conbuildmat.2006.06.002.
Heidari, A., & Tavakoli, D. (2013). A study of the mechanical properties of ground ceramic powder concrete incorporating nano-SiO2 particles. Construction and Building Materials, 38, 255–264. doi:10.1016/j.conbuildmat.2012.07.110.
Naji, H. F., Khalid, N. N., & Alsaraj, W. K. (2020). Influence of nanoclay on the behavior of reinforced concrete slabs. IOP Conference Series: Materials Science and Engineering, 870(1), 12107. doi:10.1088/1757-899X/870/1/012107.
Gamal, H. A., El-Feky, M. S., Alharbi, Y. R., Abadel, A. A., & Kohail, M. (2021). Enhancement of the concrete durability with hybrid nano materials. Sustainability (Switzerland), 13(3), 1–17. doi:10.3390/su13031373.
Mohamed, A. M. (2016). Influence of nano materials on flexural behavior and compressive strength of concrete. HBRC Journal, 12(2), 212–225. doi:10.1016/j.hbrcj.2014.11.006.
Saloma, Nasution, A., Imran, I., & Abdullah, M. (2015). Improvement of concrete durability by nanomaterials. Procedia Engineering, 125, 608–612. doi:10.1016/j.proeng.2015.11.078.
Hamed, N., El-Feky, M. S., Kohail, M., & Nasr, E. S. A. R. (2019). Effect of nano-clay de-agglomeration on mechanical properties of concrete. Construction and Building Materials, 205, 245–256. doi:10.1016/j.conbuildmat.2019.02.018.
Hosseini, P., Afshar, A., Vafaei, B., Booshehrian, A., Molaei Raisi, E., & Esrafili, A. (2017). Effects of nano-clay particles on the short-term properties of self-compacting concrete. European Journal of Environmental and Civil Engineering, 21(2), 127–147. doi:10.1080/19648189.2015.1096308.
Mirgozar Langaroudi, M. A., & Mohammadi, Y. (2018). Effect of nano-clay on workability, mechanical, and durability properties of self-consolidating concrete containing mineral admixtures. Construction and Building Materials, 191, 619–634. doi:10.1016/j.conbuildmat.2018.10.044.
Mansi, A., Sor, N. H., Hilal, N., & Qaidi, S. M. A. (2022). The Impact of Nano Clay on Normal and High-Performance Concrete Characteristics: A Review. IOP Conference Series: Earth and Environmental Science, 961(1), 12085. doi:10.1088/1755-1315/961/1/012085.
Rashad, A. M. (2013). A synopsis about the effect of nano-Al2O3, nano-Fe2O3, nano-Fe3O4 and nano-clay on some properties of cementitious materials - A short guide for Civil Engineer. Materials and Design, 52, 143–157. doi:10.1016/j.matdes.2013.05.035.
Alani, N. Y., Al-Jumaily, I. A., & Hilal, N. (2021). Effect of nanoclay and burnt limestone powder on fresh and hardened properties of self-compacting concrete. Nanotechnology for Environmental Engineering, 6(1). doi:10.1007/s41204-021-00114-3.
Mehrabi, P., Shariati, M., Kabirifar, K., Jarrah, M., Rasekh, H., Trung, N. T., Shariati, A., & Jahandari, S. (2021). Effect of pumice powder and nano-clay on the strength and permeability of fiber-reinforced pervious concrete incorporating recycled concrete aggregate. Construction and Building Materials, 287, 122652. doi:10.1016/j.conbuildmat.2021.122652.
Mohammadhosseini, H., Lim, N. H. A. S., Tahir, M. M., Alyousef, R., Samadi, M., Alabduljabbar, H., & Mohamed, A. M. (2020). Effects of Waste Ceramic as Cement and Fine Aggregate on Durability Performance of Sustainable Mortar. Arabian Journal for Science and Engineering, 45(5), 3623–3634. doi:10.1007/s13369-019-04198-7.
Huseien, G. F., Sam, A. R. M., Shah, K. W., Mirza, J., & Tahir, M. M. (2019). Evaluation of alkali-activated mortars containing high volume waste ceramic powder and fly ash replacing GBFS. Construction and Building Materials, 210, 78–92. doi:10.1016/j.conbuildmat.2019.03.194.
Balamuralikrishnan, R., & Saravanan, J. (2021). Effect of Addition of Alccofine on the Compressive Strength of Cement Mortar Cubes. Emerging Science Journal, 5(2), 155–170. doi:10.28991/esj-2021-01265.
Kulovaná, T., Vejmelková, E., Keppert, M., Rovnaníková, P., Keršner, Z., & Černý, R. (2016). Mechanical, durability and hygrothermal properties of concrete produced using Portland cement-ceramic powder blends. Structural Concrete, 17(1), 105–115. doi:10.1002/suco.201500029.
Forbes, T. Z. (2015). Occurrence of nanomaterials in the environment. Nanomaterials in the Environment, 179–218, American Society of Civil Engineering (ASCE), Reston, United States. doi:10.1061/9780784414088.ch07.
Asim Mohammad Hussain, W., Thamer Abdulrasool, A., & N Kadhim, Y. (2022). Using Nanoclay Hydrophilic Bentonite as a Filler To Enhance the Mechanical Properties of Asphalt. Journal of Applied Engineering Science, 20(1), 300–304. doi:10.5937/jaes20-35111.
DOI: 10.28991/CEJ-2022-08-07-08
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Noor Raghib Kadhum, Wail Asim Mohammad Hussain, Abdulrasool Thamer Abdulrasool, Mohammed Ali Azeez

This work is licensed under a Creative Commons Attribution 4.0 International License.