The Influence of Nanoclay and Powdered Ceramic on the Mechanical Properties of Mortar

Noor R. Kadhim, Wail Asim M. Hussain, Abdulrasool Th. Abdulrasool, Mohammed A. Azeez


The amount of concrete utilized worldwide has lately grown due to rising populations and urbanization. The gas emissions during cement manufacturing and the usage of common resources result in a significant environmental threat. As a result, researchers are attempting to minimize the amount of cement consumed by using waste materials while lowering building costs. This research aims to minimize the amount of cement used in concrete by partially replacing it with ceramic powder waste while also increasing the mechanical qualities of concrete mortar by substituting cement with nanoclay hydrophilic bentonite. Mortar samples were prepared using five different replacement percentages of cement by nanoclay, including 0, 2, 4, 6, and 8%, and two replacement percentages of cement by ceramic powder, including 0% and 20%. Compressive and flexural strength tests were performed on mortar samples for 7, 14, and 28 days of moist curing. The toughness was also measured for all mixes by measuring the area under the load-deflection curve. Also, water absorption and relative densities for all mortar mixes were measured. The results show that replacing cement with 2% nanoclay and 20% ceramic powder increases the flexural strength by 11%.


Doi: 10.28991/CEJ-2022-08-07-08

Full Text: PDF


Nano Clay; Waste Materials; Mechanical Properties; Mortar; Flexural Strength.


Meyer, C. (2009). The greening of the concrete industry. Cement and Concrete Composites, 31(8), 601–605. doi:10.1016/j.cemconcomp.2008.12.010.

Pacheco-Torgal, F., & Jalali, S. (2010). Reusing ceramic wastes in concrete. Construction and Building Materials, 24(5), 832–838. doi:10.1016/j.conbuildmat.2009.10.023.

Naceri, A., & Hamina, M. C. (2009). Use of waste brick as a partial replacement of cement in mortar. Waste Management, 29(8), 2378–2384. doi:10.1016/j.wasman.2009.03.026.

Lavat, A. E., Trezza, M. A., & Poggi, M. (2009). Characterization of ceramic roof tile wastes as pozzolanic admixture. Waste Management, 29(5), 1666–1674. doi:10.1016/j.wasman.2008.10.019.

Binici, H. (2007). Effect of crushed ceramic and basaltic pumice as fine aggregates on concrete mortars properties. Construction and Building Materials, 21(6), 1191–1197. doi:10.1016/j.conbuildmat.2006.06.002.

Heidari, A., & Tavakoli, D. (2013). A study of the mechanical properties of ground ceramic powder concrete incorporating nano-SiO2 particles. Construction and Building Materials, 38, 255–264. doi:10.1016/j.conbuildmat.2012.07.110.

Naji, H. F., Khalid, N. N., & Alsaraj, W. K. (2020). Influence of nanoclay on the behavior of reinforced concrete slabs. IOP Conference Series: Materials Science and Engineering, 870(1), 12107. doi:10.1088/1757-899X/870/1/012107.

Gamal, H. A., El-Feky, M. S., Alharbi, Y. R., Abadel, A. A., & Kohail, M. (2021). Enhancement of the concrete durability with hybrid nano materials. Sustainability (Switzerland), 13(3), 1–17. doi:10.3390/su13031373.

Mohamed, A. M. (2016). Influence of nano materials on flexural behavior and compressive strength of concrete. HBRC Journal, 12(2), 212–225. doi:10.1016/j.hbrcj.2014.11.006.

Saloma, Nasution, A., Imran, I., & Abdullah, M. (2015). Improvement of concrete durability by nanomaterials. Procedia Engineering, 125, 608–612. doi:10.1016/j.proeng.2015.11.078.

Hamed, N., El-Feky, M. S., Kohail, M., & Nasr, E. S. A. R. (2019). Effect of nano-clay de-agglomeration on mechanical properties of concrete. Construction and Building Materials, 205, 245–256. doi:10.1016/j.conbuildmat.2019.02.018.

Hosseini, P., Afshar, A., Vafaei, B., Booshehrian, A., Molaei Raisi, E., & Esrafili, A. (2017). Effects of nano-clay particles on the short-term properties of self-compacting concrete. European Journal of Environmental and Civil Engineering, 21(2), 127–147. doi:10.1080/19648189.2015.1096308.

Mirgozar Langaroudi, M. A., & Mohammadi, Y. (2018). Effect of nano-clay on workability, mechanical, and durability properties of self-consolidating concrete containing mineral admixtures. Construction and Building Materials, 191, 619–634. doi:10.1016/j.conbuildmat.2018.10.044.

Mansi, A., Sor, N. H., Hilal, N., & Qaidi, S. M. A. (2022). The Impact of Nano Clay on Normal and High-Performance Concrete Characteristics: A Review. IOP Conference Series: Earth and Environmental Science, 961(1), 12085. doi:10.1088/1755-1315/961/1/012085.

Rashad, A. M. (2013). A synopsis about the effect of nano-Al2O3, nano-Fe2O3, nano-Fe3O4 and nano-clay on some properties of cementitious materials - A short guide for Civil Engineer. Materials and Design, 52, 143–157. doi:10.1016/j.matdes.2013.05.035.

Alani, N. Y., Al-Jumaily, I. A., & Hilal, N. (2021). Effect of nanoclay and burnt limestone powder on fresh and hardened properties of self-compacting concrete. Nanotechnology for Environmental Engineering, 6(1). doi:10.1007/s41204-021-00114-3.

Mehrabi, P., Shariati, M., Kabirifar, K., Jarrah, M., Rasekh, H., Trung, N. T., Shariati, A., & Jahandari, S. (2021). Effect of pumice powder and nano-clay on the strength and permeability of fiber-reinforced pervious concrete incorporating recycled concrete aggregate. Construction and Building Materials, 287, 122652. doi:10.1016/j.conbuildmat.2021.122652.

Mohammadhosseini, H., Lim, N. H. A. S., Tahir, M. M., Alyousef, R., Samadi, M., Alabduljabbar, H., & Mohamed, A. M. (2020). Effects of Waste Ceramic as Cement and Fine Aggregate on Durability Performance of Sustainable Mortar. Arabian Journal for Science and Engineering, 45(5), 3623–3634. doi:10.1007/s13369-019-04198-7.

Huseien, G. F., Sam, A. R. M., Shah, K. W., Mirza, J., & Tahir, M. M. (2019). Evaluation of alkali-activated mortars containing high volume waste ceramic powder and fly ash replacing GBFS. Construction and Building Materials, 210, 78–92. doi:10.1016/j.conbuildmat.2019.03.194.

Balamuralikrishnan, R., & Saravanan, J. (2021). Effect of Addition of Alccofine on the Compressive Strength of Cement Mortar Cubes. Emerging Science Journal, 5(2), 155–170. doi:10.28991/esj-2021-01265.

Kulovaná, T., Vejmelková, E., Keppert, M., Rovnaníková, P., Keršner, Z., & Černý, R. (2016). Mechanical, durability and hygrothermal properties of concrete produced using Portland cement-ceramic powder blends. Structural Concrete, 17(1), 105–115. doi:10.1002/suco.201500029.

Forbes, T. Z. (2015). Occurrence of nanomaterials in the environment. Nanomaterials in the Environment, 179–218, American Society of Civil Engineering (ASCE), Reston, United States. doi:10.1061/9780784414088.ch07.

Asim Mohammad Hussain, W., Thamer Abdulrasool, A., & N Kadhim, Y. (2022). Using Nanoclay Hydrophilic Bentonite as a Filler To Enhance the Mechanical Properties of Asphalt. Journal of Applied Engineering Science, 20(1), 300–304. doi:10.5937/jaes20-35111.

Full Text: PDF

DOI: 10.28991/CEJ-2022-08-07-08


  • There are currently no refbacks.

Copyright (c) 2022 Noor Raghib Kadhum, Wail Asim Mohammad Hussain, Abdulrasool Thamer Abdulrasool, Mohammed Ali Azeez

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.