Shear Strengthening of Reinforced Concrete Beam Using Wire Mesh–Epoxy Composite
Downloads
Doi: 10.28991/CEJ-2022-08-06-09
Full Text: PDF
Downloads
[2] Barnes, R. A., Baglin, P. S., Mays, G. C., & Subedi, N. K. (2001). External steel plate system for the shear strengthening of reinforced concrete beams. Engineering Structures, 23(9), 1162–1176. doi:10.1016/S0141-0296(00)00124-3.
[3] Adhikary, B. B., Mutsuyoshi, H., & Sano, M. (2000). Shear strengthening of reinforced concrete beams using steel plates bonded on beam web: Experiments and analysis. Construction and Building Materials, 14(5), 237–244. doi:10.1016/S0950-0618(00)00023-4.
[4] Abdalla, J. A., Abu-Obeidah, A. S., Hawileh, R. A., & Rasheed, H. A. (2016). Shear strengthening of reinforced concrete beams using externally-bonded aluminum alloy plates: An experimental study. Construction and Building Materials, 128, 24–37. doi:10.1016/j.conbuildmat.2016.10.071.
[5] Li, W., & Leung, C. K. Y. (2017). Effect of shear span-depth ratio on mechanical performance of RC beams strengthened in shear with U-wrapping FRP strips. Composite Structures, 177, 141–157. doi:10.1016/j.compstruct.2017.06.059.
[6] Oller, E., Pujol, M., & Marí, A. (2019). Contribution of externally bonded FRP shear reinforcement to the shear strength of RC beams. Composites Part B: Engineering, 164, 235–248. doi:10.1016/j.compositesb.2018.11.065.
[7] Lee, D. H., Han, S. J., Kim, K. S., & LaFave, J. M. (2017). Shear strength of reinforced concrete beams strengthened in shear using externally-bonded FRP composites. Composite Structures, 173, 177–187. doi:10.1016/j.compstruct.2017.04.025.
[8] Baghi, H., Barros, J. A. O., & Rezazadeh, M. (2017). Shear strengthening of damaged reinforced concrete beams with Hybrid Composite Plates. Composite Structures, 178, 353–371. doi:10.1016/j.compstruct.2017.07.039.
[9] Baghi, H., Barros, J. A. O., & Menkulasi, F. (2016). Shear strengthening of reinforced concrete beams with Hybrid Composite Plates (HCP) technique: Experimental research and analytical model. Engineering Structures, 125, 504–520. doi:10.1016/j.engstruct.2016.07.023.
[10] Lourenço, L., Zamanzadeh, Z., Barros, J. A. O., & Rezazadeh, M. (2018). Shear strengthening of RC beams with thin panels of mortar reinforced with recycled steel fibres. Journal of Cleaner Production, 194, 112–126. doi:10.1016/j.jclepro.2018.05.096.
[11] Alam, M. A., & Al Riyami, K. (2018). Shear strengthening of reinforced concrete beam using natural fibre reinforced polymer laminates. Construction and Building Materials, 162, 683–696. doi:10.1016/j.conbuildmat.2017.12.011.
[12] Shomali, A., Mostofinejad, D., & Esfahani, M. R. (2020). Effective strain of CFRP in RC beams strengthened in shear with NSM reinforcements. Structures, 23, 635–645. doi:10.1016/j.istruc.2019.10.020.
[13] Jalali, M., Sharbatdar, M. K., Chen, J. F., & Jandaghi Alaee, F. (2012). Shear strengthening of RC beams using innovative manually made NSM FRP bars. Construction and Building Materials, 36, 990–1000. doi:10.1016/j.conbuildmat.2012.06.068.
[14] Shomali, A., Mostofinejad, D., & Esfahani, M. R. (2021). Shear strengthening of RC beams using EBRIG CFRP strips: a comparative study. European Journal of Environmental and Civil Engineering, 25(14), 2540–2556. doi:10.1080/19648189.2019.1633413.
[15] Lu, X. Z., Teng, J. G., Ye, L. P., & Jiang, J. J. (2005). Bond-slip models for FRP sheets/plates bonded to concrete. Engineering Structures, 27(6), 920–937. doi:10.1016/j.engstruct.2005.01.014.
[16] Ceroni, F., Pecce, M., Bilotta, A., & Nigro, E. (2012). Bond behavior of FRP NSM systems in concrete elements. Composites Part B: Engineering, 43(2), 99–109. doi:10.1016/j.compositesb.2011.10.017.
[17] Alwash, D., Kalfat, R., Al-Mahaidi, R., & Du, H. (2021). Shear strengthening of RC beams using NSM CFRP bonded using cement-based adhesive. Construction and Building Materials, 301, 124365. doi:10.1016/j.conbuildmat.2021.124365.
[18] Al-Rousan, R. Z., & Shannag, M. J. (2018). Shear Repairing and Strengthening of Reinforced Concrete Beams Using SIFCON. Structures, 14, 389–399. doi:10.1016/j.istruc.2018.05.001.
[19] Meda, A., Mostosi, S., & Riva, P. (2014). Shear strengthening of reinforced concrete beam with high-performance fiber-reinforced cementitious composite jacketing. ACI Structural Journal, 111(5), 1059–1068. doi:10.14359/51686807.
[20] Younis, A., Ebead, U., & Shrestha, K. C. (2017). Different FRCM systems for shear-strengthening of reinforced concrete beams. Construction and Building Materials, 153, 514–526. doi:10.1016/j.conbuildmat.2017.07.132.
[21] Tetta, Z. C., Triantafillou, T. C., & Bournas, D. A. (2018). On the design of shear-strengthened RC members through the use of textile reinforced mortar overlays. Composites Part B: Engineering, 147, 178–196. doi:10.1016/j.compositesb.2018.04.008.
[22] Tzoura, E., & Triantafillou, T. C. (2014). Shear strengthening of reinforced concrete T-beams under cyclic loading with TRM or FRP jackets. Materials and Structures, 49(1-2), 17–28. doi:10.1617/s11527-014-0470-9.
[23] Contamine, R., Si Larbi, A., & Hamelin, P. (2013). Identifying the contributing mechanisms of textile reinforced concrete (TRC) in the case of shear repairing damaged and reinforced concrete beams. Engineering Structures, 46, 447–458. doi:10.1016/j.engstruct.2012.07.024.
[24] Tetta, Z. C., Koutas, L. N., & Bournas, D. A. (2015). Textile-reinforced mortar (TRM) versus fiber-reinforced polymers (FRP) in shear strengthening of concrete beams. Composites Part B: Engineering, 77, 338–348. doi:10.1016/j.compositesb.2015.03.055.
[25] Awani, O., El-Maaddawy, T., & El Refai, A. (2016). Numerical Simulation and Experimental Testing of Concrete Beams Strengthened in Shear with Fabric-Reinforced Cementitious Matrix. Journal of Composites for Construction, 20(6), 4016056. doi:10.1061/(asce)cc.1943-5614.0000711.
[26] Contamine, R., Si Larbi, A., & Hamelin, P. (2013). Identifying the contributing mechanisms of textile reinforced concrete (TRC) in the case of shear repairing damaged and reinforced concrete beams. Engineering Structures, 46, 447–458. doi:10.1016/j.engstruct.2012.07.024.
[27] Chen, C., Yang, Y., Zhou, Y., Xue, C., Chen, X., Wu, H., ... & Li, X. (2020). Comparative analysis of natural fiber reinforced polymer and carbon fiber reinforced polymer in strengthening of reinforced concrete beams. Journal of cleaner production, 263, 121572. doi:10.1016/j.jclepro.2020.121572.
[28] Escrig, C., Gil, L., Bernat-Maso, E., & Puigvert, F. (2015). Experimental and analytical study of reinforced concrete beams shear strengthened with different types of textile-reinforced mortar. Construction and Building Materials, 83, 248–260. doi:10.1016/j.conbuildmat.2015.03.013.
[29] Triantafillou, T. C., & Papanicolaou, C. G. (2006). Shear strengthening of reinforced concrete members with textile reinforced mortar (TRM) jackets. Materials and Structures, 39(1), 93–103. doi:10.1617/s11527-005-9034-3.
[30] Trapko, T., Urbańska, D., & Kamiński, M. (2015). Shear strengthening of reinforced concrete beams with PBO-FRCM composites. Composites Part B: Engineering, 80, 63–72. doi:10.1016/j.compositesb.2015.05.024.
[31] Tetta, Z. C., Koutas, L. N., & Bournas, D. A. (2015). Textile-reinforced mortar (TRM) versus fiber-reinforced polymers (FRP) in shear strengthening of concrete beams. Composites Part B: Engineering, 77, 338–348. doi:10.1016/j.compositesb.2015.03.055.
[32] Kotynia, R., Oller, E., Marí, A., & Kaszubska, M. (2021). Efficiency of shear strengthening of RC beams with externally bonded FRP materials – State-of-the-art in the experimental tests. Composite Structures, 267, 113891. doi:10.1016/j.compstruct.2021.113891.
[33] Amran, Y. M., Alyousef, R., Alabduljabbar, H., & El-Zeadani, M. (2020). Clean production and properties of geopolymer concrete; A review. Journal of Cleaner Production, 251, 119679. doi:10.1016/j.jclepro.2019.119679.
[34] Tetta, Z. C., Koutas, L. N., & Bournas, D. A. (2016). Shear strengthening of full-scale RC T-beams using textile-reinforced mortar and textile-based anchors. Composites Part B: Engineering, 95, 225–239. doi:10.1016/j.compositesb.2016.03.076.
[35] Awani, O., El-Maaddawy, T., & El Refai, A. (2016). Numerical Simulation and Experimental Testing of Concrete Beams Strengthened in Shear with Fabric-Reinforced Cementitious Matrix. Journal of Composites for Construction, 20(6). doi:10.1061/(asce)cc.1943-5614.0000711.
[36] Ombres, L., & Verre, S. (2021). Shear strengthening of reinforced concrete beams with SRG (Steel Reinforced Grout) composites: Experimental investigation and modelling. Journal of Building Engineering, 42, 103047. doi:10.1016/j.jobe.2021.103047.
[37] Gonzalez-Libreros, J. H., Sneed, L. H., D'Antino, T., & Pellegrino, C. (2017). Behavior of RC beams strengthened in shear with FRP and FRCM composites. Engineering Structures, 150, 830–842. doi:10.1016/j.engstruct.2017.07.084.
[38] Ombres, L., & Verre, S. (2019). Flexural Strengthening of RC Beams with Steel-Reinforced Grout: Experimental and Numerical Investigation. Journal of Composites for Construction, 23(5). doi:10.1061/(asce)cc.1943-5614.0000960.
[39] Paramasivam, P., Lim, C. T. E., & Ong, K. C. G. (1998). Strengthening of RC beams with ferrocement laminates. Cement and Concrete Composites, 20(1), 53–65. doi:10.1016/S0958-9465(97)00068-1.
[40] Shebl, H., & El-Nemr, A. (2021). Moment Redistribution of Shear-Critical GFRP Reinforced Continuously Supported Slender Beams. Civil Engineering Journal, 7, 13-31. doi:10.28991/CEJ-SP2021-07-02.
[41] Yan, M. (2015). High toughness resin concrete with steel wire mesh and the reinforcement theoretical research on prestressed concrete simply supported plate beam bridge. Southwest Jiaotong University, Chengdu, China.
[42] Li, X., Xie, H., Yan, M., Gou, H., Zhao, G., & Bao, Y. (2018). Eccentric compressive behavior of reinforced concrete columns strengthened using steel mesh reinforced resin concrete. Applied Sciences (Switzerland), 8(10). doi:10.3390/app8101827.
[43] Qeshta, I. M. I., Shafigh, P., Jumaat, M. Z., Abdulla, A. I., Ibrahim, Z., & Alengaram, U. J. (2014). The use of wire mesh-epoxy composite for enhancing the flexural performance of concrete beams. Materials and Design, 60, 250–259. doi:10.1016/j.matdes.2014.03.075.
[44] Qeshta, I. M. I., Shafigh, P., Jumaat, M. Z., Abdulla, A. I., Alengaram, U. J., & Ibrahim, Z. (2014). Flexural behaviour of concrete beams bonded with wire mesh-epoxy composite. Applied Mechanics and Materials, 567, 411–416. doi:10.4028/www.scientific.net/AMM.567.411.
[45] Jaafer, A. A., AL-Shadidi, R., & Kareem, S. L. (2019). Enhancing the punching load capacity of reinforced concrete slabs using an external epoxy-steel wire mesh composite. Fibers, 7(8), 68. doi:10.3390/fib7080068.
[46] Al Nuaimi, N., Sohail, M. G., Hawileh, R. A., Abdalla, J. A., & Douier, K. (2020). Durability of reinforced concrete beams strengthened by galvanized steel mesh-epoxy systems under harsh environmental conditions. Composite Structures, 249, 112547. doi:10.1016/j.compstruct.2020.112547.
[47] Abadel, A. A. (2021). Experimental investigation for shear strengthening of reinforced self-compacting concrete beams using different strengthening schemes. Journal of Materials Research and Technology, 15, 1815–1829. doi:10.1016/j.jmrt.2021.09.012.
[48] ASTM C33-03. (2010). Standard Specification for Concrete Aggregates. ASTM International, Pennsylvania, United States. doi:10.1520/C0033-03.
[49] BS 1881-116. (1983). Part 116: Method for Determination of Compressive Strength of Concrete Cubes. British Standards Institution, London, Unite Kingdom.
[50] ASTM C78-09. (2010). Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading). ASTM International, Pennsylvania, United States. doi:10.1520/C0078-09.
[51] ASTM C496-96. (2010). Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. ASTM International, Pennsylvania, United States. doi:10.1520/C0496-96.
[52] ASTM A615/A615-04. (2017). Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement. ASTM International, Pennsylvania, United States. doi:10.1520/A0615-A0615M-04.
[53] ACI 549.1 R-88. (1988). Guide for the Design, Construction, and Repair of Ferrocement. ACI Structural Journal, 85(3), 32-51.
[54] ACI Code 318-19. (2019). Building Code Requirements for Structural Concrete. American Concrete Institute, Farmington Hills, United States. doi:10.14359/51716937.
[55] ACI 440.2R-08. (2008). Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures. American Concrete Institute, Farmington Hills, United States.
[56] Sikafloor®-161. (2016). Product Data sheet. 2-Part Epoxy Primer, Levelling Mortar and Intermediate Layer. Building Trust, Sika. Available online: https://gcc.sika.com/content/dam/dms/gcc/s/sikafloor_-161.pdf (accessed on May 2022).
[57] Sikadur®-31. (2016). CF-Slow: Product Data sheet. 2-Component Thixotropic Epoxy Adhesive. Available online: https://egy.sika.com/content/dam/dms/eg01/g/sikadur_-31_cf_slow.pdf (accessed on May 2022).
[58] Liu, X., Chen, Y., Li, L. Z., Su, M. N., Lu, Z. D., & Yu, K. Q. (2019). Experimental study on the shear performance of reinforced concrete beams strengthened with bolted side-plating. Sustainability (Switzerland), 11(9). doi:10.3390/su11092465.
[59] Ebead, U., Shrestha, K. C., Afzal, M. S., El Refai, A., & Nanni, A. (2017). Effectiveness of Fabric-Reinforced Cementitious Matrix in Strengthening Reinforced Concrete Beams. Journal of Composites for Construction, 21(2), 4016084. doi:10.1061/(asce)cc.1943-5614.0000741.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.