Experimental Characterization of a Functionally Graded Composite Using Recycled Steel Fiber

Mohamed Yagoub, Mekki Mellas, Adel Benchabane, Abdallah Zatar


Many industries have recently focused on cost-effective materials with good mechanical properties. Steel fiber reinforced cementitious composites have proven their mechanical performance in industrial and structural components. The concept of recycled fiber-reinforced FGM is used as an alternative construction material, which can be one of the proposed cost-effective solutions. To achieve these objectives, an experimental program has been developed. A cementitious composite based on local materials was strengthened in two designs; one strengthened over the entire cross-section and the other strengthened only in the tensile zone. We also substituted a functional gradient material reinforced with recycled fibers considering the following volume fractions: 0, 0.5, 1, and 1.5%. This paper investigates the feasibility of using recycled fibers from industrial waste from steel wool manufacturing as reinforcement. We also characterized their mechanical properties using ultrasonic pulse velocity, compressive strength, flexural tensile strength, and shear strength. The results show that the corrugated recycled fibers are the ideal choice to increase the mechanical performance of the reinforced composite, including the improvement of flexural and shear behaviors. Therefore, the investigated FGC could be a valuable tool to optimize the design process in various structural applications and make the production of mechanically and environmentally economical composites possible.


Doi: 10.28991/CEJ-2022-08-05-03

Full Text: PDF


Recycled Steel Fibers; Reinforced Cementitious Composites; Mechanical Performance; Functionally Graded.


Nili, M., & Afroughsabet, V. (2010). The effects of silica fume and polypropylene fibers on the impact resistance and mechanical properties of concrete. Construction and Building Materials, 24(6), 927–933. doi:10.1016/j.conbuildmat.2009.11.025

Nili, M., & Afroughsabet, V. (2012). The long-term compressive strength and durability properties of silica fume fiber-reinforced concrete. Materials Science and Engineering A, 531, 107–111. doi:10.1016/j.msea.2011.10.042.

Choi, Y., & Yuan, R. L. (2005). Experimental relationship between splitting tensile strength and compressive strength of GFRC and PFRC. Cement and Concrete Research, 35(8), 1587–1591. doi:10.1016/j.cemconres.2004.09.010.

Havlikova, I., Merta, I., Schneemayer, A., Vesely, V., Šimonová, H., Korycanska, B., & Kersner, Z. (2015). Effect of Fibre Type in Concrete on Crack Initiation. Applied Mechanics and Materials, 769, 308–311. doi:10.4028/www.scientific.net/amm.769.308.

Abbass, W., Khan, M. I., & Mourad, S. (2018). Evaluation of mechanical properties of steel fiber reinforced concrete with different strengths of concrete. Construction and Building Materials, 168, 556–569. doi:10.1016/j.conbuildmat.2018.02.164.

Kazemi, M. T., Golsorkhtabar, H., Beygi, M. H. A., & Gholamitabar, M. (2017). Fracture properties of steel fiber reinforced high strength concrete using work of fracture and size effect methods. Construction and Building Materials, 142, 482–489. doi:10.1016/j.conbuildmat.2017.03.089.

Vogel, F., Holčapek, O., Jogl, M., Kolář, K., & Konvalinka, P. (2014). Development of Mechanical Properties of Steel Fibers Reinforced High Strength Concrete. Advanced Materials Research, 1077, 113–117. doi:10.4028/www.scientific.net/amr.1077.113.

Jansson, A. (2011). Effects of steel fibres on cracking in reinforced concrete. Chalmers Tekniska Hogskola, Gothenburg, Sweden.

Døssland, Å. L. (2008). Fibre reinforcement in load carrying concrete structures: laboratory and field investigations compared with theory and finite element analysis. Ph.D. Thesis, Department of Structural Engineering, Faculty of Engineering Science and techno9logy, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.

Khayat, K. H., Kassimi, F., & Ghoddousi, P. (2014). Mixture design and testing of fiber-reinforced self-consolidating concrete. ACI Materials Journal, 111(2), 143–152. doi:10.14359/51686722.

Zeyad, A. M. (2019). Effect of curing methods in hot weather on the properties of high-strength concretes. Journal of King Saud University - Engineering Sciences, 31(3), 218–223. doi:10.1016/j.jksues.2017.04.004.

Pająk, M., & Ponikiewski, T. (2013). Flexural behavior of self-compacting concrete reinforced with different types of steel fibers. Construction and Building materials, 47, 397-408. doi:10.1016/j.conbuildmat.2013.05.072.

Mohammadi, Y., Singh, S. P., & Kaushik, S. K. (2008). Properties of steel fibrous concrete containing mixed fibres in fresh and hardened state. Construction and Building Materials, 22(5), 956–965. doi:10.1016/j.conbuildmat.2006.12.004.

Katzer, J., & Domski, J. (2012). Quality and mechanical properties of engineered steel fibres used as reinforcement for concrete. Construction and Building Materials, 34, 243–248. doi:10.1016/j.conbuildmat.2012.02.058.

Naaman, A. E. (2003). Engineered Steel Fibers with Optimal Properties for Reinforcement of Cement Composites. Journal of Advanced Concrete Technology, 1(3), 241–252. doi:10.3151/jact.1.241.

Domski, J. (2011). Cracking moment in steel fibre reinforced concrete beams based on waste sand. "Ovidius" University Annals Constantza. Series Civil Engineering, (13), 29. doi:10.3390/ma13020392.

Wang, J., Dai, Q., Si, R., Ma, Y., & Guo, S. (2020). Fresh and mechanical performance and freeze-thaw durability of steel fiber-reinforced rubber self-compacting concrete (SRSCC). Journal of Cleaner Production, 277, 123180. doi:10.1016/j.jclepro.2020.123180

Maidl, B. (1995). Steel fiber reinforced Concrete (1st Ed.). Ernst & Sohn, Berlin, Germany.

Spinella, N. (2013). Shear strength of full-scale steel fibre-reinforced concrete beams without stirrups. Computers and Concrete, 11(5), 365–382. doi:10.12989/cac.2013.11.5.365.

Hussain, H. K., Zewair, M. S., & Ahmed, M. A. (2022). High Strength Concrete Beams Reinforced with Hooked Steel Fibers under Pure Torsion. Civil Engineering Journal (Iran), 8(1), 92–104. doi:10.28991/CEJ-2022-08-01-07.

Katzer, J. (2006). Steel fibers and steel fiber reinforced concrete in civil engineering. Pacific Journal of science and technology, 7(1), 53-58.

Ali, B., Kurda, R., Ahmed, H., & Alyousef, R. (2022). Effect of recycled tyre steel fiber on flexural toughness, residual strength, and chloride permeability of high-performance concrete (HPC). Journal of Sustainable Cement-Based Materials, 1–17. doi:10.1080/21650373.2021.2025165.

Djebali, S., Bouafia, Y., Atlaoui, D., & Bilek, A. (2011). Study of Mechanical Behavior of Chips Reinforced Concrete. In Advanced Materials Research, 324,360-363. doi:10.4028/www.scientific.net/AMR.324.360

Channa, I. A., & Saand, A. (2021). Mechanical behavior of concrete reinforced with waste aluminium strips. Civil Engineering Journal (Iran), 7(7), 1169–1182. doi:10.28991/cej-2021-03091718.

Lourenço, L., Zamanzadeh, Z., Barros, J. A. O., & Rezazadeh, M. (2018). Shear strengthening of RC beams with thin panels of mortar reinforced with recycled steel fibres. Journal of Cleaner Production, 194, 112–126. doi:10.1016/j.jclepro.2018.05.096.

Bever, M. B., & Duwez, P. E. (1972). Gradients in composite materials. Materials Science and Engineering, 10(C), 1–8. doi:10.1016/0025-5416(72)90059-6.

Roesler, J., Paulino, G., Gaedicke, C., Bordelon, A., & Park, K. (2007). Fracture behavior of functionally graded concrete materials for rigid pavements. Transportation Research Record, 2037(1), 40–49. doi:10.3141/2037-04.

Río, O., Nguyen, V. D., & Nguyen, K. (2015). Exploring the potential of the functionally graded SCCC for developing sustainable concrete solutions. Journal of Advanced Concrete Technology, 13(3), 193–204. doi:10.3151/jact.13.193.

Jirawattanasomkul, T., Kongwang, N., Jongvivatsakul, P., & Likitlersuang, S. (2018). Finite element modelling of flexural behaviour of geosynthetic cementitious composite mat (GCCM). Composites Part B: Engineering, 154, 33–42. doi:10.1016/j.compositesb.2018.07.052.

Chan, R., Liu, X., & Galobardes, I. (2020). Parametric study of functionally graded concretes incorporating steel fibres and recycled aggregates. Construction and Building Materials, 242, 118186. doi:10.1016/j.conbuildmat.2020.118186.

Biskria Cement (2021). Biskria Ciment Company. Available online: https://biskriaciment.com/Nos-Produits.aspx (accessed Jan. 26, 2022).

EN 14889-1. (2006). Fibres for concrete-Part 1: Steel fibres-Definitions, specifications and conformity. Slovenian Standard, Slovenian Institute for Standardization, Ljubljana, Slovenia. (In Slovenian).

Cao, Y. Y. Y., Li, P. P., Brouwers, H. J. H., Sluijsmans, M., & Yu, Q. L. (2019). Enhancing flexural performance of ultra-high performance concrete by an optimized layered-structure concept. Composites Part B: Engineering, 171, 154–165. doi:10.1016/j.compositesb.2019.04.021.

Prasad, N., & Murali, G. (2021). Exploring the impact performance of functionally-graded preplaced aggregate concrete incorporating steel and polypropylene fibres. Journal of Building Engineering, 35, 102077. doi:10.1016/j.jobe.2020.102077.

Liu, X., Yan, M., Galobardes, I., & Sikora, K. (2018). Assessing the potential of functionally graded concrete using fibre reinforced and recycled aggregate concrete. Construction and Building Materials, 171, 793–801. doi:10.1016/j.conbuildmat.2018.03.202.

BS EN 12390-3. (2002). Testing hardened concrete. Compressive strength of test specimens. British Standards Institution, London, United Kingdom.

Benali, R., Mellas, M., Baheddi, M., Mansouri, T., & Boufarh, R. (2021). Physico-mechanical behaviors and durability of heated fiber concrete. Civil Engineering Journal (Iran), 7(9), 1582–1593. doi:10.28991/cej-2021-03091745.

BS EN 12504-4:2004. (2004). Testing Concrete — Part 4: Determination of ultrasonic pulse velocity. British Standards, 3(April), 18.

BS EN 12390-1. (2021). Testing hardened concrete-Shape, dimensions and other requirements for specimens and moulds. British Standards Institution, London, United Kingdom.

JSCE-SF6. (1990). Method of test for shear strength of steel fiber reinforced concrete. Japan Society of Civil engineering, Tokyo, Japan, 67-69.

BS EN 12390-5. (2019). Testing hardened concrete. Flexural strength of test specimens. British Standards Institution, London, United Kingdom.

ASTM C597-16. (2016). Standard Test Method for Pulse Velocity through Concrete. ASTM International, Pennsylvania, United States.

Malhotra, V. M. (1976). Testing hardened concrete: non-destructive methods. Iowa State University Press, Ames, United States

Demirboǧa, R., Türkmen, I., & Karakoç, M. B. (2004). Relationship between ultrasonic velocity and compressive strength for high-volume mineral-admixtured concrete. Cement and Concrete Research, 34(12), 2329–2336. doi:10.1016/j.cemconres.2004.04.017.

Whitehurst, E. A. (1951). Soniscope Tests Concrete Structures. ACI Journal Proceedings, 47(2), 433–444. doi:10.14359/12004.

Omidinasab, F., Moazami Goodarzi, S., & Sahraei Moghadam, A. (2022). Characterization and Optimization of Mechanical and Impact Properties of Steel Fiber Reinforced Recycled Concrete. International Journal of Civil Engineering, 20(1), 41–55. doi:10.1007/s40999-021-00656-2.

Hassiba, B., Mekki, M., & Fraid, R. (2018). The relationship between the compressive strength and ultrasonic pulse velocity concrete with fibers exposed to high temperatures. International Journal of Energetica, 3(1), 31. doi:10.47238/ijeca.v3i1.63.

Mo, K. H., Yap, S. P., Alengaram, U. J., Jumaat, M. Z., & Bu, C. H. (2014). Impact resistance of hybrid fibre-reinforced oil palm shell concrete. Construction and Building Materials, 50, 499–507. doi:10.1016/j.conbuildmat.2013.10.016.

M. A. Ismail, D. (2007). Compressive and Tensile Strength of Natural Fibre-reinforced cement base Composites. AL-Rafdain Engineering Journal (AREJ), 15(2), 42–51. doi:10.33899/rengj.2007.44954.

Kazemi, S., & Lubell, A. S. (2012). Influence of Specimen Size and Fiber Content on Mechanical Properties of Ultra-High-Performance Fiber-Reinforced Concrete. ACI Materials Journal, 109(6), 675. doi:10.14359/51684165.

Pansuk, W., Sato, H., Sato, Y., & Shionaga, R. (2008). Tensile behaviors and fiber orientation of UHPC. Proceedings of Second International Symposium on Ultra High Performance Concrete, Kassel, Germany, March 05-07, 2008, 161-168.

Aslani, F., & Nejadi, S. (2013). Self-compacting concrete incorporating steel and polypropylene fibers: Compressive and tensile strengths, moduli of elasticity and rupture, compressive stress-strain curve, and energy dissipated under compression. Composites Part B: Engineering, 53, 121–133. doi:10.1016/j.compositesb.2013.04.044.

Li, L., Zhang, R., Jin, L., Du, X., Wu, J., & Duan, W. (2019). Experimental study on dynamic compressive behavior of steel fiber reinforced concrete at elevated temperatures. Construction and Building Materials, 210, 673–684. doi:10.1016/j.conbuildmat.2019.03.138.

Abadel, A., Abbas, H., Almusallam, T., Al-Salloum, Y., & Siddiqui, N. (2016). Mechanical properties of hybrid fibre-reinforced concrete - Analytical modelling and experimental behavior. Magazine of Concrete Research, 68(16), 823–843. doi:10.1680/jmacr.15.00276.

Lakavath, C., Suriya Prakash, S., & Dirar, S. (2021). Experimental and numerical studies on shear behaviour of macro-synthetic fibre reinforced prestressed concrete beams. Construction and Building Materials, 291, 123313. doi:10.1016/j.conbuildmat.2021.123313.

Boulekbache, B., Hamrat, M., Chemrouk, M., & Amziane, S. (2012). Influence of yield stress and compressive strength on direct shear behaviour of steel fibre-reinforced concrete. Construction and Building Materials, 27(1), 6–14. doi:10.1016/j.conbuildmat.2011.07.015.

Domagala, L. (2011). Modification of properties of structural lightweight concrete with steel fibres. Journal of Civil Engineering and Management, 17(1), 36–44. doi:10.3846/13923730.2011.553923.

Khaloo, A., Raisi, E. M., Hosseini, P., & Tahsiri, H. (2014). Mechanical performance of self-compacting concrete reinforced with steel fibers. Construction and Building Materials, 51, 179–186. doi:10.1016/j.conbuildmat.2013.10.054.

Centonze, G., Leone, M., & Aiello, M. A. (2012). Steel fibers from waste tires as reinforcement in concrete: A mechanical characterization. Construction and Building Materials, 36, 46–57. doi:10.1016/j.conbuildmat.2012.04.088.

Awwad, E., Mabsout, M., Hamad, B., Farran, M. T., & Khatib, H. (2012). Studies on fiber-reinforced concrete using industrial hemp fibers. Construction and Building Materials, 35, 710–717. doi:10.1016/j.conbuildmat.2012.04.119.

Banthia, N., Majdzadeh, F., Wu, J., & Bindiganavile, V. (2014). Fiber synergy in Hybrid Fiber Reinforced Concrete (HyFRC) in flexure and direct shear. Cement and Concrete Composites, 48, 91–97. doi:10.1016/j.cemconcomp.2013.10.018.

Soetens, T., & Matthys, S. (2017). Shear-stress transfer across a crack in steel fibre-reinforced concrete. Cement and Concrete Composites, 82, 1–13. doi:10.1016/j.cemconcomp.2017.05.010.

Sahraei Moghadam, A., Omidinasab, F., & Abdalikia, M. (2021). The effect of initial strength of concrete wastes on the fresh and hardened properties of recycled concrete reinforced with recycled steel fibers. Construction and Building Materials, 300, 124284. doi:10.1016/j.conbuildmat.2021.124284.

Singh, N. K., & Rai, B. (2021). Assessment of synergetic effect on microscopic and mechanical properties of steel-polypropylene hybrid fiber reinforced concrete. Structural Concrete, 22(1), 516–534. doi:10.1002/suco.201900166.

Boulekbache, B., Hamrat, M., Chemrouk, M., & Amziane, S. (2010). Flowability of fibre-reinforced concrete and its effect on the mechanical properties of the material. Construction and Building Materials, 24(9), 1664–1671. doi:10.1016/j.conbuildmat.2010.02.025.

Full Text: PDF

DOI: 10.28991/CEJ-2022-08-05-03


  • There are currently no refbacks.

Copyright (c) 2022 Yagoub Mohamed

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.