Slenderness in Steel Fibre Reinforced Concrete Long Beams
Downloads
Doi: 10.28991/CEJ-2022-08-06-011
Full Text: PDF
[2] BS 8110-1. (1997). Structural use of concrete. Code of practice for design and construction. British Standards Institution, London, United Kingdom.
[3] ACI 318-08. (2008). Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary. American Concrete Institute (ACI), Farmington Hills, United States.
[4] EN 1992-1. (2004). Eurocode 2: Design of concrete structures. European Standard, Brussels, Belgium.
[5] AS-3600. (2001). Concrete Structures. Australian Standard, Sydney, Australia.
[6] Revathi, P., & Menon, D. (2006). Estimation of critical buckling moments in slender reinforced concrete beams. ACI Structural Journal, 103(2), 296–303. doi:10.14359/15188.
[7] Revathi, P., & Menon, D. (2007). Slenderness effects in reinforced concrete beams. ACI Structural Journal, 104(4), 412–419. doi:10.14359/18771.
[8] Girija, K., & Menon, D. (2011). Reduction in flexural strength in rectangular RC beams due to slenderness. Engineering Structures, 33(8), 2398–2406. doi:10.1016/j.engstruct.2011.04.014.
[9] Sant, J. K., & Bletzacker, R. W. (1961). Experimental Study of Lateral Stability of Reinforced Concrete Beams. ACI Journal Proceedings, 58(12). doi:10.14359/8004.
[10] Massey, C. (1967). Lateral Instablity of Reinforced Concrete Beams under Uniform Bending Moments. ACI Journal Proceedings, 64(3). doi:10.14359/7552.
[11] Chalioris, C. E., Kosmidou, P. M. K., & Karayannis, C. G. (2019). Cyclic response of steel fiber reinforced concrete slender beams: An experimental study. Materials, 12(9), 1398. doi:10.3390/ma12091398.
[12] Bafghi, M. A. B., Amini, F., Nikoo, H. S., & Sarkardeh, H. (2017). Effect of steel fiber and different environments on flexural behavior of reinforced concrete beams. Applied Sciences (Switzerland), 7(10), 1011. doi:10.3390/app7101011.
[13] Kotsovos, G., Zeris, C., & Kotsovos, M. (2007). The effect of steel fibres on the earthquake-resistant design of reinforced concrete structures. Materials and Structures, 40(2), 175-188. doi:10.1617/s11527-006-9129-5.
[14] Soutsos, M. N., Le, T. T., & Lampropoulos, A. P. (2012). Flexural performance of fibre reinforced concrete made with steel and synthetic fibres. Construction and Building Materials, 36, 704–710. doi:10.1016/j.conbuildmat.2012.06.042.
[15] Barros, J. A. O., & Figueiras, J. A. (1999). Flexural Behavior of SFRC: Testing and Modeling. Journal of Materials in Civil Engineering, 11(4), 331–339. doi:10.1061/(asce)0899-1561(1999)11:4(331).
[16] Campione, G., & Letizia Mangiavillano, M. (2008). Fibrous reinforced concrete beams in flexure: Experimental investigation, analytical modelling and design considerations. Engineering Structures, 30(11), 2970–2980. doi:10.1016/j.engstruct.2008.04.019.
[17] Chalioris, C. E., & Panagiotopoulos, T. A. (2018). Flexural analysis of steel fibre-reinforced concrete members. Computers and Concrete, 22(1), 11–25. doi:10.12989/cac.2018.22.1.011.
[18] Kwak, Y. K., Eberhard, M. O., Kim, W. S., & Kim, J. (2002). Shear strength of steel fiber-reinforced concrete beams without stirrups. ACI Structural journal, 99(4), 530-538. doi:10.14359/12122.
[19] Sharma, A. K. (1986). Shear Strength of Steel Fiber Reinforced Concrete Beams. ACI Journal Proceedings, 83(4). doi:10.14359/10559.
[20] Li, V. C., Ward, R., & Hamza, A. M. (1992). Steel and synthetic fibers as shear reinforcement. ACI Materials Journal, 89(5), 499–508. doi:10.14359/1822.
[21] Narayanan, R., & Darwish, I. Y. S. (1988). Fiber Concrete Deep Beams in Shear. ACI Structural Journal, 85(2), 141–149. doi:10.14359/2698.
[22] Khuntia, M., Stojadinovic, B., & Goel, S. C. (1999). Shear strength of normal and high-strength fiber reinforced concrete beams without stirrups. ACI Structural Journal, 96(2), 282–289. doi:10.14359/620.
[23] Slater, E., Moni, M., & Alam, M. S. (2012). Predicting the shear strength of steel fiber reinforced concrete beams. Construction and Building Materials, 26(1), 423–436. doi:10.1016/j.conbuildmat.2011.06.042.
[24] Ashour, S. A., Hasanain, G. S., & Wafa, F. F. (1992). Shear Behaviour of High-Strength Fiber-Reinforced Concrete Beams. ACI Structural Journal, 89(2). doi:10.14359/2946.
[25] Shin, S. W., Oh, J. G., & Ghosh, S. K. (1994). Shear behavior of laboratory-sized high-strength concrete beams reinforced with bars and steel fibers. SP-142: Fiber Reinforced Concrete Developments and Innovations, 142, 181-200. doi:10.14359/3917.
[26] Singh, H. (2017). Steel Fiber Reinforced Concrete Behavior, Modelling and Design. Springer Transactions in Civil and Environmental Engineering, Springer, Singapore. doi:10.1007/978-981-10-2507-5.
[27] Hansell, W., & Winter, G. (1959). Lateral Stability of Reinforced Concrete Beams. ACI Journal Proceedings, 56(9), 193–215. doi:10.14359/8091.
[28] Chen, W. F., & Lui, E. M. (1987). Structural Stability Theory and Implementation. Prentice Hall, Hoboken, United States.
[29] Bleich, F. (1952). Buckling strength of metal structures. McGraw-Hill book Company, New York City, United States.
[30] Timoshenko, S. P., & Gere, J. M. (1961). Theory of Elastic Stability. McGraw-Hill book Company, New York City, United States.
[31] Bazant, Z. P., & Oh, B. H. (1984). Deformation of Progressively Cracking Reinforced Concrete Beams. Journal of the American Concrete Institute, 81(3), 268–278. doi:10.1016/0010-4485(84)90120-9.
[32] Branson, D. E. (1968). Design Procedures for Computing Deflections. ACI Journal Proceedings, 65(9). doi:10.14359/7508.
[33] Tavio, & Teng, S. (2004). Effective Torsional Rigidity of Reinforced Concrete Members. ACI Structural Journal, 101(2), 252–260. doi:10.14359/13023.
[34] Hsu, T. T. C. (1973). Post-Cracking Torsional Rigidity of Reinforced Concrete Sections. ACI Journal Proceedings, 70(5). doi:10.14359/11218.
[35] Shebl, H., & El-Nemr, A. (2021). Moment Redistribution of Shear-Critical GFRP Reinforced Continuously Supported Slender Beams. Civil Engineering Journal, 7, 13-31. doi:10.28991/cej-sp2021-07-02.
[36] Simíµes, T., Octávio, C., Valença, J., Costa, H., ...., & Júlio, E. (2017). Influence of concrete strength and steel fibre geometry on the fibre/matrix interface. Composites Part B: Engineering, 122, 156–164. doi:10.1016/j.compositesb.2017.04.010.
[37] Kirby, P. A., & Nethercot, D. A. (1979). Design for structural stability. Constrado Monographs. John Wiley & Sons, Hoboken, United States.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.