Slenderness in Steel Fibre Reinforced Concrete Long Beams

Ravpreet Kaur, Harvinder Singh


Slenderness influences in steel fibre reinforced concrete (SFRC) long beams are not adequately addressed in current concrete design regulations. The present guidelines are confined to semi-empirical formulations for limiting slenderness ratio, but largely restricted to RC beams. Many scholars have already examined RC long beams and successfully presented the slenderness ratio formula for RC long beams. This article proposes a novel term for limiting the slenderness ratio for SFRC long rectangular beams based on the fundamental principle of mechanics and taking into account the slenderness impact of RC long beams as well as the flexural moment capacity of SFRC beams. The suggested formulation for limiting slenderness ratio agrees closely with experimental data and may reliably forecast the mode of collapse. The proposed limiting slenderness ratio formulation takes into consideration beam end circumstances, loading conditions, concrete strengths, steel, tension and compression reinforcement ratios, and transverse reinforcement ratios, among other factors. It is revealed that a wide variety of slenderness limits may be achieved for varied sets of design parameters. The researchers' predictions and the suggested equation are compared to the test results of 9 SFRC beams. The suggested equation fits well with the results of the tests that have been done so far.


Doi: 10.28991/CEJ-2022-08-06-011

Full Text: PDF


SFRC; Steel Fibres; Slenderness; Long; Hooked End.


IS 456. (2000). Plain and Reinforced Concrete-Code of Practice. Bureau of Indian Standards, New Delhi, India.

BS 8110-1. (1997). Structural use of concrete. Code of practice for design and construction. British Standards Institution, London, United Kingdom.

ACI 318-08. (2008). Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary. American Concrete Institute (ACI), Farmington Hills, United States.

EN 1992-1. (2004). Eurocode 2: Design of concrete structures. European Standard, Brussels, Belgium.

AS-3600. (2001). Concrete Structures. Australian Standard, Sydney, Australia.

Revathi, P., & Menon, D. (2006). Estimation of critical buckling moments in slender reinforced concrete beams. ACI Structural Journal, 103(2), 296–303. doi:10.14359/15188.

Revathi, P., & Menon, D. (2007). Slenderness effects in reinforced concrete beams. ACI Structural Journal, 104(4), 412–419. doi:10.14359/18771.

Girija, K., & Menon, D. (2011). Reduction in flexural strength in rectangular RC beams due to slenderness. Engineering Structures, 33(8), 2398–2406. doi:10.1016/j.engstruct.2011.04.014.

Sant, J. K., & Bletzacker, R. W. (1961). Experimental Study of Lateral Stability of Reinforced Concrete Beams. ACI Journal Proceedings, 58(12). doi:10.14359/8004.

Massey, C. (1967). Lateral Instablity of Reinforced Concrete Beams under Uniform Bending Moments. ACI Journal Proceedings, 64(3). doi:10.14359/7552.

Chalioris, C. E., Kosmidou, P. M. K., & Karayannis, C. G. (2019). Cyclic response of steel fiber reinforced concrete slender beams: An experimental study. Materials, 12(9), 1398. doi:10.3390/ma12091398.

Bafghi, M. A. B., Amini, F., Nikoo, H. S., & Sarkardeh, H. (2017). Effect of steel fiber and different environments on flexural behavior of reinforced concrete beams. Applied Sciences (Switzerland), 7(10), 1011. doi:10.3390/app7101011.

Kotsovos, G., Zeris, C., & Kotsovos, M. (2007). The effect of steel fibres on the earthquake-resistant design of reinforced concrete structures. Materials and Structures, 40(2), 175-188. doi:10.1617/s11527-006-9129-5.

Soutsos, M. N., Le, T. T., & Lampropoulos, A. P. (2012). Flexural performance of fibre reinforced concrete made with steel and synthetic fibres. Construction and Building Materials, 36, 704–710. doi:10.1016/j.conbuildmat.2012.06.042.

Barros, J. A. O., & Figueiras, J. A. (1999). Flexural Behavior of SFRC: Testing and Modeling. Journal of Materials in Civil Engineering, 11(4), 331–339. doi:10.1061/(asce)0899-1561(1999)11:4(331).

Campione, G., & Letizia Mangiavillano, M. (2008). Fibrous reinforced concrete beams in flexure: Experimental investigation, analytical modelling and design considerations. Engineering Structures, 30(11), 2970–2980. doi:10.1016/j.engstruct.2008.04.019.

Chalioris, C. E., & Panagiotopoulos, T. A. (2018). Flexural analysis of steel fibre-reinforced concrete members. Computers and Concrete, 22(1), 11–25. doi:10.12989/cac.2018.22.1.011.

Kwak, Y. K., Eberhard, M. O., Kim, W. S., & Kim, J. (2002). Shear strength of steel fiber-reinforced concrete beams without stirrups. ACI Structural journal, 99(4), 530-538. doi:10.14359/12122.

Sharma, A. K. (1986). Shear Strength of Steel Fiber Reinforced Concrete Beams. ACI Journal Proceedings, 83(4). doi:10.14359/10559.

Li, V. C., Ward, R., & Hamza, A. M. (1992). Steel and synthetic fibers as shear reinforcement. ACI Materials Journal, 89(5), 499–508. doi:10.14359/1822.

Narayanan, R., & Darwish, I. Y. S. (1988). Fiber Concrete Deep Beams in Shear. ACI Structural Journal, 85(2), 141–149. doi:10.14359/2698.

Khuntia, M., Stojadinovic, B., & Goel, S. C. (1999). Shear strength of normal and high-strength fiber reinforced concrete beams without stirrups. ACI Structural Journal, 96(2), 282–289. doi:10.14359/620.

Slater, E., Moni, M., & Alam, M. S. (2012). Predicting the shear strength of steel fiber reinforced concrete beams. Construction and Building Materials, 26(1), 423–436. doi:10.1016/j.conbuildmat.2011.06.042.

Ashour, S. A., Hasanain, G. S., & Wafa, F. F. (1992). Shear Behaviour of High-Strength Fiber-Reinforced Concrete Beams. ACI Structural Journal, 89(2). doi:10.14359/2946.

Shin, S. W., Oh, J. G., & Ghosh, S. K. (1994). Shear behavior of laboratory-sized high-strength concrete beams reinforced with bars and steel fibers. SP-142: Fiber Reinforced Concrete Developments and Innovations, 142, 181-200. doi:10.14359/3917.

Singh, H. (2017). Steel Fiber Reinforced Concrete Behavior, Modelling and Design. Springer Transactions in Civil and Environmental Engineering, Springer, Singapore. doi:10.1007/978-981-10-2507-5.

Hansell, W., & Winter, G. (1959). Lateral Stability of Reinforced Concrete Beams. ACI Journal Proceedings, 56(9), 193–215. doi:10.14359/8091.

Chen, W. F., & Lui, E. M. (1987). Structural Stability Theory and Implementation. Prentice Hall, Hoboken, United States.

Bleich, F. (1952). Buckling strength of metal structures. McGraw-Hill book Company, New York City, United States.

Timoshenko, S. P., & Gere, J. M. (1961). Theory of Elastic Stability. McGraw-Hill book Company, New York City, United States.

Bazant, Z. P., & Oh, B. H. (1984). Deformation of Progressively Cracking Reinforced Concrete Beams. Journal of the American Concrete Institute, 81(3), 268–278. doi:10.1016/0010-4485(84)90120-9.

Branson, D. E. (1968). Design Procedures for Computing Deflections. ACI Journal Proceedings, 65(9). doi:10.14359/7508.

Tavio, & Teng, S. (2004). Effective Torsional Rigidity of Reinforced Concrete Members. ACI Structural Journal, 101(2), 252–260. doi:10.14359/13023.

Hsu, T. T. C. (1973). Post-Cracking Torsional Rigidity of Reinforced Concrete Sections. ACI Journal Proceedings, 70(5). doi:10.14359/11218.

Shebl, H., & El-Nemr, A. (2021). Moment Redistribution of Shear-Critical GFRP Reinforced Continuously Supported Slender Beams. Civil Engineering Journal, 7, 13-31. doi:10.28991/cej-sp2021-07-02.

Simões, T., Octávio, C., Valença, J., Costa, H., …., & Júlio, E. (2017). Influence of concrete strength and steel fibre geometry on the fibre/matrix interface. Composites Part B: Engineering, 122, 156–164. doi:10.1016/j.compositesb.2017.04.010.

Kirby, P. A., & Nethercot, D. A. (1979). Design for structural stability. Constrado Monographs. John Wiley & Sons, Hoboken, United States.

Full Text: PDF

DOI: 10.28991/CEJ-2022-08-06-011


  • There are currently no refbacks.

Copyright (c) 2022 Ravpreet Kaur

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.