Properties of Concrete Produced using Surface Modified Polyethylene Terephthalate Fibres

Michael M. Mwonga, Charles Kabubo, Naftary Gathimba

Abstract


Conventional techniques of improving the bond properties of virgin Polyethylene Terephthalate Fibres reduce the mechanical strength of the fibres, are labour intensive, and present environmental hazards in the case of chemical treatment. This study introduces a new way of improving the bond properties of fibres obtained from waste Polyethylene Terephthalate bottles by coating the surface of the fibres with a thin layer of sand to counteract the above-mentioned shortcomings. Their performance was compared to that of embossed, serrated, and straight fibres and a control mix without fibres. Workability, compressive strength, tensile and flexural strength were used to assess this performance. Constant fibre length, width, and content were maintained for this exercise. Compared to the other fibres, sand-coated fibres gave the highest increment in tensile and flexural strength of 9.49% and 11.61% compared to the control mix, even though concrete’s workability and compressive strength were decreased. Furthermore, the optimization of the fibre length and content for the sand-coated fibres was carried out. The 75 mm long fibres showed the highest improvement in tensile strength of 13.76% and flexural strength of 12.49% compared to other fibre lengths. The optimum percentage of fibres was 1.25% with a 15.49% and 17.26% increment in tensile and flexural strengths, respectively.

 

Doi: 10.28991/CEJ-2022-08-06-03

Full Text: PDF


Keywords


Concrete; Polyethylene Terephthalate (PET); Workability; Compressive Strength; Split Tensile Strength; Flexural Strength; Surface Modification.

References


Gorak, P., Postawa, P., & Trusilewicz, L. N. (2020). Lightweight composite aggregates as a dual end-of-waste product from PET and anthropogenic materials. Journal of Cleaner Production, 256, 120366. doi:10.1016/j.jclepro.2020.120366.

Yin, S., Tuladhar, R., Shi, F., Combe, M., Collister, T., & Sivakugan, N. (2015). Use of macro plastic fibres in concrete: A review. Construction and Building Materials, 93, 180–188. doi:10.1016/j.conbuildmat.2015.05.105.

Aslani, H., Pashmtab, P., Shaghaghi, A., Mohammadpoorasl, A., Taghipour, H., & Zarei, M. (2021). Tendencies towards bottled drinking water consumption: Challenges ahead of polyethylene terephthalate (PET) waste management. Health Promotion Perspectives, 11(1), 60–68. doi:10.34172/hpp.2021.09.

Kaza, S., Yao, L., Bhada-Tata, P., & Van Woerden, F. (2018). What a waste 2.0: a global snapshot of solid waste management to 2050. Urban Development Series, World Bank Publications.

Akçaözoğlu, S., Atiş, C. D., & Akçaözoğlu, K. (2010). An investigation on the use of shredded waste PET bottles as aggregate in lightweight concrete. Waste management, 30(2), 285-290. doi:10.1016/j.wasman.2009.09.033.

Ahmed, H. U., Faraj, R. H., Hilal, N., Mohammed, A. A., & Sherwani, A. F. H. (2021). Use of recycled fibers in concrete composites: A systematic comprehensive review. Composites Part B: Engineering, 215, 108769. doi:10.1016/j.compositesb.2021.108769.

Tejaswini, M. S. S. R., Pathak, P., Ramkrishna, S., & Ganesh, S. P. (2022). A comprehensive review on integrative approach for sustainable management of plastic waste and its associated externalities. Science of the Total Environment, 153973. doi:10.1016/j.scitotenv.2022.153973.

Kim, S. B., Yi, N. H., Kim, H. Y., Kim, J. H. J., & Song, Y. C. (2010). Material and structural performance evaluation of recycled PET fiber reinforced concrete. Cement and Concrete Composites, 32(3), 232–240. doi:10.1016/j.cemconcomp.2009.11.002.

Ochi, T., Okubo, S., & Fukui, K. (2007). Development of recycled PET fiber and its application as concrete-reinforcing fiber. Cement and Concrete Composites, 29(6), 448–455. doi:10.1016/j.cemconcomp.2007.02.002.

Borg, R. P., Baldacchino, O., & Ferrara, L. (2016). Early age performance and mechanical characteristics of recycled PET fibre reinforced concrete. Construction and Building Materials, 108, 29–47. doi:10.1016/j.conbuildmat.2016.01.029.

Mohammed, A. A., & Rahim, A. A. F. (2020). Experimental behavior and analysis of high strength concrete beams reinforced with PET waste fiber. Construction and Building Materials, 244, 118350. doi:10.1016/j.conbuildmat.2020.118350.

Marthong, C., & Sarma, D. K. (2016). Influence of PET fiber geometry on the mechanical properties of concrete: An experimental investigation. European Journal of Environmental and Civil Engineering, 20(7), 771–784. doi:10.1080/19648189.2015.1072112.

Al-Hadithi, A. I., & Abbas, M. A. (2018). The effects of adding waste plastic fibers on the flexural toughness of normal concrete. Journal of Engineering and Applied Sciences, 13(24), 10282–10290. doi:10.3923/jeasci.2018.10282.10290.

Pereira De Oliveira, L. A., & Castro-Gomes, J. P. (2011). Physical and mechanical behaviour of recycled PET fibre reinforced mortar. Construction and Building Materials, 25(4), 1712–1717. doi:10.1016/j.conbuildmat.2010.11.044.

Zhang, R., Ma, X., Shen, X., Zhai, Y., Zhang, T., Ji, C., & Hong, J. (2020). PET bottles recycling in China: An LCA coupled with LCC case study of blanket production made of waste PET bottles. Journal of environmental management, 260, 110062. doi:10.1016/j.jenvman.2019.110062.

Khalid, F. S., Irwan, J. M., Ibrahim, M. H. W., Othman, N., & Shahidan, S. (2018). Performance of plastic wastes in fiber-reinforced concrete beams. Construction and Building Materials, 183, 451–464. doi:10.1016/j.conbuildmat.2018.06.122.

Singh, S., Shukla, A., & Brown, R. (2004). Pullout behavior of polypropylene fibers from cementitious matrix. Cement and Concrete Research, 34(10), 1919–1925. doi:10.1016/j.cemconres.2004.02.014.

Meza, A., Pujadas, P., López-Carreño, R. D., Meza, L. M., & Pardo-Bosch, F. (2021). Mechanical optimization of concrete with recycled pet fibres based on a statistical-experimental study. Materials, 14(2), 1–20. doi:10.3390/ma14020240.

Taherkhani, H. (2014). An investigation on the properties of the concrete containing waste PET fibers. International Journal of Science and Engineering Investigations, 3, 37-43. doi:10.12691/ajcea-3-3-4.

Meza, A., & Siddique, S. (2019). Effect of aspect ratio and dosage on the flexural response of FRC with recycled fiber. Construction and Building Materials, 213, 286–291. doi:10.1016/j.conbuildmat.2019.04.081.

Trejbal, J., Kopecký, L., Tesárek, P., Fládr, J., Antoš, J., Somr, M., & Nežerka, V. (2016). Impact of surface plasma treatment on the performance of PET fiber reinforcement in cementitious composites. Cement and Concrete Research, 89, 276–287. doi:10.1016/j.cemconres.2016.08.018.

Kumar, A., & Suman, S. K. (2018). Effect of geometry of recycled pet fiber on the properties of concrete for rigid pavement. International Journal of Recent Scientific Research, 9(3). doi:10.24327/IJRSR.2018.0903.1775.

Kim, J. H. J., Park, C. G., Lee, S. W., Lee, S. W., & Won, J. P. (2008). Effects of the geometry of recycled PET fiber reinforcement on shrinkage cracking of cement-based composites. Composites Part B: Engineering, 39(3), 442–450. doi:10.1016/j.compositesb.2007.05.001.

BS EN 197-1 (2011) Cement: composition, specifications and conformity criteria for common cements. British Standards Institution, London, United Kingdom.

Al-Mahmoud, F., Castel, A., François, R., & Tourneur, C. (2007). Effect of surface pre-conditioning on bond of carbon fibre reinforced polymer rods to concrete. Cement and Concrete Composites, 29(9), 677–689. doi:10.1016/j.cemconcomp.2007.04.010.

BS 812-103.1. (1985). Testing concrete, Methods for determination of particle size distribution - Sieve tests. British Standards Institution, London, United Kingdom.

BS 812-Part 2. (1995). Testing aggregates, Part2. Methods of determination of density. British Standards Institution, London, United Kingdom.

BS 812-109. (1990). Testing aggregates-Part 109: Methods for determination of moisture content. British Standards Institution, London, United Kingdom.

BS 812-110. (1990). Testing aggregates-Part 110: Methods for determination of aggregate crushing value (ACV). British Standards Institution, London, United Kingdom.

BS 812-112. (1990). Testing aggregates-Part 112: Methods for determination of aggregate impact value (AIV). British Standards Institution, London, United Kingdom.

BS EN 14889-2 (2006). Fibers for concrete - Part 2: Polymer fibers - Definitions, specifications and conformity. British Standards Institution, London, United Kingdom.

Clayton, D., Franklin, R. E., & Erntroy, H. C. (1988). Design of normal concrete mixes. Building Research Establishment (BRE), Gartson, United Kingdom.

BS 1881-102. (1983). Testing concrete-Part 102: Method for determination of slump. British Standards Institution, London, United Kingdom.

BS 1881-116. (1983). Testing concrete-Part 116-: Method for determination of compressive strength of concrete cubes. British Standards Institution, London, United Kingdom.

BS 1881-101. (1983). Testing concrete-Part 101: Method of sampling fresh concrete on site. British Standards Institution, London, United Kingdom.

BS 1881-117. (1983). Testing concrete-Part 117. Method for determination of tensile splitting strength. British Standards Institution, London, United Kingdom.

BS 1881-118. (1983). Testing concrete-Part 118. Method for determination of flexural strength. British Standards Institution, London, United Kingdom.

BS 1881-108. (1983). Testing Concrete-Part 108: Method for making Test Cubes from Fresh Concrete. British Standards Institution, London, United Kingdom.

BS 1881-110. (1983). Testing concrete-Part 110: Method for making test cylinders from fresh concrete. British Standards Institution, London, United Kingdom.

BS 1881-109. (1983). Testing concrete-Part 109: Method for making test beams from fresh concrete. British Standards Institution, London, United Kingdom.

BS 882. (1992). Specification for aggregates from natural sources for concrete. British Standards Institution, London, United Kingdom.

BS EN 12620. (2013). Aggregates for concrete. British Standards Institution, London, United Kingdom.

Awoyera, P. O., Olalusi, O. B., & Iweriebo, N. (2021). Physical, strength, and microscale properties of plastic fiber-reinforced concrete containing fine ceramics particles. Materialia, 15, 100970. doi:10.1016/j.mtla.2020.100970.

Marthong, C. (2015). Effects of PET fiber arrangement and dimensions on mechanical properties of concrete. IES Journal Part A: Civil and Structural Engineering, 8(2), 111–120. doi:10.1080/19373260.2015.1014304.

Fraternali, F., Ciancia, V., Chechile, R., Rizzano, G., Feo, L., & Incarnato, L. (2011). Experimental study of the thermo-mechanical properties of recycled PET fiber-reinforced concrete. Composite Structures, 93(9), 2368–2374. doi:10.1016/j.compstruct.2011.03.025.

Bui, N. K., Satomi, T., & Takahashi, H. (2018). Recycling woven plastic sack waste and PET bottle waste as fiber in recycled aggregate concrete: An experimental study. Waste Management, 78, 79–93. doi:10.1016/j.wasman.2018.05.035.

Foti, D. (2013). Use of recycled waste pet bottles fibers for the reinforcement of concrete. Composite Structures, 96, 396–404. doi:10.1016/j.compstruct.2012.09.019.

Won, J. P., Jang, C. IL, Lee, S. W., Lee, S. J., & Kim, H. Y. (2010). Long-term performance of recycled PET fibre-reinforced cement composites. Construction and Building Materials, 24(5), 660–665. doi:10.1016/j.conbuildmat.2009.11.003.

Hidaya, N., Mutuku, R. N., & Mwero, J. N. (2017). Physical and Mechanical Experimental Investigation of Concrete incorporated with Polyethylene Terephthalate (PET) Fibers. European International Journal of Science and Technology, 6(8), 2304–9693.

Kassa, R. B., Kanali, C., & Ambassah, N. (2019). Engineering properties of polyethylene terephthalate fibre reinforced concrete with fly ash as a partial cement replacement. Civil and Environmental Research, 11(6). doi:10.4236/ojce.2019.94020.

Fraternali, F., Farina, I., Polzone, C., Pagliuca, E., & Feo, L. (2013). On the use of R-PET strips for the reinforcement of cement mortars. Composites Part B: Engineering, 46, 207–210. doi:10.1016/j.compositesb.2012.09.070.

Anandan, S., & Alsubih, M. (2021). Mechanical strength characterization of plastic fiber reinforced cement concrete composites. Applied Sciences (Switzerland), 11(2), 1–21. doi:10.3390/app11020852.

Sayı, C. Ö., & Eren, Ö. (2021). Physical and durability properties of recycled polyethylene terephthalate (PET) fibre reinforced concrete. European Journal of Environmental and Civil Engineering, 1–19. doi:10.1080/19648189.2021.1976681.

Mohammed, A. A., & Mohammed, I. I. (2021). Effect of Fiber Parameters on the Strength Properties of Concrete Reinforced with PET Waste Fibers. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 45(3), 1493–1509. doi:10.1007/s40996-021-00663-2.

Marthong, C., & Marthong, S. (2016). An experimental study on the effect of PET fibers on the behavior of exterior RC beam-column connection subjected to reversed cyclic loading. Structures, 5, 175–185. doi:10.1016/j.istruc.2015.11.003.

Al-Hadithi, A. I., Abdulrahman, M. B., & Al-Rawi, M. I. (2020). Flexural behaviour of reinforced concrete beams containing waste plastic fibers. IOP Conference Series: Materials Science and Engineering, 737(1), 012173. doi:10.1088/1757-899X/737/1/012173.

Ayub, T., Khan, S. U., & Mahmood, W. (2022). Mechanical Properties of Self-Compacting Rubberised Concrete (SCRC) Containing Polyethylene Terephthalate (PET) Fibres. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 46(2), 1073–1085. doi:10.1007/s40996-020-00568-6.

Haque, M. R., Mostafa, M. S., & Sah, S. K. (2021). Performance evaluation for mechanical behaviour of concrete incorporating recycled plastic bottle fibers as locally available materials. Civil Engineering Journal, 7(4), 713-719. doi:10.28991/cej-2021-03091684.

Ninan, C. M., Mubashir A. P, M., Faruq C, U., Nasik K, M., Shafen P. K, M., & Faris K. T, S. (2018). An Investigation on the Strength Development of Concrete Reinforced with PET Bottles. International Journal of Civil Engineering, 5(6), 1–5. doi:10.14445/23488352/ijce-v5i6p101.

Sharma, R., Kaushik, R., & Sharma, T. (2014). Effect of PET fibres different aspect ratio on fresh and mechanical properties of cement concrete. Proceedings of the Asia-Pacific Young Researchers and Graduates Symposium (YRGS 2014), July 31-August 01, 2014, Bangkok, Thailand. doi:10.13140/RG.2.1.2418.7609.

Merli, R., Preziosi, M., Acampora, A., Lucchetti, M. C., & Petrucci, E. (2020). Recycled fibers in reinforced concrete: A systematic literature review. Journal of Cleaner Production, 248, 119207. doi:10.1016/j.jclepro.2019.119207.

Tayeh, B. A., Almeshal, I., Magbool, H. M., Alabduljabbar, H., & Alyousef, R. (2021). Performance of sustainable concrete containing different types of recycled plastic. Journal of Cleaner Production, 328, 129517. doi:10.1016/j.jclepro.2021.129517.


Full Text: PDF

DOI: 10.28991/CEJ-2022-08-06-03

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Michael Mwendwa Mwonga

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message