Slope Reinforcement Model Scale Test With X-Block

Enos Karapa, Tri Harianto, A. B. Muhiddin, Rita Irmawaty


This study aims to determine the material composition and dimensions of X-block, develop a slope reinforcement model using X-block, evaluate the mechanical behavior of slopes that are reinforced with rock-bound by X-block, and analyze the performance of slope reinforcement using X-block. This research was conducted at Hasanuddin University's soil mechanics and civil engineering structure laboratory. The model scale test was employed in this study. The geometrical speciation of the test box is 150 cm in length, 60 cm in width, and 100 cm in height. The X-block model was produced using concrete with a FC of 25 MPa. The X-block was divided into two types: X-block type 1 and X-block type 2. Tensile strength testing is performed on the X-block. The slopes are made of clay soil and have a slope angle of 70 degrees. The loading test was conducted in three stages: without block, with X-block type 1, and with X-block type 2. The loading test uses a hydraulic pump equipped with a load cell and LVDT. The tensile strength of X-block type 1 is 2.56 MPa, whereas X-block type 2 has a tensile strength of 4.35 MPa. The development of the type X-block design, which is used as a retaining wall material, has shown that it can effectively withstand landslides on the slopes under consideration. The slope safety factor rose dramatically after being reinforced with type X-blocks, reaching 2.73 for both X-block type 1 and X-block type 2.


Doi: 10.28991/CEJ-2022-08-03-014

Full Text: PDF


X-block; Slope Reinforcement; Slope Stability; Landslides.


Rossi, M., Guzzetti, F., Salvati, P., Donnini, M., Napolitano, E., & Bianchi, C. (2019). A predictive model of societal landslide risk in Italy. Earth-Science Reviews, 196. doi:10.1016/j.earscirev.2019.04.021.

Akgun, A. (2012). A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: A case study at İzmir, Turkey. Landslides, 9(1), 93–106. doi:10.1007/s10346-011-0283-7.

Salvati, P., Petrucci, O., Rossi, M., Bianchi, C., Pasqua, A. A., & Guzzetti, F. (2018). Gender, age and circumstances analysis of flood and landslide fatalities in Italy. Science of the Total Environment, 610–611, 867–879. doi:10.1016/j.scitotenv.2017.08.064.

Harianto, T., Yunus, M., & Walenna, M. A. (2021). Bearing Capacity of Raft-Pile Foundation Using Timber Pile on Soft Soil. International Journal of GEOMATE, 21(86), 108–114. doi:10.21660/2021.86.j2294.

Zhang, M., & McSaveney, M. J. (2018). Is air pollution causing landslides in China? Earth and Planetary Science Letters, 481, 284–289. doi:10.1016/j.epsl.2017.10.045.

Harianto, T., Hamzah, S., Nur, S. H., Abdurrahman, M. A., Latief, R. U., Fadliah, I., & Walenna, A. (2013, September). Biogrouting stabilization on marine sandy clay soil. Proceedings of the 7th International Conference on Asian and Pacific Coasts, Indonesia.

Fattet, M., Fu, Y., Ghestem, M., Ma, W., Foulonneau, M., Nespoulous, J., Le Bissonnais, Y., & Stokes, A. (2011). Effects of vegetation type on soil resistance to erosion: Relationship between aggregate stability and shear strength. Catena, 87(1), 60–69. doi:10.1016/j.catena.2011.05.006.

Harianto, T., Samang, L., Suheriyatna, Y. S., & Sandyutama, Y. (2016). Field Investigation of the Performance of Soft Soil Reinforcement with Inclined Pile. In 5th International Conference on Geotechnical and Geophysical Site Characterisation, Queensland, Australia.

Erdawaty, Harianto, T., Muhiddin, A. B., & Arsyad, A. (2020). Experimental study on bearing capacity of alkaline activated granular asphalt concrete columns on soft soils. Civil Engineering Journal (Iran), 6(12), 2363–2374. doi:10.28991/cej-2020-03091623.

Liu, S., Fan, K., & Xu, S. (2019). Field study of a retaining wall constructed with clay-filled soilbags. Geotextiles and Geomembranes, 47(1), 87–94. doi:10.1016/j.geotexmem.2018.11.001.

Muhiddin, A. B., & Tangkeallo, M. M. (2020). Correlation of unconfined compressive strength and California bearing ratio in laterite soil stabilization using varied zeolite content activated by waterglass. Materials Science Forum, 998 MSF, 323–328. doi:10.4028/

Wang, X., & Niu, R. (2009). Spatial forecast of landslides in Three Gorges based on spatial data mining. Sensors, 9(3), 2035–2061. doi:10.3390/s90302035.

Raghuvanshi, T. K., Ibrahim, J., & Ayalew, D. (2014). Slope stability susceptibility evaluation parameter (SSEP) rating scheme - An approach for landslide hazard zonation. Journal of African Earth Sciences, 99(PA2), 595–612. doi:10.1016/j.jafrearsci.2014.05.004.

Ayalew, L., Yamagishi, H., & Ugawa, N. (2004). Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan. Landslides, 1(1), 73–81. doi:10.1007/s10346-003-0006-9.

Gorsevski, P. V., Jankowski, P., & Gessler, P. E. (2006). An heuristic approach for mapping landslide hazard by integrating fuzzy logic with analytic hierarchy process. Control and Cybernetics, 35(1), 121-146.

Casagli, N., Catani, F., Puglisi, C., Delmonaco, G., Ermini, L., & Margottini, C. (2004). An inventory-based approach to landslide susceptibility assessment and its application to the Virginio River Basin, Italy. Environmental and Engineering Geoscience, 10(3), 203–216. doi:10.2113/10.3.203.

di Lernia, A., Cotecchia, F., Elia, G., Tagarelli, V., Santaloia, F., & Palladino, G. (2022). Assessing the influence of the hydraulic boundary conditions on clay slope stability: The Fontana Monte case study. Engineering Geology, 297. doi:10.1016/j.enggeo.2021.106509.

Azarafza, M., Akgün, H., Ghazifard, A., Asghari-Kaljahi, E., Rahnamarad, J., & Derakhshani, R. (2021). Discontinuous rock slope stability analysis by limit equilibrium approaches–a review. International Journal of Digital Earth, 14(12), 1918–1941. doi:10.1080/17538947.2021.1988163.

Liu, Z., Wang, X., Yin, Y., Li, J., & Shao, G. (2022). Stability analysis of an unsaturated clay slope based on the coupled effect of temperature and saturation. Quarterly Journal of Engineering Geology and Hydrogeology, 55(2), 1-14. doi:10.1144/qjegh2021-009.

Dawson, E.M., & Roth, W.H. (2020). Slope stability analysis with FLAC. FLAC and Numerical Modeling in Geomechanics. CRC Press, Florida, United States. doi:10.1201/9781003078531-2.

Zhou, J., Li, E., Yang, S., Wang, M., Shi, X., Yao, S., & Mitri, H. S. (2019). Slope stability prediction for circular mode failure using gradient boosting machine approach based on an updated database of case histories. Safety Science, 118, 505–518. doi:10.1016/j.ssci.2019.05.046.

Qi, C., & Tang, X. (2018). Slope stability prediction using integrated metaheuristic and machine learning approaches: A comparative study. Computers and Industrial Engineering, 118, 112–122. doi:10.1016/j.cie.2018.02.028.

Salmasi, F., Chamani, M. R., & Farsadi Zadeh, D. (2012). Experimental study of energy dissipation over stepped gabion spillways with low heights. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 36(C2), 253–264. doi: 10.22099/IJSTC.2012.640.

Najafzadeh, M., Rezaie-Balf, M., & Tafarojnoruz, A. (2018). Prediction of riprap stone size under overtopping flow using data-driven models. International Journal of River Basin Management, 16(4), 505–512. doi:10.1080/15715124.2018.1437738.

Mohamed, M. H., Ahmed, M., & Mallick, J. (2021). An experimental study of nailed soil slope models: Effects of building foundation and soil characteristics. Applied Sciences (Switzerland), 11(16), 4842. doi:10.3390/app11167735.

Irmawaty, R., Djamaluddin, R., & Akkas, A. M. (2014). Bending Capacity of Styrofoam Filled Concrete (SFC) Using Truss System Reinforcement. In Conference for Civil Engineering Research Networks (CONCERN), Bandung, Indonesia.

Full Text: PDF

DOI: 10.28991/CEJ-2022-08-03-014


Copyright (c) 2022 Enos Karapa, Tri Harianto, A. B. Muhiddin, Rita Irmawaty

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.