Resource Assessment of Limestone Based on Engineering and Petrographic Analysis

Javid Hussain, Jiaming Zhang, Xiao Lina, Khaleel Hussain, Syed Yasir Ali Shah, Sajid Ali, Altaf Hussain


The China-Pakistan Economic Corridor (CPEC) is a massive in-progress construction project in Pakistan that connects more than 70 countries via multiple trade channels such as highways, railways, roads, and fiber optics. This project also involves the development of local infrastructure and industrial zones in Pakistan, which demands the discovery of new resources of aggregate to facilitate the construction. Therefore, physical characterization research was carried out on the Kirman hill region (Jurassic limestone), District Kurram, Pakistan, to investigate their suitability for utilization as construction materials using site investigation and laboratory studies. The results outline that all typical engineering parameters are within acceptable limits set by international standards like BS, ASTM, and AASHTO. Bituminous tests revealed that Jurassic limestone is appropriate as an aggregate for asphalt wearing coarse. Likewise, the petrographic study performed shows proper matching with engineering tests. The petrographic analysis of Jurassic limestone showed a minute amount of deleterious content; as a result, it is resistant to Alkali silica reaction (ASR) and Alkali carbonate reaction (ACR) expansions. Based on engineering and petrographic analysis, the Jurassic limestone, Kirman hill region, District Kurram, Pakistan is recommended as a potential aggregate for (i.e., base course, subbase course, cement concrete, and asphalt) and other mega and minor civil construction projects.


Doi: 10.28991/CEJ-2022-08-03-02

Full Text: PDF


CPEC; Engineering Properties; Petrographic Analysis; Jurassic Limestone; District Kurram.


Rehman, G., Zhang, G., Rahman, M. U., Rahman, N. U., Usman, T., & Imraz, M. (2020). The engineering assessments and potential aggregate analysis of mesozoic carbonates of Kohat Hills Range, KP, Pakistan. Acta Geodaetica et Geophysica, 55(3), 477–493. doi:10.1007/s40328-020-00301-9.

Gkouma, M., Karkanas, P., & Iacovou, M. (2021). A geoarchaeological study of the construction of the Laona tumulus at Palaepaphos, Cyprus. Geoarchaeology, 36(4), 601–616. doi:10.1002/gea.21850.

Naeem, M., Zafar, T., Karim, M. A. M., Miraj, M. A. F., Sanaullah, M., Bashir, R., & Abbas, S. (2021). Aggregate prospects of pirkoh limestone from gulki-rodo area of Pakistan as a potential construction material. Himalayan Geology (42) 2, 382–387.

Gorospe, K., Booya, E., Ghaednia, H., & Das, S. (2019). Effect of various glass aggregates on the shrinkage and expansion of cement mortar. Construction and Building Materials, 210, 301–311. doi:10.1016/j.conbuildmat.2019.03.192.

Koukis, G., Sabatakakis, N., & Spyropoulos, A. (2007). Resistance variation of low-quality aggregates. Bulletin of Engineering Geology and the Environment, 66(4), 457–466. doi:10.1007/s10064-007-0098-x.

Tanyu, B. F., Yavuz, A. B., & Ullah, S. (2017). A parametric study to improve suitability of micro-deval test to assess unbound base course aggregates. Construction and Building Materials, 147, 328–338. doi:10.1016/j.conbuildmat.2017.04.173.

Přikryl, R. (2021). Geomaterials as construction aggregates: a state-of-the-art. Bulletin of Engineering Geology and the Environment, 80(12), 8831–8845. doi:10.1007/s10064-021-02488-9.

Naeem, M., Khalid, P., & Anwar, A. W. (2015). Construction material prospects of granitic and associated rocks of Mansehra area, NW Himalaya, Pakistan. Acta Geodaetica et Geophysica, 50(3), 307–319. doi:10.1007/s40328-014-0087-z.

Ndukauba, E., & Akaha, C. T. (2012). Engineering-Geological Evaluation of Rock Materials from Bansara, Bamenda Massif Southeastern Nigeria, as Aggregates for Pavement Construction. Evaluation, 2(5), 107–111. doi:10.5923/j.geo.20120205.01.

Huang, Y., Bird, R., & Heidrich, O. (2009). Development of a life cycle assessment tool for construction and maintenance of asphalt pavements. Journal of Cleaner Production, 17(2), 283–296. doi:10.1016/j.jclepro.2008.06.005.

Gondal, M. M. I., Ahsan, N., & Javid, A. Z. (2009). Engineering Properties of Potential Aggregate Resources from Eastern and Central Salt Range, Pakistan. Geological Bulletin of Punjab University, 44, 97–104.

Naeem, M., Khalid, P., Sanaullah, M., & Zia ud Din. (2014). Physio-mechanical and aggregate properties of limestones from Pakistan. Acta Geodaetica et Geophysica, 49(3), 369–380. doi:10.1007/s40328-014-0054-8.

Khan, S. (2000). Study of the Geology of Kirana Group, Central Punjab and Evaluation of its Utilization and Economlc Potential as Aggregate. PhD Thesis, University of the Punjab, Lahore, Pakistan.

Ullah, R., Ullah, S., Rehman, N., Ali, F., Asim, M., Tahir, M., Ullah, S., & Muhammad, S. (2020). Aggregate Suitability of the Late Permian Wargal Limestone at Kafar Kot Chashma Area, Khisor Range, Pakistan. International Journal of Economic and Environmental Geology, 11(1), 89–94. doi:10.46660/ojs.v11i1.418.

Ersoy, H., Karahan, M., Kolaylı, H., & Sünnetci, M. O. (2020). Influence of Mineralogical and Micro-Structural Changes on the Physical and Strength Properties of Post-thermal-Treatment Clayey Rocks. Rock Mechanics and Rock Engineering, 54(2), 679–694. doi:10.1007/s00603-020-02282-1.

Gu, X., Li, X., Zhang, W., Gao, Y., Kong, Y., Liu, J., & Zhang, X. (2021). Effects of HPMC on Workability and Mechanical Properties of Concrete Using Iron Tailings as Aggregates. Materials, 14(21), 6451. doi:10.3390/ma14216451.

Zarif, I. H., & Tuǧrul, A. (2003). Aggregate properties of Devonian limestones for use in concrete in Istanbul, Turkey. Bulletin of Engineering Geology and the Environment, 62(4), 379–388. doi:10.1007/s10064-003-0205-6.

Nweke, O. M., & Okogbue, C. O. (2021). Geotechnical evaluation of the quality and durability of argillites from Abakaliki Metropolis (Southeastern Nigeria) as road aggregates. Arabian Journal of Geosciences, 14(22). doi:10.1007/s12517-021-08613-y.

Ramsay, D. M., Dhir, R. K., & Spence, I. M. (1974). The role of rock and clast fabric in the physical performance of crushed-rock aggregate. Engineering Geology 8(3), 267–285. doi:10.1016/0013-7952(74)90002-7.

Lees, G., & Kennedy, C. K. (1975). Quality, Shape and Degradation of Aggregates. Quarterly Journal of Engineering Geology and Hydrogeology, 8(3), 193–209. doi:10.1144/gsl.qjeg.1975.008.03.03.

Abbas, S. M. (2012). Geology and Structure of the Westernmost Hill Range, Sadda Area, Kurram Agency, Northwest. Master Thesis, National Centre of Excellence in Geology, University of Peshawar, Peshawar, Pakistan.

Gansser-Biaggi, A. (1964). Geology of the Himalayas. London, Interscience Publisher, New York, United States.

Badshah, M. S., Gnos, E., Jan, M. Q., & Afridi, M. I. (2000). Stratigraphic and tectonic evolution of the northwestern Indian plate and Kabul block. Geological Society Special Publication, 170(1), 467–476. doi:10.1144/GSL.SP.2000.170.01.25.

Meissner, C. R., Hussain, M., Rashid, M. A., & Sethi, U. B. (1975). Geology of the Parachinar Quadrangle, Pakistana. U.S. Govt. Print. Off. doi:10.3133/pp716f

Beck, R. A., Burbank, D. W., Sercombe, W. J., Khan, A. M., & Lawrence, R. D. (1996). Late cretaceous ophiolite obduction and paleocene india-asia collision in the westernmost himalaya. Geodinamica Acta, 9(2–3), 114–144. doi:10.1080/09853111.1996.11105281.

Davies, L. M. (1930). The fossil fauna of the Samana Range and some neighbouring areas, The Palaeocene Foraminifera/by LM Davies. Calcutta Publishers, Kolkata, India.

Shah, S. (1977). Stratigraphy of Pakistan, volume 12 of the Geological Survey of Pakistan Islamabad, Director General, Geological Survey of Pakistan, Western City, Pakistan.

Fatmi, A. N. (1974). Lithostratigraphic units of the kohat-potwar province, Indus basin, Pakistan: a report of the stratigraphic committee of Pakistan. Geological Survey of Pakistan, Western City, Pakistan.

ASTM D75-87. (1992). Standard practice for sampling aggregates. ASTM International, Pennsylvania, United States.

AASHTO, (2014). Standard specifications for transportation materials and methods of sampling and testing. AASHTO provisional standards. The American Association of State Highway and Transportation Officials, Washington, United States.

ASTM C125-03. (2003). Standard terminology relating to concrete and concrete aggregates. ASTM International, Pennsylvania, United States.

Johnson, R.B., & DeGraff, J. V. (1988). Principles of engineering geology. John Wiley & Sons, New Jersey, United States.

Dunham, R. J., (1962). Classification of Carbonate Rocks According to Depositional Texture. Classification of Carbonate Rocks—A Symposium, American Association of Petroleum Geologists, Oklahoma, United States. doi:10.1306/M1357.

Kandhal, P. S., Mallick, R. B., & Huner, M. (2000). Measuring bulk-specific gravity of fine aggregates: Development of new test method. Transportation Research Record, 1721(1721), 81–90. doi:10.3141/1721-10.

Tsikouras, B., Pomonis, P., Rigopoulos, I., & Hatzipanagiotou, K. (2005). Investigation for the suitability of basic ophiolitic rocks from the Mikroklissoura Grevena area as anti-skid aggregate material and railroad ballast. In Proc. of the 2nd Conference of the Committee of Economical Geology, Mineralogy and Geochemistry, Athens, Greece, 347-356.

Mpalatsas, I., Rigopoulos, I., Tsikouras, Β., & Hatzipanagiotou, K. (2010). Suitability assessment of gretageous limestones from Thermo (Aitolokarnania, Western Greece) for their use as base and sub-base aggregates in road-construction. Bulletin of the Geological Society of Greece, 43(5), 2501-2509. doi:10.12681/bgsg.11656.

Jethro, M. A., Shehu, S. A., & Olaleye, B. (2014). The suitability of some selected granite deposits for aggregate stone production in road construction. Geology, 60(431), 0011.

AASHTO T 85, (2014). Standard Method of Testing for Specific gravity and absorption of coarse aggregate. The American Association of State Highway and Transportation Officials, Washington, United States.

BS-812-105.1 (1989). Testing aggregates. Methods for determination of particle shape flakiness index. British Standards Institution, London, United Kingdom.

BS 812-105.2 (1990). Testing aggregates. Methods for determination of particle shape. Elongation index of coarse aggregate (British standard). British Standards Institution, London, United Kingdom.

ASTM C131-06. (2006). Standard test method for resistance to degradation of small-size coarse aggregate by abrasion and impact in the Los Angeles machine. ASTM International, Pennsylvania, United States.

AASHTO-T-104-99. (2007). Standard method of test for soundness of aggregate by use of sodium sulfate or magnesium sulfate. The American Association of State Highway and Transportation Officials, Washington, United States.

BS-812-112. (1990). Testing aggregates method for determination of aggregate impact value (AIV). British Standards Institution, London, United Kingdom.

BS-812-110. (1990). Testing aggregates methods for determination of aggregate crushing value (ACV). British Standards Institution, London, United Kingdom.

ASTM C29 (2009). Standard test method for bulk density (“Unit Weight”) and voids in aggregate. American Society for Testing and Materials, Annual Book, Pennsylvania, USA.

AASHTO-T-182-84. (2002). Standard method for coating and stripping of bitumen-aggregate mixtures. The American Association of State Highway and Transportation Officials, Washington, United States.

Irfan, T. Y. (1996). Mineralogy, fabric properties and classification of weathered granites in Hong Kong. Quarterly Journal of Engineering Geology, 29(1), 5–35. doi:10.1144/GSL.QJEGH.1996.029.P1.02.

Ahsan, N., & Gondal, M. M. I. (2016). Aggregate suitability studies of limestone outcrops in Dhak pass, western Salt range, Pakistan. International Journal of Agriculture and Applied Sciences (Pakistan).

Flügel, E. (2004). Depositional Models, Facies Zones and Standard Microfacies. Microfacies of Carbonate Rocks, 657–724. doi:10.1007/978-3-662-08726-8_14.

Peng, J., Wu, X., Ni, S., Wang, J., Song, Y., & Cai, C. (2022). Investigating intra-aggregate microstructure characteristics and influencing factors of six soil types along a climatic gradient. CATENA, 210, 105867. doi:10.1016/j.catena.2021.105867.

Chen, J. S., Shiah, M. S., & Chen, H. J. (2001). Quantification of Coarse Aggregate Shape and Its Effect on Engineering Properties of Hot-Mix Asphalt Mixtures. In Journal of Testing and Evaluation 29(6), 513–519. doi:10.1520/jte12396j.

Ahsan, N., & Gondal, M. M. I. (2016). Aggregate suitability studies of limestone outcrops in Dhak pass, western Salt range, Pakistan. International Journal of Agriculture and Applied Sciences, 4(2), 69-75.

Blyth, F.G.H. and De Freitas, M.H. (1974). A Geology of Engineers. ELBS and Edward Arnold, London, United Kingdom.

Lees, G., & Kennedy, C. K. (1975). Quality, Shape and Degradation of Aggregates. Quarterly Journal of Engineering Geology and Hydrogeology, 8(3), 193–209. doi:10.1144/gsl.qjeg.1975.008.03.03.

Hassan, E. U., Hannan, A., Rashid, M. U., Ahmed, W., Zeb, M. J., Khan, S., … Ahmad, A. (2020). Resource assessment of Sakesar limestone as aggregate from salt range Pakistan based on geotechnical properties. International Journal of Hydrology, 4(1), 24–29. doi:10.15406/ijh.2020.04.00222.

Croney, D., & Croney, P. (1991). The design and performance of road pavements. McGraw Hill Professional, New York, United States.

Zhang, D., Cheng, Z., Geng, D., Xie, S., & Wang, T. (2022). Experimental and Numerical Analysis on Mesoscale Mechanical Behavior of Coarse Aggregates in the Asphalt Mixture during Gyratory Compaction. Processes 10(1), 47. doi:10.3390/pr10010047.

Carlos, A., Masumi, I., Hiroaki, M., Maki, M., & Takahisa, O. (2010). The effects of limestone aggregate on concrete properties. In Construction and Building Materials, 24(12), 2363–2368. doi:10.1016/j.conbuildmat.2010.05.008.

Pouranian, M. R., & Haddock, J. E. (2018). Determination of voids in the mineral aggregate and aggregate skeleton characteristics of asphalt mixtures using a linear-mixture packing model. In Construction and Building Materials 188, 292–304. doi:10.1016/j.conbuildmat.2018.08.101.

Williams, S. G., & Cunningham, J. B. (2012). Evaluation of aggregate durability performance test procedures. Final Report, TRC-0905, University of Arkansas, Arkansas, United States. Available online: (accessed on December 2021).

Fournari, R., & Ioannou, I. (2019). Correlations between the properties of crushed fine aggregates. Minerals 9(2), 86. doi:10.3390/min9020086.

Kazmi, D., Serati, M., Williams, D. J., Qasim, S., & Cheng, Y. P. (2021). The potential use of crushed waste glass as a sustainable alternative to natural and manufactured sand in geotechnical applications. Journal of Cleaner Production 284, 124762. doi:10.1016/j.jclepro.2020.124762.

Bayane, B. M., & Yanjun, Q. (2017). Evaluation of physical and mechanical properties of quarry stones in the southern Republic of Benin. Journal of Sustainable Development of Transport and Logistics 2(1), 61–66. doi:10.14254/jsdtl.2017.2-1.6.

Neville, A. M. (1995). Properties of concrete (4th Ed.). Longman Scientific and Technical, London, United Kingdom.

Smith, M.R., Collis, L. (2001). Aggregates: sand, gravel and crushed rock aggregates for construction purposes (3rd Edi.). Geological Society, London, United Kingdom, Engineering Geology Special Publications, 17(1). doi:10.1144/gsl.eng.2001.017.

Mitchell, C. (2007). GoodQuarry Quarry Fines and Waste. British Geological Survey, London, United Kingdom.

Demez, A., & Karakoç, M. B. (2020). Mechanical properties of high strength concrete made with pyrophyllite aggregates exposed to high temperature. Structural Concrete, 22(S1), E769–E778. doi:10.1002/suco.201900381.

Fookes, P. G., Gourley, C. S., & Ohikere, C. (1988). Rock weathering in engineering time. Quarterly Journal of Engineering Geology and Hydrogeology, 21(1), 33–57. doi:10.1144/gsl.qjeg.1988.021.01.03.

Verma, A., Babu, V. S., & Arunachalam, S. (2022). Characterization of recycled aggregate by the combined method: Acid soaking and mechanical grinding technique. Materials Today: Proceedings, 49, 230–238. doi:10.1016/j.matpr.2021.01.842.

West, G. (1996). Alkali-aggregate reaction in concrete roads and bridges. In Alkali-aggregate reaction in concrete roads and bridges. Thomas Telford. doi:10.1680/aricrab.20696.

Masad, E., Panoskaltsis, V. P., & Wang, L. (2006). Asphalt Concrete: Simulation, Modeling, and Experimental Characterization. In Proceedings of the R. Lytton Symposium on Mechanics of Flexible Pavements (June 1-3, 2005), Louisiana, United States. doi:10.1061/9780784408254.

Read, J., & Whiteoak, D. (2003). The shell bitumen handbook (5th Edi.). Thomas Telford, London, United Kingdom.

Abo-Qudais, S., & Al-Shweily, H. (2007). Effect of aggregate properties on asphalt mixtures stripping and creep behavior. Construction and Building Materials (Vol. 21, Issue 9, pp. 1886–1898). doi:10.1016/j.conbuildmat.2005.07.014.

Hamedi, G. H., Sahraei, A., & Esmaeeli, M. R. (2021). Investigate the effect of using polymeric anti-stripping additives on moisture damage of hot mix asphalt. European Journal of Environmental and Civil Engineering (Vol. 25, Issue 1, pp. 90–103). doi:10.1080/19648189.2018.1517697.

Li, Q., Xu, F., Zheng, H., Shi, J., & Zhang, J. (2022). Experimental Study on Freeze-Thaw Effects on Creep Characteristics of Rubber Concrete. Advances in Materials Science and Engineering (Vol. 2022). doi:10.1155/2022/9182729.

Hussain, J., Zhang, J., Fitria, F., Shoaib, M., Hussain, H., Asghar, A., & Hussain, S. (2022). Aggregate Suitability Assessment of Wargal Limestone for Pavement Construction in Pakistan. Open Journal of Civil Engineering, 12(01), 56–74. doi:10.4236/ojce.2022.121005.

Full Text: PDF

DOI: 10.28991/CEJ-2022-08-03-02


  • There are currently no refbacks.

Copyright (c) 2022 Javid Hussain, Jiaming Zhang, Xiao Lina, Hussain Khaleel, Syed Yasir Ali Shah, Sajid Ali, Altaf Hussain

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.