Performance Study of Buried Pipelines under Static Loads

Mahdi J. Alanazi, Yang Qinghua, Khalil Al-Bukhaiti


The possibility of servicing lifelines such as highways, railways, pipelines, and tunnels is of great social importance. The characteristic that separates the buried pipeline from other structures is that its dimensions are very long compared to its other dimensions. Ground vibrations caused by earthquakes, construction activities, traffic, explosions, and machinery can damage these structures. Lifeline integrity can be compromised in two ways: (1) direct damage due to excessive dynamic loading of the lifeline, and (2) indirect damage due to soil failures such as liquefaction, slope instability, and differential settlements. 3D printing (also known as additive manufacturing) is an advanced manufacturing process that can automatically produce complex geometric shapes from a 3D computer-aided design model without tools, molds, or fixtures. This automated manufacturing process has been applied in diverse industries today because it can revolutionize the construction industry with expected benefits. This research study on the performance of buried pipelines under static loads to the structure's safety against the possible development of progressive failure. This research study includes a numerical study, where it was studied many parameters to value the performance of the pipeline. The parameters are (a) the material of the pipeline (steel, traditional concrete, and 3D concrete printed), (b) the thickness of the pipeline (20, 30, and 40 mm), and (c) soil type (moist sandy soil, saturated sandy soil, moist cohesive soil, and saturated cohesive soil). Different results were obtained depending on the type of soil where all pipelines materials' behavior was similar in the case of moist soil.


Doi: 10.28991/CEJ-2022-08-01-01

Full Text: PDF


3D Printed Concrete; Pipeline; Moist Soil; Saturated Soil.


Bulson, P. S., & Saunders, H. (1987). Buried Structures—Static and Dynamic Strength. Journal of Vibration and Acoustics, 109(3), 320–321. doi:10.1115/1.3269439.

Donmez, D., Gencoglu, M., & Donmez, A. A. (2019). Experimental assessment of TRC cylindrical tube-shaped units. ISEC 2019 - 10th International Structural Engineering and Construction Conference, 2–7. doi:10.14455/isec.res.2019.74.

Viparelli, R., De Luca, A., Santorelli, S., & Pizza, A. G. (2001). Pre-stressed concrete large-diameter pipes: joint behaviour during earthquakes. WIT Transactions on The Built Environment, 57.

Wang, S., Liu, F., & Yu, W. (2011). Investigation on computational method for crack of reinforced concrete pipeline under internal pressure retrofitted with FRP. AEngineering Plasticity and Its Applications - Proceedings of the 10th Asia-Pacific Conference, AEPA 2010, 19–24. doi:10.1142/9789814324052_0004.

Tahamouli Roudsari, M., Samet, S., Nuraie, N., & Sohaei, S. (2017). Numerically based analysis of buried GRP pipelines under earthquake wave propagation and landslide effects. Periodica Polytechnica Civil Engineering, 61(2), 292–299. doi:10.3311/PPci.9339.

Ozdemir, Z., Coulier, P., Lak, M. A., François, S., Lombaert, G., & Degrande, G. (2013). Numerical evaluation of the dynamic response of pipelines to vibrations induced by the operation of a pavement breaker. Soil Dynamics and Earthquake Engineering, 44, 153–167. doi:10.1016/j.soildyn.2012.09.012.

Ozdemir, Z., Lak, M. A., François, S., Coulier, P., Lombaert, G., & Degrande, G. (2011). A numerical model for the prediction of the response of pipelines due to vibrations induced by the operation of a pavement breaker. Proceedings of the 8th International Conference on Structural Dynamics, EURODYN 2011, July, 928–935.

Trautmann, C. H., & O'Rourke, T. D. (1985). Lateral force-displacement response of buried pipe. Journal of Geotechnical Engineering, 111(9), 1077-1092. doi:10.1061/(ASCE)0733-9410(1985)111:9(1077).

Trautmann, C. H., O'Rourfce, T. D., & Kulhawy, F. H. (1985). Uplift force-displacement response of buried pipe. Journal of Geotechnical Engineering, 111(9), 1061-1076. doi: 10.1061/(ASCE)0733-9410(1985)111:9(1061).

Sakanoue, T., & Yoshizaki, K. (2003). Experimental study on the effect of light-weight backfill for enhancement of earthquake resistance of buried pipelines. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, 2, 699–703. doi:10.1115/OMAE2003-37228.

Gibson, I., Rosen, D., & Stucker, B. (2015). Additive Manufacturing Technologies. doi:10.1007/978-1-4939-2113-3.

Huang, S. H., Liu, P., Mokasdar, A., & Hou, L. (2013). Additive manufacturing and its societal impact: A literature review. International Journal of Advanced Manufacturing Technology, 67(5–8), 1191–1203. doi:10.1007/s00170-012-4558-5.

Vaezi, M., Seitz, H., & Yang, S. (2013). A review on 3D micro-additive manufacturing technologies. International Journal of Advanced Manufacturing Technology, 67(5–8), 1721–1754. doi:10.1007/s00170-012-4605-2.

Chua, C. K., Wong, C. H., & Yeong, W. Y. (2017). Standards, quality control, and measurement sciences in 3D printing and additive manufacturing. Academic Press.

Maas, G., & Van Gassel, F. (2005). The influence of automation and robotics on the performance construction. Automation in Construction, 14(4), 435–441. doi:10.1016/j.autcon.2004.09.010.

Zavadskas, E. K. (2010). Automation and robotics in construction: International research and achievements. Automation in Construction, 19(3), 286–290. doi:10.1016/j.autcon.2009.12.011.

Kittusamy, N. K., & Buchholz, B. (2004). Whole-body vibration and postural stress among operators of construction equipment: A literature review. Journal of Safety Research, 35(3), 255–261. doi:10.1016/j.jsr.2004.03.014.

Meliá, J. L., Mearns, K., Silva, S. A., & Lima, M. L. (2008). Safety climate responses and the perceived risk of accidents in the construction industry. Safety Science, 46(6), 949–958. doi:10.1016/j.ssci.2007.11.004.

OSHD Annual Report (2017) - Ministry of Manpower, Occupational Safety And Health Division; Singapore.

Azhar, S. (2011). Building information modeling (BIM): Trends, benefits, risks, and challenges for the AEC industry. Leadership and Management in Engineering, 11(3), 241–252. doi:10.1061/(ASCE)LM.1943-5630.0000127.

Bryde, D., Broquetas, M., & Volm, J. M. (2013). The project benefits of building information modelling (BIM). International Journal of Project Management, 31(7), 971–980. doi:10.1016/j.ijproman.2012.12.001.

Conner, B. P., Manogharan, G. P., Martof, A. N., Rodomsky, L. M., Rodomsky, C. M., Jordan, D. C., & Limperos, J. W. (2014). Making sense of 3-D printing: Creating a map of additive manufacturing products and services. Additive Manufacturing, 1, 64–76. doi:10.1016/j.addma.2014.08.005.

Thomas, D. S., & Gilbert, S. W. (2014). Costs and cost effectiveness of additive manufacturing. NIST special publication, 1176, 12. doi:10.6028/nist.sp.1176.

Kothman, I., & Faber, N. (2016). How 3D printing technology changes the rules of the game Insights from the construction sector. Journal of Manufacturing Technology Management, 27(7), 932–943. doi:10.1108/JMTM-01-2016-0010.

Newman, J., & Choo, B. S. (2003). Advanced concrete technology. In Advanced Concrete Technology. Elsevier. doi:10.1016/B978-0-7506-5686-3.X5246-X.

Souza, M. T., Ferreira, I. M., Guzi de Moraes, E., Senff, L., & Novaes de Oliveira, A. P. (2020). 3D printed concrete for large-scale buildings: An overview of rheology, printing parameters, chemical admixtures, reinforcements, and economic and environmental prospects. Journal of Building Engineering, 32(September). doi:10.1016/j.jobe.2020.101833.

Kristombu Baduge, S., Navaratnam, S., Abu-Zidan, Y., McCormack, T., Nguyen, K., Mendis, P., Zhang, G., & Aye, L. (2021). Improving performance of additive manufactured (3D printed) concrete: A review on material mix design, processing, interlayer bonding, and reinforcing methods. Structures, 29(November), 1597–1609. doi:10.1016/j.istruc.2020.12.061.

Hambach, M., & Volkmer, D. (2017). Properties of 3D-printed fiber-reinforced Portland cement paste. Cement and Concrete Composites, 79, 62–70. doi:10.1016/j.cemconcomp.2017.02.001.

Marchment, T., & Sanjayan, J. (2020). Mesh reinforcing method for 3D Concrete Printing. Automation in Construction, 109(102992). doi:10.1016/j.autcon.2019.102992.

Clare Scott. (2016). Chinese Construction Company 3D Prints an Entire Two-Story House On-Site in 45 Days | | The Voice of 3D Printing / Additive Manufacturing. 16.07.2016, 1–5. Available online: (accessed on May 2021).

Le, T. T., Austin, S. A., Lim, S., Buswell, R. A., Gibb, A. G. F., & Thorpe, T. (2012). Mix design and fresh properties for high-performance printing concrete. Materials and Structures, 45(8), 1221–1232. doi:10.1617/s11527-012-9828-z.

Le, T. T., Austin, S. A., Lim, S., Buswell, R. A., Law, R., Gibb, A. G. F., & Thorpe, T. (2012). Hardened properties of high-performance printing concrete. Cement and Concrete Research, 42(3), 558–566. doi:10.1016/j.cemconres.2011.12.003.

Salet, T. A. M., Ahmed, Z. Y., Bos, F. P., & Laagland, H. L. M. (2018). Design of a 3D printed concrete bridge by testing*. Virtual and Physical Prototyping, 13(3), 222–236. doi:10.1080/17452759.2018.1476064.

Asprone, D., Menna, C., Bos, F. P., Salet, T. A. M., Mata-Falcón, J., & Kaufmann, W. (2018). Rethinking reinforcement for digital fabrication with concrete. Cement and Concrete Research, 112, 111–121. doi:10.1016/j.cemconres.2018.05.020.

Lee, H. (2010). Finite element analysis of a buried pipeline 2010. In University of Manchester (pp. 18–25).

EN 10224:2002/A1:2005. (2005), Nonalloy steel tubes and fittings for conveying water and other aqueous liquid - Technical delivery conditions, Technical.

Carreira, D. J., & Chu, K. H. (1985). Stress-Strain Relationship for Plain Concrete in Compression. Journal of the American Concrete Institute, 82(6), 797–804. doi:10.14359/10390.

Lubliner, J., Oliver, J., Oller, S., & Oñate, E. (1989). A plastic-damage model for concrete. International Journal of Solids and Structures, 25(3), 299–326. doi:10.1016/0020-7683(89)90050-4.

Lee, J., & Fenves, G. L. (1998). Plastic-Damage Model for Cyclic Loading of Concrete Structures. Journal of Engineering Mechanics, 124(8), 892–900. doi:10.1061/(asce)0733-9399(1998)124:8(892).

Majewski, S. (2003). The mechanics of structural concrete in terms of elasto-plasticity. Publishing House of Silesian University of Technology, Gliwice.

Abaqus, G. (2011). Abaqus 6.11. Dassault Systemes Simulia Corporation, Providence, RI, USA.

Willam, K. J., & Warnke, E. P. (1975). Constitutive model for the triaxial behavior of concrete international association for bridge and structure engineering. In In: Proc. int. association for bridge and structural eng. (pp. 1–30).

Kmiecik, P., & Kamiński, M. (2011). Modelling of reinforced concrete structures and composite structures with concrete strength degradation taken into consideration. Archives of Civil and Mechanical Engineering, 11(3), 623–636. doi:10.1016/s1644-9665(12)60105-8.

Jankowiak, I., Kakol, W., & Madaj, A. (2005). Identification of numerical model of the continuous composite beam based on experimental tests. In Proceedings of 7th International Conference on Composite Structures, Zielona Góra, Poland, 163-178.

Xiao, J., Liu, H., & Ding, T. (2021). Finite element analysis on the anisotropic behavior of 3D printed concrete under compression and flexure. Additive Manufacturing, 39, 101712. doi:10.1016/j.addma.2020.101712.

Chang, X., Wang, G., Tang, C., & Ru, Z. (2015). Dynamic behavior of cement-mortar cavern reinforced by bars. Engineering Failure Analysis, 55, 343–354. doi:10.1016/j.engfailanal.2015.07.020.

Ooms, T., Vantyghem, G., Van Coile, R., & De Corte, W. (2021). A parametric modelling strategy for the numerical simulation of 3D concrete printing with complex geometries. Additive Manufacturing, 38, 101743. doi:10.1016/j.addma.2020.101743.

Full Text: PDF

DOI: 10.28991/CEJ-2022-08-01-01


  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.