Numerical Parametric Study of Fully Encased Composite Columns Subjected to Cyclic Loading

Almoutaz Bellah Alsamawi, Nadir Boumechra, Karim Hamdaoui


This paper investigates the cyclic behaviour of steel-concrete encased composite columns. By investigating the cover concrete and the steel-concrete coefficient of friction on the behaviour (strength, ductility, stiffness, and energy dissipation) of composite columns subjected to combined axial load and cyclically increasing lateral load to improve the strength and performance of the composite column. Eight of the columns were designed to study the cover concrete effect, and eleven other columns were designed to study the coefficient of friction effect in the dynamic behaviour to the cyclic load. Additionally, in this study, the finite element models created in ANSYS software were verified and calibrated against previously published experimental results (load-displacement curve, load capacity and failure mode). The numerical results obtained from the finite element model indicate that the ductility and the energy dissipated increased by +11.71 and +18.93% receptively by the increase of the cover concrete until reaching the limit of the cover concrete. Beyond this limit, the ductility and the energy decrease by 27.33 and 24.97% receptively. The results also indicate that the ductility and the energy dissipated increased by 12.62 and 7.82% receptively by the increased coefficient of friction until reach 0.6, after that the energy decreases by 4.47%.


Doi: 10.28991/CEJ-2022-08-01-04

Full Text: PDF


Fully Encased Composite Columns; Coefficient of Friction; Cover Concrete; Cyclic Loading; Hystersis Curves.


Chen, C., Wang, C., & Sun, H. (2014). Experimental Study on Seismic Behavior of Full Encased Steel-Concrete Composite Columns. Journal of Structural Engineering, 140(6), 04014024. doi:10.1061/(asce)st.1943-541x.0000951.

Zhu, W., Jia, J., Gao, J., & Zhang, F. (2016). Experimental study on steel reinforced high-strength concrete columns under cyclic lateral force and constant axial load. Engineering Structures, 125, 191–204. doi:10.1016/j.engstruct.2016.07.018.

Campian, C., Nagy, Z., & Pop, M. (2015). Behavior of fully encased steel-concrete composite columns subjected to monotonic and cyclic loading. Procedia Engineering, 117(1), 439–451. doi:10.1016/j.proeng.2015.08.193.

Fang, L., Zhang, B., Jin, G. F., Li, K. W., & Wang, Z. L. (2015). Seismic behavior of concrete-encased steel cross-shaped columns. Journal of Constructional Steel Research, 109, 24–33. doi:10.1016/j.jcsr.2015.03.001.

Xu, C. H., Zeng, L., Zhou, Q., Tu, X., & Wu, Y. (2015). Cyclic performance of concrete-encased composite columns with T-shaped steel sections. International Journal of Civil Engineering, 13(4A), 456–467. doi:10.22068/IJCE.13.4.455.

Han, L. H., Liao, F. Y., Tao, Z., & Hong, Z. (2009). Performance of concrete filled steel tube reinforced concrete columns subjected to cyclic bending. Journal of Constructional Steel Research, 65(8–9), 1607–1616. doi:10.1016/j.jcsr.2009.03.013.

Gajalakshmi, P., & Helena, H. J. (2012). Behaviour of concrete-filled steel columns subjected to lateral cyclic loading. Journal of Constructional Steel Research, 75, 55–63. doi:10.1016/j.jcsr.2012.03.006.

Qian, W. W., Li, W., Han, L. H., & Zhao, X. L. (2016). Analytical behavior of concrete-encased CFST columns under cyclic lateral loading. Journal of Constructional Steel Research, 120, 206–220. doi:10.1016/j.jcsr.2015.12.018.

Shim, C. S., Chung, Y. S., & Han, J. H. (2008). Cyclic response of concrete-encased composite columns with low steel ratio. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 161(2), 77–89. doi:10.1680/stbu.2008.161.2.77.

Hsu, H. L., Jan, F. J., & Juang, J. L. (2009). Performance of composite members subjected to axial load and bi-axial bending. Journal of Constructional Steel Research, 65(4), 869–878. doi:10.1016/j.jcsr.2008.04.006.

Ellobody, E., & Young, B. (2011). Numerical simulation of concrete encased steel composite columns. Journal of Constructional Steel Research, 67(2), 211–222. doi:10.1016/j.jcsr.2010.08.003.

Taufik, S., & Tjahjono, B. (2019). 3D ANSYS Modeling Behaviour of Encased Steel Composite Column with Wide Flange and Hollow Section. International Journal of Mechanics and Applications, 2019(1), 10–18. doi:10.5923/j.mechanics.20190901.02.

Chen, Y., Wang, T., Yang, J., & Zhao, X. (2010). Test and numerical simulation of partially encased composite columns subject to axial and cyclic horizontal loads. International Journal of Steel Structures, 10(4), 385–393. doi:10.1007/BF03215846.

Naito, H., Akiyama, M., & Suzuki, M. (2011). Ductility Evaluation of Concrete-Encased Steel Bridge Piers Subjected to Lateral Cyclic Loading. Journal of Bridge Engineering, 16(1), 72–81. doi:10.1061/(asce)be.1943-5592.0000120.

Yue, J., Qian, J., & Beskos, D. E. (2019). Seismic damage performance levels for concrete encased steel columns using acoustic emission tests and finite element analysis. Engineering Structures, 189(March), 471–483. doi:10.1016/j.engstruct.2019.03.077.

ANSYS, “APDL, Release 15.0.” (2013).

Aribert, J. M., Campian, C., & Pacurar, V. (2018). Monotonic and cyclic behaviour of fully encased composite columns and dissipative interpretation for seismic design. Stessa 2003, 115-121.

Chang, X., Wei, Y. Y., & Yun, Y. C. (2012). Analysis of steel-reinforced concrete-filled-steel tubular (SRCFST) columns under cyclic loading. Construction and Building Materials, 28(1), 88–95. doi:10.1016/j.conbuildmat.2011.08.033.

EN 1993-1-1/AC. (2009). Eurocode 3: Design of steel structures - Part 1-1: General rules and rules for buildings.

EN 1994-1-1/AC. (2004). Eurocode 4, Design of composite steel and concrete structures - Part 1-1: General rules and rules for buildings.

EN 1992-1-1/AC. (2004). Eurocode 2, Design of concrete structures - Part 1-1: General rules and rules for buildings.

Hussan, S. P., & Bashir, A. (2015). Analysis of Earthquake Resistant Properties of RC Core Steel Composite Columns & RCC Sections Using Finite Element Analysis. International Journal of Engineering Trends and Technology, 28(7), 359–364.

Si, B. J., Sun, Z. G., Ai, Q. H., Wang, D. S., & Wang, Q. X. (2008). Experiments and Simulation of Flexural-Shear Dominated Rc Bridge Piers Under Reversed Cyclic Loading. In The 14th World Conference on Earthquake Engineering (pp. 2–9).

Seres, N. (2008). Numerical modelling of shear connection between concrete slab and sheeting deck. In 7th fib international PhD symposium in civil engineering. Stuttgart.

Alsamawi, A. bellah, & Boumechra, N. (2021). Behaviour of fully encased composite columns under cyclic loads. Ce/papers, 4(2-4), 564–569. doi:10.1002/cepa.1331.

Patil, P. S. S., Shaikh, A. N., & Niranjan, P. B. R. (2012). Non linear finite element method of analysis of reinforced concrete deep beam. International Journal of Modern Engineering Research, 2(6), 4622–4628.

Ibrahim, A. M., & Mahmood, M. S. (2009). Finite element modeling of reinforced concrete beams strengthened with FRP laminates. European Journal of Scientific Research, 30(4), 526–541.

Fauzan, Kurniawan, R., & Al Jauhari, Z. (2017). Finite element analysis of CES composite columns. International Journal of Civil Engineering and Technology, 8(10), 979–987.

Al Amli, A. S., Al-Ansari, N., & Laue, J. (2019). Study Numerical Simulation of Stress-Strain Behavior of Reinforced Concrete Bar in Soil using Theoretical Models. Civil Engineering Journal, 5(11), 2349–2358. doi:10.28991/cej-2019-03091416.

Fuschi, P., Dutko, M., Perić, D., & Owen, D. R. J. (1994). On numerical integration of the five-parameter model for concrete. Computers and Structures, 53(4), 825–838. doi:10.1016/0045-7949(94)90371-9.

Zhao, W. P. (2011). Local bond-slip numerical simulation based on ANSYS contact analysis. In 2011 International Conference on Electric Technology and Civil Engineering, ICETCE 2011 - Proceedings (Vol. 0, pp. 438–441). doi:10.1109/ICETCE.2011.5775869.

Ibrahim, A., & Ahmed, Q. (2012). Finite element modeling of composite steel-concrete beams with external prestressing. International Journal of Civil & Structural Engineering, 3(1), 101–116.

De Nardin, S., Almeida Filho, F. M., Oliveira Filho, J., Haach, V. G., & El Debs, A. L. H. C. (2005). Non-linear analisys of the bond strength behavior on the steel-concrete interface by numerical models and pull-out tests. Proceedings of the Structures Congress and Exposition, 1077–1088. doi:10.1061/40753(171)107.

Xu, C. H., Zeng, L., Zhou, Q., Tu, X., & Wu, Y. (2015). Cyclic performance of concrete-encased composite columns with T-shaped steel sections. In International Journal of Civil Engineering (Vol. 13, Issue 4A, pp. 456–467). doi:10.22068/IJCE.13.4.455.

Full Text: PDF

DOI: 10.28991/CEJ-2022-08-01-04


Copyright (c) 2021 Almoutaz Bellah Alsamawi

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.