Knowledge Based Prediction of Standard Penetration Resistance of Soil Using Geotechnical Database

Muhammad Usman Arshid


The current study aimed at predicting standard penetration resistance (N) of soil using particle sizes and Atterberg's limits. The geotechnical database was created subsequent to the field and laboratory testing. The sample collection points were distributed in a mesh grid pattern to have uniform sampling consistency. Artificial Neural Networks (ANN) were trained on the database to build a knowledge-based understanding of the interrelation of the given soil parameters. To check the efficacy of the model, the validation was carried out by predicting standard penetration resistance (N) for another 30 samples which were not included in the training data (444 samples). The trained ANN model has been found to predict N values in close agreement with the N values measured in the field. The novelty of the research work is the standard penetration prediction employing basic physical properties of soil. This proves the efficacy of the proposed model for the target civil engineering application.


Doi: 10.28991/CEJ-SP2021-07-01

Full Text: PDF


Prediction of SPT; Geotechnical Database; ANN in Geotechnics; SPT Correlation; Soil Gradation.


Davidson, J. L., Maultsby, J. P., & Spoor, K. B. (1999). Standard Penetration Test Energy Calibrations. Final Report and Appendices. Available online: (accessed on January 2021).

Aggour, M. S., & Radding, W. R. (2001). Standard penetration test (SPT) correction. Report No. MD02-007B48, Maryland State Highway Administration, Baltimore, USA.

Durgunoğlu, H. T., & Toğrol, E. (1974). Penetration testing in Turkey: State-of-the-art report. In Proceedings of the European Symposium on Penetration Testing (137 Page), Stockholm, Sweden.

Horn, H. M. (1979). North American Experience in Sampling and Laboratory Dynamic Testing. In Geotechnical Testing Journal (Vol. 2, Issue 2, pp. 84–97). doi:10.1520/gtj10434j.

Mori, H. (1979). Review of Japanese Subsurface Investigation Techniques. In Geotechnical Engineering, 10(2), 1-25.

Ulugergerli, E. U., & Uyanik, O. (2007). Statistical correlations between seismic wave velocities and SPT blow counts and the relative density of soils. Journal of Testing and Evaluation, 35(2), 187–191. doi:10.1520/jte100159.

Arshid, M. U., & Kamal, M. A. (2020). Regional geotechnical mapping employing kriging on electronic geodatabase. Applied Sciences (Switzerland), 10(21), 1–15. doi:10.3390/app10217625.

Kim, H. J., Dinoy, P. R. T., Choi, H. S., Lee, K. B., & Mission, J. L. C. (2019). Spatial interpolation of SPT data and prediction of consolidation of clay by ANN method. Coupled Systems Mechanics, 8(6), 523–535. doi:10.12989/csm.2019.8.6.523.

Narimani, S., Chakeri, H., & Davarpanah, S. M. (2018). Simple and non-linear regression techniques used in sandy-clayey soils to predict the pressuremeter modulus and limit pressure: A case study of Tabriz subway. In Periodica Polytechnica Civil Engineering 62(3), 825–839. doi:10.3311/PPci.12063.

Sil, A., & Sitharam, T. G. (2014). Dynamic Site Characterization and Correlation of Shear Wave Velocity with Standard Penetration Test' N' Values for the City of Agartala, Tripura State, India. Pure and Applied Geophysics, 171(8), 1859–1876. doi:10.1007/s00024-013-0754-y.

Behpoor, L., & Ghahramani, A. (1990). Correlation of SPT to strength and modulus of elasticity of cohesive soils. Proc. 12th International Conference on Soil Mechanics and Foundation Engineering, Rio de Janeiro, 1989. Vol. 1, 175–178. doi:10.1016/0148-9062(91)93492-o.

Arshid, M. U., & Kamal, M. A. (2020). Appraisal of bearing capacity and modulus of subgrade reaction of refilled soils. Civil Engineering Journal (Iran), 6(11), 2120–2130. doi:10.28991/cej-2020-03091606.

Wrzesiński, G., Sulewska, M. J., & Lechowicz, Z. (2018). Evaluation of the change in undrained shear strength in cohesive soils due to principal stress rotation using an artificial neural network. In Applied Sciences (Switzerland) 8(5), 781-794. doi:10.3390/app8050781.

Lee, H., & Oh, J. (2018). Establishing an ANN-based risk model for ground subsidence along railways. Applied Sciences (Switzerland), 8(10). doi:10.3390/app8101936.

Baziar, M. H., Saeedi Azizkandi, A., & Kashkooli, A. (2015). Prediction of pile settlement based on cone penetration test results: An ANN approach. In KSCE Journal of Civil Engineering, 19(1), 98–106. doi:10.1007/s12205-012-0628-3.

Kurup, P. U., & Griffin, E. P. (2006). Prediction of Soil Composition from CPT Data Using General Regression Neural Network. Journal of Computing in Civil Engineering, 20(4), 281–289. doi:10.1061/(asce)0887-3801(2006)20:4(281).

Adeli, H. (2001). Neural networks in civil engineering: 1989-2000. Computer-Aided Civil and Infrastructure Engineering, 16(2), 126–142. doi:10.1111/0885-9507.00219.

Penumadu, D., & Zhao, R. (1999). Triaxial compression behavior of sand and gravel using artificial neural networks (ANN). Computers and Geotechnics, 24(3), 207–230. doi:10.1016/S0266-352X(99)00002-6.

Penumadu, D., & Zhao, R. (2000). Modeling drained triaxial compression behavior of sand using ANN. In Proceedings of Sessions of Geo-Denver 2000 - Numerical Methods in Geotechnical Engineering, GSP 96 (Vol. 284, pp. 71–87). doi:10.1061/40502(284)6.

Grimaldi, M., Visintainer, R., & Jurman, G. (2011). Regnann: Reverse engineering gene networks using artificial neural networks. In PLoS ONE (Vol. 6, Issue 12, p. 28646). doi:10.1371/journal.pone.0028646.

Ayoubi, S., Pilehvar, A., Mokhtari, P., & L., K. (2011). Application of Artificial Neural Network (ANN) to Predict Soil Organic Matter Using Remote Sensing Data in Two Ecosystems. Biomass and Remote Sensing of Biomass, 181–196. doi:10.5772/18956.

Park, H. (2011). Study for Application of Artificial Neural Networks in Geotechnical Problems. In Artificial Neural Networks - Application. Artificial Neural Networks-Application. doi:10.5772/15011.

Arshid, M. U., Shabbir, F., Hussain, J., Ahmed, A., & Tahir, I. (2013). Assessment of variation in soil parameters, for design of lightly loaded structural foundations. Life Science Journal, 12(SPL.ISSUE), 217–220.

Žlender, B., & Jelušič, P. (2016). Predicting Geotechnical Investigation Using the Knowledge Based System. Advances in Fuzzy Systems, 2016, 1–10. doi:10.1155/2016/4867498.

Zhang, G., Fu, P., & Liang, F. (2013). Mathematical and numerical modeling in geotechnical engineering. Journal of Applied Mathematics, 2013. doi:10.1155/2013/123485.

Asmawisham Alel, M. N., Anak Upom, M. R., Abdullah, R. A., & Zainal Abidin, M. H. (2018). Estimating SPT-N Value Based on Soil Resistivity using Hybrid ANN-PSO Algorithm. Journal of Physics: Conference Series, 995(1). doi:10.1088/1742-6596/995/1/012035.

Ramasamy, M., Hannan, M. A., Ahmed, Y. A., & Dev, A. K. (2021). Ann-based decision making in station keeping for geotechnical drilling vessel. Journal of Marine Science and Engineering, 9(6), 596. doi:10.3390/jmse9060596.

Sarkar, G., Siddiqua, S., Banik, R., & Rokonuzzaman, M. (2015). Prediction of soil type and standard penetration test (SPT) value in Khulna City, Bangladesh using general regression neural network. Quarterly Journal of Engineering Geology and Hydrogeology, 48(3–4), 190–203. doi:10.1144/qjegh2014-108.

Fernando, H., Nugroho, S. A., Suryanita, R., & Kikumoto, M. (2021). Prediction of SPT value based on CPT data and soil properties using ANN with and without normalization. International Journal of Artificial Intelligence Research, 5(2), 123–131. doi:10.29099/ijair.v5i2.208.

Ateş, A., Keskin, I., Totiç, E., & Yeşil, B. (2014). Investigation of soil liquefaction potential around efteni lake in Duzce Turkey: Using empirical relationships between shear wave velocity and SPT blow count (N). Advances in Materials Science and Engineering, 2014. doi:10.1155/2014/290858.

Hassoun, M. H., Watta, P. B., & Shringarpure, R. (1995). Cross-validation without a validation set in BP-trained neural nets. IEEE International Conference on Neural Networks - Conference Proceedings, 1, 369–372. doi:10.1109/icnn.1995.488127.

Kröse, B., Krose, B., Smagt, P. van der, & Smagt, P. (1993). Buch - An introduction to neural networks. The University of Amsterdam, Netherlands.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533–536. doi:10.1038/323533a0.

Beale, M. H., Hagan, M. T., & Demuth, H. B. (2012). Neural network toolbox™ user's guide, R2012a, the MathWorks, Inc., 3 Apple Hill Drive Natick, MA 01760‒2098.

Wilson, D. R., & Martinez, T. R. (2003). The general inefficiency of batch training for gradient descent learning. Neural Networks, 16(10), 1429–1451. doi:10.1016/S0893-6080(03)00138-2.

LeCun, Y., Bottou, L., Orr, G. B., & Müller, K.-R. (1998). Efficient BackProp. In Neural networks: Tricks of the trade (pp. 9–50). Springer. doi:10.1007/3-540-49430-8_2.

Simard, P. Y., LeCun, Y. A., Denker, J. S., & Victorri, B. (1998). Transformation invariance in pattern recognition-tangent distance and tangent propagation. In Neural networks: tricks of the trade (pp. 239-274). Springer, Berlin, Heidelberg.

Warwick, P. D., & Wardlaw, B. R. (Eds.). (2007). Regional studies of the Potwar plateau area, northern Pakistan (Vol. 2078). US Department of the Interior, US Geological Survey.

Elahi, M. K., & Martin, N. R. (1961). The physiography of the Potwar of West Pakistan. Geological Bulletin of the Punjab University, 1, 5–11, Pakistan.

Warwick, P. D., & Wardlaw, B. R. (1992). Paleocene–Eocene stratigraphy in northern Pakistan: Depositional and structural implications. In Programme and Abstracts, Seventh Himalaya-Karakoram-Tibet Workshop Oxford, United Kingdom, Department of Earth Sciences, Oxford University (pp. 97-98).

ASTM, (2008). Standard test method for standard penetration test (SPT) and split-barrel sampling of soils. American Society of Testing and Materials, West Conshohocken Pennsylvania, USA.

ASTM, D4318-10 (2010). Standard test methods for liquid limit, plastic limit, and plasticity index of soils. American Society of Testing and Materials, West Conshohocken Pennsylvania, USA.

ASTM, D 6913-04. (2009). Standard test methods for particle-size distribution (gradation) of soils using sieve analysis. American Society of Testing and Materials, West Conshohocken Pennsylvania, USA.

Full Text: PDF

DOI: 10.28991/CEJ-SP2021-07-01


  • There are currently no refbacks.

Copyright (c) 2022 Muhammad Usman Arshid

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.