Enhancement of Electrical and Mechanical Properties of Modified Asphalt Concrete with Graphite Powder

Ziane Zadri, Bachir Glaoui, Othmane Abdelkhalek


A large number of additives are introduced in asphalt concrete mixtures in purpose of improving the properties of resistance, facing the increasing traffic and more severe climatic conditions. This will guarantee the good comfort for a longer exploitation time. In this article we used graphite powder as an unconventional additive, and then investigate its effect mainly on the electrical resistivity which is in context of our research work on conductive asphalt (with a resistivity around 106 Ω m), As well as on its mechanical properties evaluated using the new Fenix test that gives many information of mechanical especially dissipated energy. A significant improvement was noticed in the reduction of resistivity by reaching 1.7 × 106Ω m and also greater resistance to cracking based on variation of dissipated energy as a result we concluded that introducing graphite powder with an appropriate amount enhance both mechanical and electrical properties asphalt concrete.


Doi: 10.28991/CEJ-2022-08-01-09

Full Text: PDF


Conductive Asphalt; Graphite Powder; Electrical Resistivity; Fenix Test; Cracking.


Liu, X., Wu, S., Ye, Q., Qiu, J., & Li, B. (2008). Properties evaluation of asphalt-based composites with graphite and mine powders. In Construction and Building Materials 22(03). 121–126. doi:10.1016/j.conbuildmat.2006.10.004.

Park, D. W., Dessouky, S., & Hwang, S. Do. (2014). Thermophysical properties of graphite-modified asphalt mixture and numerical analyses for snow melting pavement. In Sustainability, Eco-Efficiency and Conservation in Transportation Infrastructure Asset Management - Proceedings of the 3rd International Conference on Tranportation Infrastructure, ICTI 2014 (pp. 87–94). doi:10.1201/b16730-15.

Wu, S., Mo, L., Shui, Z., & Chen, Z. (2005). Investigation of the conductivity of asphalt concrete containing conductive fillers. Carbon, 43(7), 1358–1363. doi:10.1016/j.carbon.2004.12.033.

Park, S. H., Kim, D. J., Ryu, G. S., & Koh, K. T. (2012). Tensile behavior of Ultra High Performance Hybrid Fiber Reinforced Concrete. Cement and Concrete Composites, 34(2), 172–184. doi:10.1016/j.cemconcomp.2011.09.009.

Wang, H., Yang, J., Liao, H., & Chen, X. (2016). Electrical and mechanical properties of asphalt concrete containing conductive fibers and fillers. Construction and Building Materials, 122(N), 184–190. doi:10.1016/j.conbuildmat.2016.06.063.

Wu, S., Li, B., Huang, J., & Liu, Z. (2008). Investigation of rheological properties of asphalt binders containing conductive fillers. Key Engineering Materials, 385–387, 753–756. doi:10.4028/www.scientific.net/kem.385-387.753.

Arabzadeh, A., Ceylan, H., Kim, S., Sassani, A., Gopalakrishnan, K., & Mina, M. (2018). Electrically-conductive asphalt mastic: Temperature dependence and heating efficiency. Materials and Design, 157, 303–313. doi:10.1016/j.matdes.2018.07.059.

Valdés, G., Pérez-Jiménez, F., & Botella, R. (2009). Ensayo Fénix, una Nueva Metodología para Medir la Resistencia a la Fisuración en Mezclas Asfálticas. Revista de La Construccion, 8(1), 114–125.

Vidal, G. V., Recasens, R. M., & Reguero, A. M. (2015). Assessment of the adhesive capacity of asphalt binders in the aggregate-binder bonds by means of new methodology. Revista de La Construccion, 14(1), 69–76. doi:10.4067/s0718-915x2015000100009.

Marsden, A. J., Papageorgiou, D. G., Vallés, C., Liscio, A., Palermo, V., Bissett, M. A., Young, R. J., & Kinloch, I. A. (2018). Electrical percolation in graphene-polymer composites. In 2D Materials (Vol. 5, Issue 3). doi:10.1088/2053-1583/aac055.

Bauhofer, W., & Kovacs, J. Z. (2009). A review and analysis of electrical percolation in carbon nanotube polymer composites. Composites Science and Technology, 69(10), 1486–1498. doi:10.1016/j.compscitech.2008.06.018.

Sandler, J. K. W., Kirk, J. E., Kinloch, I. A., Shaffer, M. S. P., & Windle, A. H. (2003). Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer, 44(19), 5893–5899. doi:10.1016/s0032-3861(03)00539-1.

White, S. I., Mutiso, R. M., Vora, P. M., Jahnke, D., Hsu, S., Kikkawa, J. M., … Winey, K. I. (2010). Electrical Percolation Behavior in Silver Nanowire-Polystyrene Composites: Simulation and Experiment. Advanced Functional Materials, 20(16), 2709–2716. doi:10.1002/adfm.201000451.

Charmet, J. (1997). Mécanique du solide et des matériaux. Laboratoire d’Hydrodynamique et M´ecanique Physique.

Irwin, G. R. (1957). Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate. Journal of Applied Mechanics, 24(3), 361–364. doi:10.1115/1.4011547.

Griffith, A. A. (1921). The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 221(582-593), 163–198. doi:10.1098/rsta.1921.0006.

Full Text: PDF

DOI: 10.28991/CEJ-2022-08-01-09


  • There are currently no refbacks.

Copyright (c) 2022 ziane zadri

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.