Effect of Long-Term Soil Deformations on RC Structures Including Soil-Structure Interaction
Abstract
Lifetime service of Reinforced Concrete (RC) structures is of major interest. It depends on the action of the superstructure and the response of soil contact at the same time. Therefore, it is necessary to consider the soil-structure interaction in the safety analysis of the RC structures to ensure reliable and economical design. In this paper, a finite element model of soil-structure interaction is developed. This model addresses the effect of long-term soil deformations on the structural safety of RC structures. It is also applied to real RC structures where soil-structure interaction is considered in the function of time. The modeling of the mechanical analysis of the soil-structure system is implemented as a one-dimensional model of a spring element to simulate a real case of RC continuous beams. The finite element method is used in this model to address the nonlinear time behavior of the soil and to calculate the consolidation settlement at the support-sections and the bending moment of RC structures girders. Numerical simulation tests with different loading services were performed on three types of soft soils with several compressibility parameters. This is done for homogeneous and heterogeneous soils. The finite element model of soil-structure interaction provides a practical approach to show and to quantify; (1) the importance of the variability of the compressibility parameters, and (2) the heterogeneity soil behavior in the safety RC structures assessment. It also shows a significant impact of soil-structure interaction, especially with nonlinear soil behavior versus the time on the design rules of redundant RC structures.
Doi: 10.28991/cej-2020-03091618
Full Text: PDF
Keywords
References
Fenton G and Griffiths M. “Probabilistic foundation settlement on spatially random soil”. Journal of Geotechnical and Geoenvironmental Engineering (May 2002): 128 (5): 381–390. doi:10.1061/(ASCE)1090-0241(2002)128:5(381).
Al-Shamrani MA and Al-Mashary FA. “A Simplified Computation of the Interactive Behavior between Soils and Framed Structures”. Journal of King Saud University, Engineering Sciences, Riyadh (January 2003): 16(1): 37-59. doi:10.1016/S1018-3639 (18)30779-7.
Frantziskonis G and Breysse D. “Influence of soil variability on differential settlements of structures”. Computers and Geotechnics (April 2003): 30: 217-230. doi:10.1016/S0266-352X(02)00062-9
Frank R and Thepot O. “Etude en petites déformations de l'interaction entre une fondation superficielle et une conduite enterrée”. Revue Européenne de Génie Civil (September 2005): 9-10(9):1095-1109. doi:10.1080/17747120.2005.9692802.
Viladkar MN, Karisiddappa BP and Godbole PN. “Static soil–structure interaction response of hyperbolic cooling towers to symmetrical wind loads”. Engineering Structures (July 2006): 28:1236-1251. doi:10.1016/j.engstruct.2005.11.010.
Fontan MA, Ndiaye D, Breysse FB and Fernandez C. “Soil–structure interaction: Parameters identification using particle swarm optimization”. Computers and Structures (September 2011): 89:1602–1614. doi:10.1016/j.compstruc.2011.05.002.
Bezih K, Chateauneuf A, Bouzid T, Kalla M and Bacconnet, C. “Deterministic and reliability analysis of RC bridges including soil-structure interaction”. Journal Geo Geophys (December 2017): 6: 6(Suppl). doi:10.4172/2381-8719-C1-014.
Bezih K, Chateauneuf A, Kalla M and Bacconnet C. “Effect of soil structure interaction on the reliability of reinforced concrete bridges”. Ain Shams Engineering Journal (September 2015): 6(3):755-766. doi:10.1016/j.asej.2015.01.007.
Jahangir E, Deck O and Masrouri F. “Estimation of the ground settlement beneath foundations due to shrinkage of clayey soils”. Canadien Geotechnical Journal (June 2012): 49(7): 835-852. doi:10.1139/t2012-042.
Masaeli H and Panahi M. “Effect of Soil and Structure Nonlinear Interaction on the Efficiency of Tuned Mass Damper”. Civil Engineering Journal (October 2018): 4(10):2474. doi:10.28991/cej-03091174.
Montero N, Rubén A, Galindo Aires, Alcibíades SG and Claudio OM. “Analytical Model of an Anchored Wall in Creep Soils”. International Journal of Geomechanics (February 2020): 20, 4. doi:10.1061/(ASCE) GM.1943-5622.0001634.
Vermeer PA and Neher HP. “A soft soil model that accounts for creep”. In Proceedings of the International Symposium Beyond 2000 in Computational Geotechnics: 10 Years of PLAXIS International, Amsterdam, the Netherlands, 18–20 (March 1999). Balkema, Rotterdam, the Netherlands; 249–261.
Buisman K. “Results of long duration settlement tests”. Proceedings 1st International Conference on Soil Mechanics and Foundation Engineering, Cambridge; (1936): Mass (1): 103-107.
Mesri G, and Godlewski PM. “Time- and stress-compressibility interrelationship”. Journal of the Geotechnical Engineering, ASCE (January 1977):103: 417–430.
Mesri G and Castro A. “Cα/Cc concept and K0 during secondary compression”. Journal of Geotechnical and Geoenvironmental Engineering, (March 1987): 113(3): 230-247. doi:10.1061/(ASCE)0733-9410(1987)113:3(230).
Biot MA. “General theory of three-dimensional consolidation”. Journal of Applied Physics (1941): 12:155-164. doi: 10.1063/1.1712886.
Casagrande A. “The determination of the preconsolidation load and its practical significance”. Proceedings of the 1st International Conference of Soil Mechanics and Foundation Engineering, Cambridge, Massachusetts, USA (1936): 3: 60.
Taylor DW. “Research on consolidation of clays”. Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA (1942): Report 82.
Bjerrum L. “Engineering geology of Norwegian normally-consolidated marine clays as related to settlements of buildings”. Géotechnique (June 1967): 17 No 2: 81-118. doi:10.1680/geot.1967.17.2.83.
Yin JH and Graham J. “Elastic viscoplastic modeling of the time-dependent stress–strain behaviour of soils”. Canadian Geotechnical Journal (November1999): 36(4): 736–745. doi:10.1139/t99-042.
Yin JH and Tong F. “Constitutive modeling of time-dependent stress-strain behaviour of saturated soils exhibiting both creep and swelling”. Canadian Geotechnical Journal (November 2011): 48: 1870–1885. doi: 10.1139/t11-076.
Yin JH and Feng WQ. “A new simplified method and its verification for calculation of consolidation settlement of a clayey soil with creep”. Canadian Geotechnical Journal (March 2017): 54 (3): 333–347. doi: 10.1139/cgj-2015-0290.
Vermeer PA, Stolle DFE and Bonnier PG. “From the classical theory of secondary compression to modern creep “. In Proceedings of the 9th International Conference on Computer Methods and Advances in Geomechanics (1997): Wuhan/China, Vol.4, Rotterdam: Balkema, pp. 2469–2478.
Li JZ, Peng FL and Xu LS. “One-dimensional viscous behavior of clay and its constitutive modeling”. International Journal of Geomechanics (March 2009): 9(2): 43–52. doi:10.1061/(ASCE)1532-3641(2009)9:2(43).
Zhou C, Yin JH, Zhu JG and Cheng CM. “Elastic anisotropic viscoplastic modeling of the strain-rate-dependent stress-strain behavior of KROR-consolidated natural marine clays in triaxial shear tests”. International Journal of. Geomechanics (September 2005): 5(3): 218–232. doi:10.1061/(ASCE)1532-3641(2005)5:3(218).
Leoni M, Karstunen M and Vermeer PA. “Anisotropic creep model for soft soils”. Geotechnique (April 2008): 58(3):215–226. doi:10.1680/geot.2008.58.3.215.
Yun TK and Leroueil S. “Modeling the viscoplastic behaviour of clays during consolidation: application to Berthierville clay in both laboratory and field conditions”. Canadian Geotechnical Journal (June 2001):38: 484–497. doi:10.1139/t00-108.
Leong WK and Chu J. “Effect of undrained creep on instability behaviour of loose sand”. Canadian Geotechnical Journal (December 2002): 39: 1399–1405. doi:10.1139/t02-076.
Mesri G and Vardhanabhuti B. “Secondary compression”. Journal of Geotechnical and Geoenvironmental Engineering (March 2005):131(3):398-401. doi:10.1061/(ASCE)1090-0241(2005)131:3(398).
Linchang M, Xinhui W and Kavazanjian E. “Consolidation of a Double-Layered Compressible Foundation Partially Penetrated by Deep Mixed Columns”. Journal of Geotechnical and Geoenvironmental Engineering ASCE (August 2008):134:1210-1214. doi:10.1061/(ASCE)1090-0241(2008)134:8(1210).
Bodas Freitas TM, Potts DM and Zdravkovic L. “The effect of creep on the short-term bearing capacity of pre-loaded footings”. Computers and Geotechnics (May 2012): (42): 99–108. doi:10.1016/j.compgeo.2011.11.009.
Wang LZ, Wang KJ and Hong Y. “Modeling temperature-dependent behavior of soft clay”. Journal of Engineering Mechanics (April 2016): 142: no 8. doi:10.1061/(ASCE)EM.1943-7889.0001108.
Zhu QY and Ping Qi. “Numerical Modeling of Thermal-Dependent Creep Behavior of Soft Clays under One-Dimensional Condition”. Advances in Civil Engineering (October 2018): (5):1- 11. doi:10.1155/2018/9827673.
Qi YZ, Zhen YY, Dong MZ and Hong-WH. “Numerical Modeling of Creep Degradation of Natural Soft Clays under One-dimensional Condition”. KSCE Journal of Civil Engineering (July 2017): 21(5): 1668-1678. doi:10.1007/s12205-016-1026-z.
Yin JH and Zhu JG. “Elastic viscoplastic consolidation modelling and interpretation of pore-water pressure responses in clay underneath Tarsiut Island”. Canadian Geotechnical Journal (Novembre1999): 36 (4):708–717. doi:10.1139/t99-041.
Lo KY. “Secondary compression of clays”. Journal of the Soil Mechanics and Foundations Division, ASCE (1961): 87 (SM4): 61– 87.
Hu YY and Ping Y. “Secondary settlement estimation in surcharge preload subject to time effect of secondary consolidation coefficient”. Journal of Central South University (February 2017): 24: 341−352. doi:10.1007/s11771-017-3436-6.
Garlanger JE. “The consolidation of soils exhibiting creep under constant effective stress”. Geotechnique (March 1972): 22: 71-78. doi:10.1680/geot.1972.22.1.71.
Janbu N. “Consolidation of clay layers based on non-linear stress strain”. Proc. 5. ICSMFE, Montreal (1965): 2: 83-87.
William HP, Saul AT, William TV and Brian BF. “Numerical recipes”. Cambridge University Press (September 9, 2007).
Eurocode 1. “Actions on structures-part 2: traffic loads on bridge”. EN 1991-2 (2003).
Eurocode 2. “Design of concrete structures-part 1–1: general rules and rules for buildings”. EN 1992-1-1: (2004).
Yin JH and Graham J. “Equivalent times and one-dimensional elastic viscoplastic modelling of time-dependent stress–strain behaviour of clays”. Canadian Geotechnical Journal (February 1994): 31 (1):42–52. doi:10.1139/t94-005.
Feng WQ, Yin JH, Chen WBo, Tan DY and Wu PC. “A new simplified method for calculating consolidation settlement of multilayer soft soils with creep under multi-stage ramp loading”. Engineering Geology (January 2020): 264:105322. doi: 10.1016/j.enggeo.2019.105322.
Karim UFA, Van Meekeren H, and Feenstra R. “Settlement of a bridge embankment on soft soils”. Proceedings of the Institution of Civil Engineers: Geotechnical engineering (January 2004): 157(1): 9-12. doi:10.1680/geng.2004.157.1.9.
Zhang J, Taylor T, Sturgill R, Dadi G and Stamatiadis N. “Predictive Risk Modeling of Differential Bridge Settlement”. Lean and Computing in Construction Congress - Volume 1: Proceedings of the Joint Conference on Computing in Construction (July 2017): 145-152. doi:10.24928/JC3-2017/0060.
Rahman ES, Zainorabidin A and Mahfidz H. “Settlement of bridge approaches on soft soil area in Batu Pahat”. Johor IOP Conf. Series: Materials Science and Engineering (May 2019): 527: 012010. doi:10.1088/1757-899X/527/1/012010.
Terzaghi, K., Peck RB and Mesri G. “Soil Mechanics in Engineering Practice”. John Wiley & Sons, New York, (1996).
Lance AR and Misra A. “Reliability-based design of deep foundations based on differential settlement criterion”. Canadian Geotechnical Journal (February 2009):46: 168–176. doi:10.1139/T08-117.
DOI: 10.28991/cej-2020-03091618
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 Kamel Bezih, Alaa Chateauneuf, Rafik Demagh
This work is licensed under a Creative Commons Attribution 4.0 International License.