Bivariate Hydrologic Risk Assessment of Flood Episodes using the Notation of Failure Probability

Shahid Latif, Firuza Mustafa


Floods are becoming the most severe and challenging hydrologic issue at the Kelantan River basin in Malaysia. Flood episodes are usually thoroughly characterized by flood peak discharge flow, volume and duration series. This study incorporated the copula-based methodology in deriving the joint distribution analysis of the annual flood characteristics and the failure probability for assessing the bivariate hydrologic risk. Both the Archimedean and Gaussian copula family were introduced and tested as possible candidate functions. The copula dependence parameters are estimated using the method-of-moment estimation procedure. The Gaussian copula was recognized as the best-fitted distribution for capturing the dependence structure of the flood peak-volume and peak-duration pairs based on goodness-of-fit test statistics and was further employed to derive the joint return periods. The bivariate hydrologic risks of flood peak flow and volume pair, and flood peak flow and duration pair in different return periods (i.e., 5, 10, 20, 50 and 100 years) were estimated and revealed that the risk statistics incrementally increase in the service lifetime and, at the same instant, incrementally decrease in return periods. In addition, we found that ignoring the mutual dependency can underestimate the failure probabilities where the univariate events produced a lower failure probability than the bivariate events. Similarly, the variations in bivariate hydrologic risk with the changes of flood peak in the different synthetic flood volume and duration series (i.e., 5, 10, 20, 50 and 100 years return periods) under different service lifetimes are demonstrated. Investigation revealed that the value of bivariate hydrologic risk statistics incrementally increases over the project lifetime (i.e., 30, 50, and 100 years) service time, and at the same time, it incrementally decreases in the return period of flood volume and duration. Overall, this study could provide a basis for making an appropriate flood defence plan and long-lasting infrastructure designs.


Doi: 10.28991/cej-2020-03091599

Full Text: PDF


Flood; Copula Function; Bivariate Hydrologic Risk; Return Period; Failure Probability.


Milly, P. C. D., R. T. Wetherald, K. A. Dunne, and T. L. Delworth. “Increasing Risk of Great Floods in a Changing Climate.” Nature 415, no. 6871 (January 2002): 514–517. doi:10.1038/415514a.

Gaume, Eric, Valerie Bain, Pietro Bernardara, Olivier Newinger, Mihai Barbuc, Allen Bateman, Lotta Blaškovičová, et al. “A Compilation of Data on European Flash Floods.” Journal of Hydrology 367, no. 1–2 (March 2009): 70–78. doi:10.1016/j.jhydrol.2008.12.028.

Reddy, M. Janga, and Poulomi Ganguli. “Bivariate Flood Frequency Analysis of Upper Godavari River Flows Using Archimedean Copulas.” Water Resources Management 26, no. 14 (September 11, 2012): 3995–4018. doi:10.1007/s11269-012-0124-z.

Goel, N. K., S. M. Seth, and Satish Chandra. “Multivariate Modeling of Flood Flows.” Journal of Hydraulic Engineering 124, no. 2 (February 1998): 146–155. doi:10.1061/(asce)0733-9429(1998)124:2(146).

Yue, Sheng. "The bivariate lognormal distribution to model a multivariate flood episode." Hydrological Processes 14, no. 14 (2000): 2575-2588.doi:10.1002/1099-1085(20001015)14:14<2575:AID-HYP115>3.0.CO;2-L.

Zhang, L. “Multivariate hydrological frequency analysis and risk mapping”. Doctoral dissertation, Beijing Normal University (2005).

Yue, Sheng, and Peter Rasmussen. “Bivariate Frequency Analysis: Discussion of Some Useful Concepts in Hydrological Application.” Hydrological Processes 16, no. 14 (2002): 2881–2898. doi:10.1002/hyp.1185.

Zhang, L., and Vijay P. Singh. “Trivariate Flood Frequency Analysis Using the Gumbel–Hougaard Copula.” Journal of Hydrologic Engineering 12, no. 4 (July 2007): 431–439. doi:10.1061/(asce)1084-0699(2007)12:4(431).

Sraj, Mojca, Nejc Bezak, and Mitja Brilly. “Bivariate Flood Frequency Analysis Using the Copula Function: a Case Study of the Litija Station on the Sava River.” Hydrological Processes 29, no. 2 (January 30, 2014): 225–238. doi:10.1002/hyp.10145.

Yue, S, T.B.M.J Ouarda, B Bobée, P Legendre, and P Bruneau. “The Gumbel Mixed Model for Flood Frequency Analysis.” Journal of Hydrology 226, no. 1–2 (December 1999): 88–100. doi:10.1016/s0022-1694(99)00168-7.

Yue, S., and C. Y. Wang. “A Comparison of Two Bivariate Extreme Value Distributions.” Stochastic Environmental Research and Risk Assessment (SERRA) 18, no. 2 (April 1, 2004): 61–66. doi:10.1007/s00477-003-0124-x.

Bačová Mitková, Veronika, and Dana Halmová. “Joint Modeling of Flood Peak Discharges, Volume and Duration: a Case Study of the Danube River in Bratislava.” Journal of Hydrology and Hydromechanics 62, no. 3 (September 1, 2014): 186–196. doi:10.2478/johh-2014-0026.

Gräler, B., M. J. van den Berg, S. Vandenberghe, A. Petroselli, S. Grimaldi, B. De Baets, and N. E. C. Verhoest. “Multivariate Return Periods in Hydrology: a Critical and Practical Review Focusing on Synthetic Design Hydrograph Estimation.” Hydrology and Earth System Sciences 17, no. 4 (April 2, 2013): 1281–1296. doi:10.5194/hess-17-1281-2013.

Salvadori, G. “Bivariate Return Periods via 2-Copulas.” Statistical Methodology 1, no. 1–2 (December 2004): 129–144. doi:10.1016/j.stamet.2004.07.002.

Ganguli, Poulomi, and M. Janga Reddy. “Probabilistic Assessment of Flood Risks Using Trivariate Copulas.” Theoretical and Applied Climatology 111, no. 1–2 (May 25, 2012): 341–360. doi:10.1007/s00704-012-0664-4.

Sklar, M. "Fonctions de repartition an dimensions et leurs marges." Publ. inst. statist. univ. Paris 8 (1959): 229- 231.

De Michele, C. “A Generalized Pareto Intensity-Duration Model of Storm Rainfall Exploiting 2-Copulas.” Journal of Geophysical Research 108, no. D2 (2003). doi:10.1029/2002jd002534.

Nelsen, R. B. “An Introduction to Copulas.” Springer Series in Statistics (2006). doi: 10.1007/0-387-28678-0.

Salvadori, G., and C. De Michele. “Frequency Analysis via Copulas: Theoretical Aspects and Applications to Hydrological Events.” Water Resources Research 40, no. 12 (December 2004). doi:10.1029/2004wr003133.

Brunner, Manuela Irene, Jan Seibert, and Anne-Catherine Favre. “Bivariate Return Periods and Their Importance for Flood Peak and Volume Estimation.” Wiley Interdisciplinary Reviews: Water 3, no. 6 (September 4, 2016): 819–833. doi:10.1002/wat2.1173.

Latif, Shahid, and Firuza Mustafa. “Copula-Based Multivariate Flood Probability Construction: a Review.” Arabian Journal of Geosciences 13, no. 3 (January 30, 2020). doi:10.1007/s12517-020-5077-6.

Requena, Ana I., Isabel Flores, Luis Mediero, and Luis Garrote. “Extension of Observed Flood Series by Combining a Distributed Hydro-Meteorological Model and a Copula-Based Model.” Stochastic Environmental Research and Risk Assessment 30, no. 5 (August 7, 2015): 1363–1378. doi:10.1007/s00477-015-1138-x.

Salvadori, G., C. De Michele, and F. Durante. “On the Return Period and Design in a Multivariate Framework.” Hydrology and Earth System Sciences 15, no. 11 (November 4, 2011): 3293–3305. doi:10.5194/hess-15-3293-2011.

Qiang, HUANG, and CHEN Zishen. “Multivariate Flood Risk Assessment Based on the Secondary Return Period.” Journal of Lake Sciences 27, no. 2 (2015): 352–360. doi:10.18307/2015.0221.

Read, Laura K., and Richard M. Vogel. “Reliability, Return Periods, and Risk Under Nonstationarity.” Water Resources Research 51, no. 8 (August 2015): 6381–6398. doi:10.1002/2015wr017089.

Moftakhari, Hamed R., Gianfausto Salvadori, Amir AghaKouchak, Brett F. Sanders, and Richard A. Matthew. “Compounding Effects of Sea Level Rise and Fluvial Flooding.” Proceedings of the National Academy of Sciences 114, no. 37 (August 28, 2017): 9785–9790. doi:10.1073/pnas.1620325114.

Salvadori, G., F. Durante, C. De Michele, M. Bernardi, and L. Petrella. “A Multivariate Copula-Based Framework for Dealing with Hazard Scenarios and Failure Probabilities.” Water Resources Research 52, no. 5 (May 2016): 3701–3721. doi:10.1002/2015wr017225.

Serinaldi, Francesco. “Dismissing Return Periods!” Stochastic Environmental Research and Risk Assessment 29, no. 4 (July 9, 2014): 1179–1189. doi:10.1007/s00477-014-0916-1.

Xu, Ye, Guohe Huang, and Yurui Fan. “Multivariate Flood Risk Analysis for Wei River.” Stochastic Environmental Research and Risk Assessment 31, no. 1 (December 17, 2015): 225–242. doi:10.1007/s00477-015-1196-0.

Xu, Hongshi, Kui Xu, Jijian Lian, and Chao Ma. “Compound Effects of Rainfall and Storm Tides on Coastal Flooding Risk.” Stochastic Environmental Research and Risk Assessment 33, no. 7 (June 20, 2019): 1249–1261. doi:10.1007/s00477-019-01695-x.

Drainage, D. I. D. "Irrigation Department. Annual flood report of DID for Peninsular Malaysia." Unpublished report. Kuala Lumpur: DID (2004).

MMD (Malaysian Meteorological Department). “Report on Heavy Rainfall that Caused Floods in Kelantan and Terengganu.” Unpublished report. MMD: Kuala Lumpur (2007).

Hussain, S.T.P.R, and Ismail H. “Flood frequency analysis of Kelantan River Basin, Malaysia.” World Applied Science Journal, 28(12) (2013): 1989-1995.

Nashwan, Mohamed Salem, Tarmizi Ismail, and Kamal Ahmed. “Flood Susceptibility Assessment in Kelantan River Basin Using Copula.” International Journal of Engineering & Technology 7, no. 2 (April 18, 2018): 584. doi:10.14419/ijet.v7i2.10447.

Adnan, Nor Aizam, and Peter M. Atkinson. “Exploring the Impact of Climate and Land Use Changes on Streamflow Trends in a Monsoon Catchment.” International Journal of Climatology 31, no. 6 (April 15, 2011): 815–831. doi:10.1002/joc.2112.

Chan, Ngai Weng. “Institutional Arrangements for Flood Hazards in Malaysia: An Evaluation Using the Criteria Approach.” Disasters 21, no. 3 (September 1997): 206–222. doi:10.1111/1467-7717.00057.

Latif, Shahid, and Firuza Mustafa. “Parametric Vine Copula Construction for Flood Analysis for Kelantan River Basin in Malaysia.” Civil Engineering Journal 6, no. 8 (August 1, 2020): 1470–1491. doi:10.28991/cej-2020-03091561.

Latif, Shahid, and Firuza Mustafa. “Bivariate Joint Distribution Analysis of the Flood Characteristics Under Semiparametric Copula Distribution Framework for the Kelantan River Basin in Malaysia.” Journal of Ocean Engineering and Science (July 2020). doi:10.1016/j.joes.2020.06.003.

Latif, Shahid, and Firuza Mustafa. “Trivariate Distribution Modelling of Flood Characteristics Using Copula function—A Case Study for Kelantan River Basin in Malaysia.” AIMS Geosciences 6, no. 1 (2020): 92–130. doi:10.3934/geosci.2020007.

Latif, Shahid, and Firuza Mustafa. “A Nonparametric Copula Distribution Framework for Bivariate Joint Distribution Analysis of Flood Characteristics for the Kelantan River Basin in Malaysia.” AIMS Geosciences 6, no. 2 (2020): 171–198. doi:10.3934/geosci.2020012.

Drainage, D. I. D. "Irrigation Department. Annual flood report of DID for Peninsular Malaysia." Unpublished report. Kuala Lumpur: DID (2000).

Hosking, J. R. M., J. R. Wallis, and E. F. Wood. “Estimation of the Generalized Extreme-Value Distribution by the Method of Probability-Weighted Moments.” Technometrics 27, no. 3 (August 1985): 251–261. doi:10.1080/00401706.1985.10488049.

Madsen, Henrik, Peter F. Rasmussen, and Dan Rosbjerg. “Comparison of Annual Maximum Series and Partial Duration Series Methods for Modeling Extreme Hydrologic Events: 1. At-Site Modeling.” Water Resources Research 33, no. 4 (April 1997): 747–757. doi:10.1029/96wr03848.

Genest C and Favre A.-C. (2007). Everything you always wanted to know about copula modelling but were afraid to ask. J. Hydrol. Engg., 12, 347-368.

Favre, Anne-Catherine, Salaheddine El Adlouni, Luc Perreault, Nathalie Thiémonge, and Bernard Bobée. “Multivariate Hydrological Frequency Analysis Using Copulas.” Water Resources Research 40, no. 1 (January 2004). doi:10.1029/2003wr002456.

Zhang, Runrun, Xi Chen, Qinbo Cheng, Zhicai Zhang, and Peng Shi. “Joint Probability of Precipitation and Reservoir Storage for Drought Estimation in the Headwater Basin of the Huaihe River, China.” Stochastic Environmental Research and Risk Assessment 30, no. 6 (April 11, 2016): 1641–1657. doi:10.1007/s00477-016-1249-z.

Alina B. “Copula Modeling for World’s Biggest competitors”. Master Thesis, Amsterdam School of Economics, Universiteit Van Amsterdam (2018).

Genest, Christian, and Louis-Paul Rivest. “Statistical Inference Procedures for Bivariate Archimedean Copulas.” Journal of the American Statistical Association 88, no. 423 (September 1993): 1034–1043. doi:10.1080/01621459.1993.10476372.

GENEST, C., K. GHOUDI, and L.-P. RIVEST. “A Semiparametric Estimation Procedure of Dependence Parameters in Multivariate Families of Distributions.” Biometrika 82, no. 3 (1995): 543–552. doi:10.1093/biomet/82.3.543.

Schweizer, B., and E. F. Wolff. “On Nonparametric Measures of Dependence for Random Variables.” The Annals of Statistics 9, no. 4 (July 1981): 879–885. doi:10.1214/aos/1176345528.

Genest, Christian, and Bruno Rémillard. “Validity of the Parametric Bootstrap for Goodness-of-Fit Testing in Semiparametric Models.” Annales de l’Institut Henri Poincaré, Probabilités et Statistiques 44, no. 6 (December 2008): 1096–1127. doi:10.1214/07-aihp148.

Genest, Christian, Bruno Rémillard, and David Beaudoin. “Goodness-of-Fit Tests for Copulas: A Review and a Power Study.” Insurance: Mathematics and Economics 44, no. 2 (April 2009): 199–213. doi:10.1016/j.insmatheco.2007.10.005.

R Core Team. “R: A language and environment for statistical computing. R Foundation for Statistical Computing.” Vienna, Austria. URL (2013).

Zhang, L., and V. P. Singh. “Bivariate Flood Frequency Analysis Using the Copula Method.” Journal of Hydrologic Engineering 11, no. 2 (March 2006): 150–164. doi:10.1061/(asce)1084-0699(2006)11:2(150).

Shiau, J. T. “Return Period of Bivariate Distributed Extreme Hydrological Events.” Stochastic Environmental Research and Risk Assessment (SERRA) 17, no. 1–2 (May 1, 2003): 42–57. doi:10.1007/s00477-003-0125-9.

Adamowski, Kaz. “Nonparametric Kernel Estimation of Flood Frequencies.” Water Resources Research 21, no. 11 (November 1985): 1585–1590. doi:10.1029/wr021i011p01585.

Dooge, James C. I. “Looking for Hydrologic Laws.” Water Resources Research 22, no. 9S (August 1986): 46S–58S. doi:10.1029/wr022i09sp0046s.

Gringorten, Irving I. “A Plotting Rule for Extreme Probability Paper.” Journal of Geophysical Research 68, no. 3 (February 1, 1963): 813–814. doi:10.1029/jz068i003p00813.

Anderson, T. W., and D. A. Darling. “A Test of Goodness of Fit.” Journal of the American Statistical Association 49, no. 268 (December 1954): 765–769. doi:10.1080/01621459.1954.10501232.

Akaike, H. “A New Look at the Statistical Model Identification.” IEEE Transactions on Automatic Control 19, no. 6 (December 1974): 716–723. doi:10.1109/tac.1974.1100705.

Schwarz, Gideon. “Estimating the Dimension of a Model.” The Annals of Statistics 6, no. 2 (March 1978): 461–464. doi:10.1214/aos/1176344136.

Hannan, E. J., and B. G. Quinn. “The Determination of the Order of an Autoregression.” Journal of the Royal Statistical Society: Series B (Methodological) 41, no. 2 (January 1979): 190–195. doi:10.1111/j.2517-6161.1979.tb01072.x.

Bender, Jens, Thomas Wahl, and Jürgen Jensen. “Multivariate Design in the Presence of Non-Stationarity.” Journal of Hydrology 514 (June 2014): 123–130. doi:10.1016/j.jhydrol.2014.04.017.

Sarhadi, Ali, María Concepción Ausín, and Michael P. Wiper. “A New Time-Varying Concept of Risk in a Changing Climate.” Scientific Reports 6, no. 1 (October 20, 2016). doi:10.1038/srep35755.

Latif, Shahid, and Firuza Mustafa. “Copula-Based Multivariate Flood Probability Construction: a Review.” Arabian Journal of Geosciences 13, no. 3 (January 30, 2020). doi:10.1007/s12517-020-5077-6.

Lima, Carlos H.R., Upmanu Lall, Tara J. Troy, and Naresh Devineni. “A Climate Informed Model for Nonstationary Flood Risk Prediction: Application to Negro River at Manaus, Amazonia.” Journal of Hydrology 522 (March 2015): 594–602. doi:10.1016/j.jhydrol.2015.01.009.

Full Text: PDF

DOI: 10.28991/cej-2020-03091599


  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.