Efficiency Concepts and Models that Evaluates the Strength of Concretes Containing Different Supplementary Cementitious Materials

Rahul Biswas, Baboo Rai

Abstract


The usage of Supplementary Cementitious Materials (SCM) is very much acknowledged due to the several improvements possible in the concrete composites, and because of the general economy. Research work till date suggests that utilization of SCMs enhance a significant number of the performance characteristics of the hardened concrete. The idea of efficiency can be utilized for comparing the relative performance of different pozzolans when incorporated into concrete. The efficiency concept, which was initially developed for fly ash, can be effortlessly connected to other advantageous s as well, such as silica fume, slag and natural pozzolans. A quantitative understanding of the efficiency of SCMs as a mineral admixture in concrete is essential for its effective utilization. The paper reviews the literature pertaining to the different efficiency concepts and models present to date that evaluates the strength of concretes containing different SCMs. This short survey demonstrates that there is a need for a superior comprehension of the SCMs in concrete for its powerful usage. Also, it is an effort directed towards a specific understanding of the efficiency of SCMs in concrete.


Keywords


Fly Ash; Silica Fume; Cementing Efficiency Factor; Supplementary Cementing Material.

References


K.H. Yang, Y.B. Jung, M.S. Cho, and S.H. Tae, “Effect of supplementary cementitious materials on reduction of CO2emissions from concrete” J. Clean. Prod. 103 (2015) 774–783. doi:10.1016/j.jclepro.2014.03.018.

D.A. Salas, A.D. Ramirez, C.R. Rodríguez, D.M. Petroche, A.J. Boero, and J. Duque-Rivera, “Environmental impacts, life cycle assessment and potential improvement measures for cement production: A literature review” J. Clean. Prod. 113 (2016) 114–122. doi:10.1016/j.jclepro.2015.11.078.

A. Borosnyói, “Long term durability performance and mechanical properties of high performance concretes with combined use of supplementary cementing materials” Constr. Build. Mater. (2016). doi:10.1016/j.conbuildmat.2016.02.224.

H.T. Le, M. Müller, K. Siewert, and H.-M. Ludwig, “The mix design for self-compacting high performance concrete containing various mineral admixtures” Mater. Des. (2015). doi:10.1016/j.matdes.2015.01.006.

C. Shi, Z. Wu, J. Xiao, D. Wang, Z. Huang, and Z. Fang, “A review on ultra high performance concrete: Part I. Raw materials and mixture design” Constr. Build. Mater. (2015). doi:10.1016/j.conbuildmat.2015.10.088.

W.J. Long, Y. Gu, J. Liao, and F. Xing, “Sustainable design and ecological evaluation of low binder self-compacting concrete” J. Clean. Prod. 167 (2018) 317–325. doi:10.1016/j.jclepro.2017.08.192.

H. Zhao, W. Sun, X. Wu, and B. Gao, “The properties of the self-compacting concrete with fly ash and ground granulated blast furnace slag mineral admixtures” J. Clean. Prod. 95 (2015) 66–74. doi:10.1016/j.jclepro.2015.02.050.

C. Shi, Z. Wu, K. Lv, and L. Wu, “A review on mixture design methods for self-compacting concrete” Constr. Build. Mater. 84 (2015) 387–398. doi:10.1016/j.conbuildmat.2015.03.079.

A. Gholampour, and T. Ozbakkaloglu, “Performance of sustainable concretes containing very high volume Class-F fly ash and ground granulated blast furnace slag” J. Clean. Prod. 162 (2017) 1407–1417. doi:10.1016/j.jclepro.2017.06.087.

E. Crossin, “The greenhouse gas implications of using ground granulated blast furnace slag as a cement substitute” J. Clean. Prod. 95 (2015) 101–108. doi:10.1016/j.jclepro.2015.02.082.

K.H. Mo, T.C. Ling, U.J. Alengaram, S.P. Yap, and C.W. Yuen, “Overview of supplementary cementitious materials usage in lightweight aggregate concrete” Constr. Build. Mater. 139 (2017) 403–418. doi:10.1016/j.conbuildmat.2017.02.081.

R. Feret, “On the compactness of hydraulic mortars. Memoirs and documents relating to the art of constructions at the service of the engineer” Ann. Des Ponts Chaussées. 2nd semest (1892) 5–161.

J. Bolomy, “Durcissemenr des morriers er betons” Bull. Tech. Suisse Rom. (1927) 16–24.

Duff A. Abrams, “Design of Concrete Mixtures” Bull. No. 1, Struct. Mater. Lab. Lewis Institute, Chicago. (1918) 20.

M.K. Gopalan, and M.N. Hague, “Design of flyash concrete” Cem. Concr. Res. 15 (1985) 694–702. doi:10.1016/0008-8846(85)90071-7.

K. Ganesh Babu, and G. Siva Nageswara Rao, “Efficiency of fly ash in concrete with age” Cem. Concr. Res. 26 (1996) 465–474. doi:10.1016/S0008-8846(96)85034-4.

H.S. Wong, and H.A. Razak, “Efficiency of calcined kaolin and silica fume as cement replacement material for strength performance” Cem. Concr. Res. 35 (2005) 696–702. doi:10.1016/j.cemconres.2004.05.051.

N.P. Rajamane, J. Annie Peter, and P.S. Ambily, “Prediction of compressive strength of concrete with fly ash as sand replacement material” Cem. Concr. Compos. 29 (2007) 218–223. doi:10.1016/j.cemconcomp.2006.10.001.

I.A. Smith, “The design of fly ash concretes.” Proc. Inst. Civ. Eng. 36 (1967) 769–790. doi:10.1680/iicep.1967.8472.

ACI Committee 211, “Recommended Practice for Selecting Proportions for Normal Weight Concrete” ACI 211.1-92, ACI, Detroit, MI. (1992) 16.

Ram S. Ghosh, “Proportioning of Fly Ash Cement Concrete Mixes” Can. J. Civ. Eng. 3 (1976) 68–82. doi:10.1139/l76-007.

R. Mills, “Evaluation of the Performance of Blast-Furnace Slag and Fly Ash when Blended or Mixed with Portland Cement” ASTM, STP 897, Ed. Frohnsdorf, G., Philadelphia, Pennsylvania. (1984) 89–105.

BRE 106, “Design of Normal Concrete Mixes” Build. Res. Establ. Watford, United Kingdom. (1988) 42.

S.E. Hedegaard, and T.C. Hansen, “Modified Water/Cement Ratio Law for Compressive Strength of Fly Ash Concrete” Rilem, Mater. Struct. 25 (1992) 273–283.

J. Bolomy, “Durcissemenr des morriers er betons” Bull. Tech. Suisse Rom. (n.d.) 16–24.

Astm C618-17a, Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, 2017. doi:10.1520/C0618.

ASTM C 311-04, “Standard Test Methods for Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland-Cement Concrete.” Annu. B. ASTM Stand. (2005). doi:10.1520/C0311-13.2.

A. Hassaballah, and T. Wenzel, “a Strength Definition for the Water To Cementitous Materials Ratio” ACI Spec. Publ. 153 (1995) 417–438. doi:10.14359/1081.

K.G. Babu, and G.S.N. Rao, “Efficiency of fly ash in concrete” Cem. Concr. Compos. 15 (1993) 223–229. doi:10.1016/0958-9465(93)90025-5.

A. Oner, S. Akyuz, and R. Yildiz, “An experimental study on strength development of concrete containing fly ash and optimum usage of fly ash in concrete” Cem. Concr. Res. (2005). doi:10.1016/j.cemconres.2004.09.031.

K.. Loland, Silica Concrete (Norwegian), in: J. Nord. Concr. Fed., 1981.

G. Fagerlund, Definition of Water/Cement Ratio Using Silica Fume Swedish, in: Intern. Cem. Rep., 1981.

P. Jahren, “Use of Silica Fume in Concrete” ACI J. (1983).

E.J. Sellevold, and F.F. Radjy, “Condensed Silica Fume (Microsilica) in Concrete: Water Demand and Strength Development” Spec. Publ. 79 (1983) 677–694.

V.M. Malhotra, and G.G. Carette, “Fume Concrete- Properties, Applications, and Limitations .” Concr. Int. 5 (1983) 40–46.

E. V. Sorensen, “Freezing and Thawing Resistance of Condensed Silica Fume (Microsilica) Concrete Exposed to Deicing Chemicals” ACI Spec. Publ. 79 (1983) 709–718.

M. Maage, “Efficiency Factors for Condensed Silica Fume in Concrete” ACI Spec. Publ. 114 (1989) 783–798.

Š. Slanička, “The influence of condensed silica fume on the concrete strength” Cem. Concr. Res. 21 (1991) 462–470. doi:10.1016/0008-8846(91)90094-X.

K. Ganesh Babu, and P. V. Surya Prakash, “Efficiency of silica fume in concrete” Cem. Concr. Res. 25 (1995) 1273–1283. doi:10.1016/0008-8846(95)00120-2.

P.A. Gutiérrez, and M.F. Cánovas, “High-performance concrete: Requirements for constituent materials and mix proportioning” ACI Mater. J. 93 (1996) 233–241. doi:10.14359/9807.

R. Duval, and E.H. Kadri, “Influence of silica fume on the workability and the compressive strength of high-performance concretes” Cem. Concr. Res. 28 (1998) 533–547. doi:10.1016/S0008-8846(98)00010-6.

S. Bhanja, and B. Sengupta, “Investigations on the compressive strength of silica fume concrete using statistical methods” Cem. Concr. Res. 32 (2002) 1391–1394. doi:10.1016/S0008-8846(02)00787-1.

R. Malathy, “Efficiency Factor for Silica Fume & Metakaoline At Various Replacement Levels” Singapore Concr. Inst. (2007).

R.T. Thorstensen, and P. Fidjestol, “Inconsistencies in the pozzolanic strength activity index (SAI) for silica fume according to EN and ASTM” Mater. Struct. Constr. 48 (2015) 3979–3990. doi:10.1617/s11527-014-0457-6.

P.C. Aıtcin, M. Pigeon, R. Pleau, and R. Gagne, Freezing and thawing durability of high performance concrete, in: Proc. Int. Symp. High-Performance Concr. React. Powder Concr. Sherbrooke, 1991: pp. 383–391.

K. Ganesh Babu, and V. Sree Rama Kumar, “Efficiency of GGBS in concrete” Cem. Concr. Res. (2000). doi:10.1016/S0008-8846(00)00271-4.

B.H. Bharatkumar, R. Narayanan, B.K. Raghuprasad, and D.S. Ramachandramurthy, “Mix proportioning of high performance concrete” Cem. Concr. Compos. 23 (2001) 71–80. doi:10.1016/S0958-9465(00)00071-8.

V.G. Papadakis, S. Antiohos, and S. Tsimas, “Supplementary cementing materials in concrete. Part II: A fundamental estimation of the efficiency factor” Cem. Concr. Res. 32 (2002) 1533–1538. doi:10.1016/S0008-8846(02)00829-3.

M. Uyan, B.Y. Pekmezci, H. Yildirim, and O.B. Onat, Determination of Efficiency Factors of GGBS On Mortar Specimens, in: 6th Int. Congr. Adv. Civ. Eng., 2004: pp. 6–8.

B.Y. Pekmezci, and S. Akyüz, “Optimum usage of a natural pozzolan for the maximum compressive strength of concrete” Cem. Concr. Res. 34 (2004) 2175–2179. doi:10.1016/j.cemconres.2004.02.008.

B. Abdelkader, K. El-Hadj, and E. Karim, “Efficiency of granulated blast furnace slag replacement of cement according to the equivalent binder concept” Cem. Concr. Compos. (2010). doi:10.1016/j.cemconcomp.2009.11.004.

P. Jongpradist, W. Homtragoon, R. Sukkarak, W. Kongkitkul, and P. Jamsawang, “Efficiency of Rice Husk Ash as Cementitious Material in High-Strength Cement-Admixed Clay” Adv. Civ. Eng. 2018 (2018). doi:10.1155/2018/8346319.

S. Papadakis, V.G. and Tsimas, “Supplementary Cementing Materials in Concrete Part I:Efficiency and Design” Cem. Concr. Res. 3 (2002) 1525–1532. doi:doi.org/10.1016/S0008-8846(02)00827-X.

M. Davraz, H. Ceylan, İ.B. Topçu, and T. Uygunoğlu, “Pozzolanic effect of andesite waste powder on mechanical properties of high strength concrete” Constr. Build. Mater. 165 (2018) 494–503. doi:10.1016/j.conbuildmat.2018.01.043.

F. Lollini, E. Redaelli, and L. Bertolini, “A study on the applicability of the efficiency factor of supplementary cementitious materials to durability properties” Constr. Build. Mater. 120 (2016) 284–292. doi:10.1016/j.conbuildmat.2016.05.031.

B. Boukhatem, M. Ghrici, S. Kenai, and A. Tagnit-hamou, “Prediction of Efficiency Factor of Ground- Granulated Blast- Furnace Slag of Concrete Using Artificial Neural Network Prediction of Efficiency Factor of Ground-Granulated Blast” ACI Mater. J. 108 (2011) 55–63.

A.N. Khan, R.B. Magar, and H.S. Chore, “Efficiency Factor of Supplementary Cementitious Materials: A State of Art” Int. J. Optim. Civ. Eng. (2018).


Full Text: PDF

DOI: 10.28991/cej-2019-03091222

Refbacks

  • There are currently no refbacks.




Copyright (c) 2019 Rahul Biswas, Baboo Rai

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message