Constitutive Relations for Modelling Macro Synthetic Fiber Reinforced Concrete

Humam Al-Sebai, Zaid A. Al-Sadoon, Salah Altoubat, Mohamed Maalej

Abstract


The increasing utilization of Fiber-Reinforced Concrete (FRC) within the construction industry signifies a pivotal shift towards enhancing structural integrity and durability. Despite the predominant use of steel fibers, exploring macro synthetic fibers has gained momentum due to their potential to address critical challenges, such as workability reduction and corrosion resistance in FRC, without markedly affecting its structural performance. Among the forefronts of FRC research is developing an accurate constitutive model encompassing the diverse behavior of fibers, particularly synthetic ones. This discrepancy necessitates a distinct constitutive model for synthetic fibers to precisely characterize their tensile post-cracking behavior and regulate their design specifications. In this research, a preliminary constitutive model is derived through an inverse analysis procedure employing a Generalized Reduced Gradient (GRG) optimization method to the load-displacement results of the experimental testing of twenty ASTM C1609 beam samples. The results of the inverse analysis are used to correlate the ASTM C1609 residual flexural tensile strength parameters, fL/600 and fL/150to the stress-strain points defining the uniaxial tensile curve of macro-synthetic fibers, achieving coefficients of determination exceeding 98.5%. The model is statistically confirmed to be a valid constitutive relation for macro-synthetic fibers via successfully representing the post-cracking load-deflection behavior of standardized concrete beams, thereby outperforming traditional constitutive models in simulating the post-cracking behavior of FRC. Moreover, the model demonstrates robust predictive capabilities for the load-deflection curve of externally standardized samples, showcasing its potential for broader application in FRC design and analysis.

 

Doi: 10.28991/CEJ-2024-010-06-06

Full Text: PDF


Keywords


Fiber Reinforced Concrete; Inverse Analysis; Macro-Synthetic Fibers; Constitutive Model; Residual Stresses; Stress-Strain Relations; Flexural Tests; Concrete Damage Plasticity; Finite Element Analysis.

References


ACI PRC-506.1-08. (2008). Guide to Fiber-Reinforced Shotcrete. American Concrete Institute (ACI), Michigan, United States.

Thonstad, T, Calvi, P. (2023). Exploring the Combined Use of Distributed Fiber and Deformed Bar Reinforcement to Resist Shear Forces. University of Washington, Seattle, United States.

Enfedaque, A., Suárez, F., Alberti, M. G., & Gálvez, J. C. (2022). Suitability of Constitutive Models of the Structural Concrete Codes When Applied to Polyolefin Fibre Reinforced Concrete. Materials, 15(6), 2323. doi:10.3390/ma15062323.

Conforti, A., Tiberti, G., Plizzari, G. A., Caratelli, A., & Meda, A. (2017). Precast tunnel segments reinforced by macro-synthetic fibers. Tunnelling and Underground Space Technology, 63, 1–11. doi:10.1016/j.tust.2016.12.005.

Hou, J., Bai, J., Mou, H., & Xiang, Z. (2024). Tensile properties and constitutive model of cost-effective multiscale hybrid fiber reinforced strain hardening cementitious composites. Frontiers in Materials, 11. doi:10.3389/fmats.2024.1378089.

Lakavath, C., Suriya Prakash, S., & Dirar, S. (2021). Experimental and numerical studies on shear behaviour of macro-synthetic fibre reinforced prestressed concrete beams. Construction and Building Materials, 291, 123313. doi:10.1016/j.conbuildmat.2021.123313.

Zhao, J., Yang, X., Fan, J., Gao, S., & Ma, H. (2022). Research on Dynamic Compressive Performance of Polypropylene Fiber-Reinforced High-Strength Concrete under Freeze-Thaw Environment. Advances in Materials Science and Engineering, 2022, 1–12. doi:10.1155/2022/9079019.

Aidarov, S., Nogales, A., Reynvart, I., Tošić, N., & de la Fuente, A. (2022). Effects of Low Temperatures on Flexural Strength of Macro‐Synthetic Fiber Reinforced Concrete: Experimental and Numerical Investigation. Materials, 15(3), 1153. doi:10.3390/ma15031153.

Buratti, N., Mazzotti, C., & Savoia, M. (2010). Experimental study on the flexural behaviour of fibre reinforced concretes strengthened with steel and macro-synthetic fibres. Fracture Mechanics of Concrete and Concrete Structures-Assessment, Proceedings of FraMCoS-7, 23-28 May, 2010, Korean Concrete Institute, Seoul, South Korea.

Huang, J., Zhang, Y., Tian, Y., Xiao, H., Shi, J., Shen, J., & Zhang, N. (2020). Research on the Dynamic Mechanical Properties and Constitutive Models of Steel Fiber Reinforced Concrete and Polypropylene Fiber Reinforced Concrete. Advances in Civil Engineering, 2020, 1–17. doi:10.1155/2020/9174692.

Zhang, Y., Ju, J. W., Zhu, H., Chen, Q., Guo, Q., & Yan, Z. (2019). A novel damage model based on micromechanics for hybrid fiber reinforced cementitious composites under uniaxial compression. International Journal of Damage Mechanics, 28(7), 1095–1132. doi:10.1177/1056789518813270.

Liang, N., Yan, R., Liu, X., Yang, P., & Zhong, Z. (2020). A Study of Impact Response and Its Numerical Study of Hybrid Polypropylene Fiber-Reinforced Concrete with Different Sizes. Advances in Materials Science and Engineering, 2020, 1–15. doi:10.1155/2020/6534080.

Carvalho, M. R., Barros, J. A. O., Zhang, Y., & Dias-da-Costa, D. (2020). A computational model for simulation of steel fibre reinforced concrete with explicit fibres and cracks. Computer Methods in Applied Mechanics and Engineering, 363. doi:10.1016/j.cma.2020.112879.

Bains, A. (2021). Numerical modelling of micro and macro cracking in plain and fibre-reinforced cementitious composites. Ph.D. Thesis, Cardiff University, Cardiff, Wales.

Dey, V., Bauchmoyer, J., Pleesudjai, C., Schaef, S., & Mobasher, B. (2021). Correlation of tensile and flexural response of continuous polypropylene fiber reinforced cement composites. American Concrete Institute, ACI Special Publication, SP-345, 230–242. doi:10.14359/51731584.

Stephen, S. J., Raphael, B., Gettu, R., & Jose, S. (2019). Determination of the tensile constitutive relations of fiber reinforced concrete using inverse analysis. Construction and Building Materials, 195, 405–414. doi:10.1016/j.conbuildmat.2018.11.014.

Zainal, S. M. I. S., Hejazi, F., Aziz, F. N. A. Abd., & Jaafar, M. S. (2020). Constitutive Modeling of New Synthetic Hybrid Fibers Reinforced Concrete from Experimental Testing in Uniaxial Compression and Tension. Crystals, 10(10), 885. doi:10.3390/cryst10100885.

Hashim, D. T., Hejazi, F., & Lei, V. Y. (2020). Simplified Constitutive and Damage Plasticity Models for UHPFRC with Different Types of Fiber. International Journal of Concrete Structures and Materials, 14(1), 45.

Zani, G., Martinelli, P., & di Prisco, M. (2022). Role of the tensile constitutive modeling on the structural response of fiber reinforced concrete flat slabs: A numerical study. Structural Concrete, 24(1), 1313–1327. Portico. doi:10.1002/suco.202200186.

ACI 544.8R-16. (2016). Report on indirect method to obtain stress-strain response of fiber-reinforced concrete (FRC). American Concrete Institute (ACI), Michigan, United States.

RILEM TC 162-TDF. (2003). Test and Design Methods for Steel Fiber Reinforced Concrete Sigma-Epsilon-Design Method. Materials and Structures, 36, 560-567.

MC2010 fib (2010). Mode Code 2010, Comité Euro-International du Beton-Federation International de la Precontrainte, Paris, France.

DBV. (2001). Information sheet on steel fibre concrete. Deutsche Beton Vereins, Berlin, Germany. (In German).

CNR-DT 204/2006. (2006). Instructions for the Design, Execution and Control of Fibre-reinforced Structures. Consiglio Nazionale delle Riserche, Rome, Italy. (In Italian).

EHE-08. (2008). EHE-08 Structural Concrete Instruction. Comisión Permanente del Hormigón (Ministerio de Fomento), Spain. (In Spanish).

ASTM C1609/C1609M-19a. (2012). Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (Using Beam with Third-Point Loading). ASTM International, Pennsylvania, United States. doi:10.1520/C1609_C1609M-19A.

Yang, L., Lin, X., Li, H., & Gravina, R. J. (2019). A new constitutive model for steel fibre reinforced concrete subjected to dynamic loads. Composite Structures, 221, 110849. doi:10.1016/j.compstruct.2019.04.021.

Galeote, E., Nogales, A., de la Fuente, A. (2023). Analysis of Design Constitutive Model for Macro-synthetic Fibre Reinforced Concrete Through Inverse Analysis. Proceedings of the 75th RILEM Annual Week 2021, RW 2021, RILEM Book series, 40, Springer, Cham, Switzerland. doi:10.1007/978-3-031-21735-7_57.

Blazy, J., & Blazy, R. (2021). Polypropylene fiber reinforced concrete and its application in creating architectural forms of public spaces. Case Studies in Construction Materials, 14, e00549. doi:10.1016/j.cscm.2021.e00549.

Santos, L. C., Nogales Arroyo, A., Reginato, L., & Pieralisi, R. (2020). Inverse analysis of constitutive models applied to steel fiber reinforced concrete. Proceedings of the Ibero-Latin-American Congress on Computational Methods in Engineering: XLI CILAMCE: 16-19 November, 2020, Foz Do Iguacu Parana, Brazil.

Lee, S. C., Cho, J. Y., & Vecchio, F. J. (2016). Analysis of steel fiber-reinforced concrete elements subjected to shear. ACI Structural Journal, 113(2), 275–285. doi:10.14359/51688474.

Ruiz, G., de la Rosa, Á., Wolf, S., & Poveda, E. (2018). Model for the compressive stress–strain relationship of steel fiber-reinforced concrete for non-linear structural analysis. Hormigón y Acero. doi:10.1016/j.hya.2018.10.001.

Guo, Y.-Q., Wang, J.-Y., & Gu, J.-B. (2022). Nonlinear Inverse Analysis for Predicting the Tensile Properties of Strain-Softening and Strain-Hardening UHPFRC. Materials, 15(9), 3067. doi:10.3390/ma15093067.

Lim, T. Y., Paramasivam, P., & Lee, S. L. (1987). Bending Behavior of Steel-Fiber Concrete Beams. ACI Structural Journal, 84(6), 524–536. doi:10.14359/2794.

Barros, J. A. O., & Figueiras, J. A. (1999). Flexural Behavior of SFRC: Testing and Modeling. Journal of Materials in Civil Engineering, 11(4), 331–339. doi:10.1061/(asce)0899-1561(1999)11:4(331).

Joshi, S., Paul, S., Balakrishnan, B., & Menon, D. (2015). Moment curvature relation of reinforced concrete T-beam sections: Numerical and experimental studies. Third International Conference on Advances in Civil, Structural and Construction Engineering, 10-11 December, Rome, Italy.

Hodhod, O. A., Sanad, A. M., El-Attar, M. M., & Hassan, H. A. (2019). Three-Dimensional Non-Linear Analysis of Two-Span Reinforced Concrete Beam-Using the Finite Element Code ABAQUS. Al-Azhar University Civil Engineering Research Magazine (CERM), 41(1), 186-196.

Lubliner, J., Oliver, J., Oller, S., & Oñate, E. (1989). A plastic-damage model for concrete. International Journal of Solids and Structures, 25(3), 299–326. doi:10.1016/0020-7683(89)90050-4.

Hsu, L. S., & Hsu, C. T. T. (1994). Stress-strain behavior of steel-fiber high-strength concrete under compression. ACI Structural Journal, 91(4), 448–457. doi:10.14359/4152.

ABAQUS. (2014) Analysis User's Manual, Version 6.14. Dassault Systemes Simulia Inc., Johnston, United States.

Wang, Q., Hou, K. K., Lu, J., Dong, Q. H., Yao, D. P., & Lu, Z. (2020). Study on concrete damaged plasticity model for simulating the hysteretic behavior of RC shear wall. IOP Conference Series: Materials Science and Engineering, 789(1), 012065. doi:10.1088/1757-899x/789/1/012065.

Blanco, A., Pujadas, P., Cavalaro, S., de la Fuente, A., & Aguado, A. (2014). Constitutive model for fibre reinforced concrete based on the Barcelona test. Cement and Concrete Composites, 53, 327–340. doi:10.1016/j.cemconcomp.2014.07.017.

Sadrinejad, I., Madandoust, R., & Ranjbar, M. M. (2018). The mechanical and durability properties of concrete containing hybrid synthetic fibers. Construction and Building Materials, 178, 72–82. doi:10.1016/j.conbuildmat.2018.05.145.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-06-06

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Humam MHD Sebai, Zaid A. Al-Sadoon, Salah Altoubat, Mohamed Maalej

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message