Constitutive Relations for Modelling Macro Synthetic Fiber Reinforced Concrete
Downloads
Doi: 10.28991/CEJ-2024-010-06-06
Full Text: PDF
Downloads
[2] Thonstad, T, Calvi, P. (2023). Exploring the Combined Use of Distributed Fiber and Deformed Bar Reinforcement to Resist Shear Forces. University of Washington, Seattle, United States.
[3] Enfedaque, A., Suárez, F., Alberti, M. G., & Gálvez, J. C. (2022). Suitability of Constitutive Models of the Structural Concrete Codes When Applied to Polyolefin Fibre Reinforced Concrete. Materials, 15(6), 2323. doi:10.3390/ma15062323.
[4] Conforti, A., Tiberti, G., Plizzari, G. A., Caratelli, A., & Meda, A. (2017). Precast tunnel segments reinforced by macro-synthetic fibers. Tunnelling and Underground Space Technology, 63, 1–11. doi:10.1016/j.tust.2016.12.005.
[5] Hou, J., Bai, J., Mou, H., & Xiang, Z. (2024). Tensile properties and constitutive model of cost-effective multiscale hybrid fiber reinforced strain hardening cementitious composites. Frontiers in Materials, 11. doi:10.3389/fmats.2024.1378089.
[6] Lakavath, C., Suriya Prakash, S., & Dirar, S. (2021). Experimental and numerical studies on shear behaviour of macro-synthetic fibre reinforced prestressed concrete beams. Construction and Building Materials, 291, 123313. doi:10.1016/j.conbuildmat.2021.123313.
[7] Zhao, J., Yang, X., Fan, J., Gao, S., & Ma, H. (2022). Research on Dynamic Compressive Performance of Polypropylene Fiber-Reinforced High-Strength Concrete under Freeze-Thaw Environment. Advances in Materials Science and Engineering, 2022, 1–12. doi:10.1155/2022/9079019.
[8] Aidarov, S., Nogales, A., Reynvart, I., ToСić, N., & de la Fuente, A. (2022). Effects of Low Temperatures on Flexural Strength of Macro"Synthetic Fiber Reinforced Concrete: Experimental and Numerical Investigation. Materials, 15(3), 1153. doi:10.3390/ma15031153.
[9] Buratti, N., Mazzotti, C., & Savoia, M. (2010). Experimental study on the flexural behaviour of fibre reinforced concretes strengthened with steel and macro-synthetic fibres. Fracture Mechanics of Concrete and Concrete Structures-Assessment, Proceedings of FraMCoS-7, 23-28 May, 2010, Korean Concrete Institute, Seoul, South Korea.
[10] Huang, J., Zhang, Y., Tian, Y., Xiao, H., Shi, J., Shen, J., & Zhang, N. (2020). Research on the Dynamic Mechanical Properties and Constitutive Models of Steel Fiber Reinforced Concrete and Polypropylene Fiber Reinforced Concrete. Advances in Civil Engineering, 2020, 1–17. doi:10.1155/2020/9174692.
[11] Zhang, Y., Ju, J. W., Zhu, H., Chen, Q., Guo, Q., & Yan, Z. (2019). A novel damage model based on micromechanics for hybrid fiber reinforced cementitious composites under uniaxial compression. International Journal of Damage Mechanics, 28(7), 1095–1132. doi:10.1177/1056789518813270.
[12] Liang, N., Yan, R., Liu, X., Yang, P., & Zhong, Z. (2020). A Study of Impact Response and Its Numerical Study of Hybrid Polypropylene Fiber-Reinforced Concrete with Different Sizes. Advances in Materials Science and Engineering, 2020, 1–15. doi:10.1155/2020/6534080.
[13] Carvalho, M. R., Barros, J. A. O., Zhang, Y., & Dias-da-Costa, D. (2020). A computational model for simulation of steel fibre reinforced concrete with explicit fibres and cracks. Computer Methods in Applied Mechanics and Engineering, 363. doi:10.1016/j.cma.2020.112879.
[14] Bains, A. (2021). Numerical modelling of micro and macro cracking in plain and fibre-reinforced cementitious composites. Ph.D. Thesis, Cardiff University, Cardiff, Wales.
[15] Dey, V., Bauchmoyer, J., Pleesudjai, C., Schaef, S., & Mobasher, B. (2021). Correlation of tensile and flexural response of continuous polypropylene fiber reinforced cement composites. American Concrete Institute, ACI Special Publication, SP-345, 230–242. doi:10.14359/51731584.
[16] Stephen, S. J., Raphael, B., Gettu, R., & Jose, S. (2019). Determination of the tensile constitutive relations of fiber reinforced concrete using inverse analysis. Construction and Building Materials, 195, 405–414. doi:10.1016/j.conbuildmat.2018.11.014.
[17] Zainal, S. M. I. S., Hejazi, F., Aziz, F. N. A. Abd., & Jaafar, M. S. (2020). Constitutive Modeling of New Synthetic Hybrid Fibers Reinforced Concrete from Experimental Testing in Uniaxial Compression and Tension. Crystals, 10(10), 885. doi:10.3390/cryst10100885.
[18] Hashim, D. T., Hejazi, F., & Lei, V. Y. (2020). Simplified Constitutive and Damage Plasticity Models for UHPFRC with Different Types of Fiber. International Journal of Concrete Structures and Materials, 14(1), 45.
[19] Zani, G., Martinelli, P., & di Prisco, M. (2022). Role of the tensile constitutive modeling on the structural response of fiber reinforced concrete flat slabs: A numerical study. Structural Concrete, 24(1), 1313–1327. Portico. doi:10.1002/suco.202200186.
[20] ACI 544.8R-16. (2016). Report on indirect method to obtain stress-strain response of fiber-reinforced concrete (FRC). American Concrete Institute (ACI), Michigan, United States.
[21] RILEM TC 162-TDF. (2003). Test and Design Methods for Steel Fiber Reinforced Concrete Sigma-Epsilon-Design Method. Materials and Structures, 36, 560-567.
[22] MC2010 fib (2010). Mode Code 2010, Comité Euro-International du Beton-Federation International de la Precontrainte, Paris, France.
[23] DBV. (2001). Information sheet on steel fibre concrete. Deutsche Beton Vereins, Berlin, Germany. (In German).
[24] CNR-DT 204/2006. (2006). Instructions for the Design, Execution and Control of Fibre-reinforced Structures. Consiglio Nazionale delle Riserche, Rome, Italy. (In Italian).
[25] EHE-08. (2008). EHE-08 Structural Concrete Instruction. Comisión Permanente del Hormigón (Ministerio de Fomento), Spain. (In Spanish).
[26] ASTM C1609/C1609M-19a. (2012). Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (Using Beam with Third-Point Loading). ASTM International, Pennsylvania, United States. doi:10.1520/C1609_C1609M-19A.
[27] Yang, L., Lin, X., Li, H., & Gravina, R. J. (2019). A new constitutive model for steel fibre reinforced concrete subjected to dynamic loads. Composite Structures, 221, 110849. doi:10.1016/j.compstruct.2019.04.021.
[28] Galeote, E., Nogales, A., de la Fuente, A. (2023). Analysis of Design Constitutive Model for Macro-synthetic Fibre Reinforced Concrete Through Inverse Analysis. Proceedings of the 75th RILEM Annual Week 2021, RW 2021, RILEM Book series, 40, Springer, Cham, Switzerland. doi:10.1007/978-3-031-21735-7_57.
[29] Blazy, J., & Blazy, R. (2021). Polypropylene fiber reinforced concrete and its application in creating architectural forms of public spaces. Case Studies in Construction Materials, 14, e00549. doi:10.1016/j.cscm.2021.e00549.
[30] Santos, L. C., Nogales Arroyo, A., Reginato, L., & Pieralisi, R. (2020). Inverse analysis of constitutive models applied to steel fiber reinforced concrete. Proceedings of the Ibero-Latin-American Congress on Computational Methods in Engineering: XLI CILAMCE: 16-19 November, 2020, Foz Do Iguacu Parana, Brazil.
[31] Lee, S. C., Cho, J. Y., & Vecchio, F. J. (2016). Analysis of steel fiber-reinforced concrete elements subjected to shear. ACI Structural Journal, 113(2), 275–285. doi:10.14359/51688474.
[32] Ruiz, G., de la Rosa, í., Wolf, S., & Poveda, E. (2018). Model for the compressive stress–strain relationship of steel fiber-reinforced concrete for non-linear structural analysis. Hormigón y Acero. doi:10.1016/j.hya.2018.10.001.
[33] Guo, Y.-Q., Wang, J.-Y., & Gu, J.-B. (2022). Nonlinear Inverse Analysis for Predicting the Tensile Properties of Strain-Softening and Strain-Hardening UHPFRC. Materials, 15(9), 3067. doi:10.3390/ma15093067.
[34] Lim, T. Y., Paramasivam, P., & Lee, S. L. (1987). Bending Behavior of Steel-Fiber Concrete Beams. ACI Structural Journal, 84(6), 524–536. doi:10.14359/2794.
[35] Barros, J. A. O., & Figueiras, J. A. (1999). Flexural Behavior of SFRC: Testing and Modeling. Journal of Materials in Civil Engineering, 11(4), 331–339. doi:10.1061/(asce)0899-1561(1999)11:4(331).
[36] Joshi, S., Paul, S., Balakrishnan, B., & Menon, D. (2015). Moment curvature relation of reinforced concrete T-beam sections: Numerical and experimental studies. Third International Conference on Advances in Civil, Structural and Construction Engineering, 10-11 December, Rome, Italy.
[37] Hodhod, O. A., Sanad, A. M., El-Attar, M. M., & Hassan, H. A. (2019). Three-Dimensional Non-Linear Analysis of Two-Span Reinforced Concrete Beam-Using the Finite Element Code ABAQUS. Al-Azhar University Civil Engineering Research Magazine (CERM), 41(1), 186-196.
[38] Lubliner, J., Oliver, J., Oller, S., & Oñate, E. (1989). A plastic-damage model for concrete. International Journal of Solids and Structures, 25(3), 299–326. doi:10.1016/0020-7683(89)90050-4.
[39] Hsu, L. S., & Hsu, C. T. T. (1994). Stress-strain behavior of steel-fiber high-strength concrete under compression. ACI Structural Journal, 91(4), 448–457. doi:10.14359/4152.
[40] ABAQUS. (2014) Analysis User's Manual, Version 6.14. Dassault Systemes Simulia Inc., Johnston, United States.
[41] Wang, Q., Hou, K. K., Lu, J., Dong, Q. H., Yao, D. P., & Lu, Z. (2020). Study on concrete damaged plasticity model for simulating the hysteretic behavior of RC shear wall. IOP Conference Series: Materials Science and Engineering, 789(1), 012065. doi:10.1088/1757-899x/789/1/012065.
[42] Blanco, A., Pujadas, P., Cavalaro, S., de la Fuente, A., & Aguado, A. (2014). Constitutive model for fibre reinforced concrete based on the Barcelona test. Cement and Concrete Composites, 53, 327–340. doi:10.1016/j.cemconcomp.2014.07.017.
[43] Sadrinejad, I., Madandoust, R., & Ranjbar, M. M. (2018). The mechanical and durability properties of concrete containing hybrid synthetic fibers. Construction and Building Materials, 178, 72–82. doi:10.1016/j.conbuildmat.2018.05.145.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.