Assessing Liquefaction Potential in Alluvial Plains Through Spatiotemporal Analysis Using Liquefaction Probability Index
Downloads
Doi: 10.28991/CEJ-2024-010-06-018
Full Text: PDF
Downloads
[2] Robertson, P. K., & Wride, C. (1998). Evaluating cyclic liquefaction potential using the cone penetration test. Canadian Geotechnical Journal, 35(3), 442–459. doi:10.1139/t98-017.
[3] Idriss, I.M. and Boulanger, R.W. (2008) Soil Liquefaction during Earthquake. Earthquake Engineering Research Institute, Oakland, United States.
[4] Juang, C. H., Yuan, H., Lee, D.-H., & Lin, P.-S. (2003). Simplified Cone Penetration Test-based Method for Evaluating Liquefaction Resistance of Soils. Journal of Geotechnical and Geoenvironmental Engineering, 129(1), 66–80. doi:10.1061/(asce)1090-0241(2003)129:1(66).
[5] Chen, Q., Wang, C., & Hsein Juang, C. (2016). CPT-Based Evaluation of Liquefaction Potential Accounting for Soil Spatial Variability at Multiple Scales. Journal of Geotechnical and Geoenvironmental Engineering, 142(2), 04015077. doi:10.1061/(asce)gt.1943-5606.0001402.
[6] Baise, L. G., Lenz, J. A., & Thompson, E. M. (2008). Discussion of "Mapping Liquefaction Potential Considering Spatial Correlations of CPT Measurements” by Chia-Nan Liu and Chien-Hsun Chen. Journal of Geotechnical and Geoenvironmental Engineering, 134(2), 262–263. doi:10.1061/(asce)1090-0241(2008)134:2(262).
[7] Latifi, F. E., Baba, K., Ardouz, G., & Bouanani, L. E. L. (2023). Evaluation of Liquefaction Potential based on Cone Penetration Test (CPT) and Semi-empirical Methods. Civil Engineering Journal (Iran), 9(2), 423–436. doi:10.28991/CEJ-2023-09-02-013.
[8] Youd, T. L., & Idriss, I. M. (2001). Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils. Journal of Geotechnical and Geoenvironmental Engineering, 127(4), 297–313. doi:10.1061/(asce)1090-0241(2001)127:4(297).
[9] Lankelma G.Z. (2023). Static Penetrometer Specialists. Available online: https://www.lankelma.com/ (accessed on May 2024). (In French).
[10] Chen, C. J., & Juang, C. H. (2000). Calibration of SPT- and CPT-Based Liquefaction Evaluation Methods. Innovations and Applications in Geotechnical Site Characterization, 49-64. doi:10.1061/40505(285)4.
[11] Lee, D. H., Ku, C. S., & Yuan, H. (2004). A study of the liquefaction risk potential at Yuanlin, Taiwan. Engineering Geology, 71(1–2), 97–117. doi:10.1016/S0013-7952(03)00128-5.
[12] Wang, J. S., Hwang, J. H., Deng, Y. C., & Lu, C. C. (2023). Model uncertainties of SPT, CPT, and VS-based simplified methods for soil liquefaction assessment. Bulletin of Engineering Geology and the Environment, 82(7), 260. doi:10.1007/s10064-023-03300-6.
[13] Touijrate, S., Baba, K., Ahatri, M., & Bahi, L. (2018). Validation and Verification of Semi-Empirical Methods for Evaluating Liquefaction Using Finite Element Method. MATEC Web of Conferences, 149, 02028. doi:10.1051/matecconf/201814902028.
[14] Lunne, T., Powell, J. J. M., & Robertson, P. K. (2002). Cone Penetration Testing in Geotechnical Practice. CRC Press, Boca Raton, United States. doi:10.1201/978148229504.
[15] Killi, M., El Mansouri, B., Chao, J., & et Ait Fora, A. (2007). Soil water balance and recharge of the deep-water table in the Gharb plain (Morocco). Scientific article, Drought 2008. 19(2), 145-151.
[16] Aberkane, M. (1989). Study of the Quaternary formations of the Rharb Basin margins (northwestern Morocco). Thesis, University of Bordeaux, Bordeaux, France.
[17] Haida, M., Ait Fora, A., Probst, J. L., & Snoussi, M. (1999). Hydrology and hydro-climatical fluctuations in the watershed of Sebou between 1940 and 1994. Sécheresse, 3(10), 221-226. (In French).
[18] Akil, M. (1990). Quaternary coastal deposits between Casablanca and Cape Beddouza (Moroccan coastal Meseta): geomorphological and sedimentological studies. DES, Troisième cycle de Géologie. Faculté des Sciences de Rabat, Université Mohammed, 137. (In French).
[19] Iwasaki, T., Tokida, K. I., Tatsuoka, F., Watanabe, S., Yasuda, S., & Sato, H. (1982). Microzonation for soil liquefaction potential using simplified methods. Proceedings of the 3rd international conference on microzonation, 28 June -1 July, 1982, Seattle, United States.
[20] Puri, N., & Jain, A. (2014). Preliminary Investigation for Screening of Liquefiable areas in Haryana State, India. ISET Journal of Earthquake Technology, 51(1-4), 19-34.
[21] H. Feinberg, H. (1986). The third series of the outside zones of the Rif (Maroc). Notes et Mémoires du Service Géologique du Maroc, 315. (In French).
[22] Wernli, R. (1987). Neogene post-nappe micropalaeontology of northern Morocco and systematic description of planktonic foraminifera. Service Géologique du Maroc (SGM), Rabat - Morocco. (In French).
[23] Erico, F. (1991). Geological and geophysical synthesis study of the Gharb basin. Report by the Office National of Petroleum Research. Rabat. Morocco.
[24] Cherkaoui, T.E., & Asebriy, L. (2003). Seismic risk in northern Morocco Work. Institut Scientifique, Ser. Geol. & Geogr. Phys., No. 21, 225-232.
[25] Duque, J., Tafili, M., & MaŠ¡ín, D. (2023). On the influence of cyclic preloadings on the liquefaction resistance of sands: A numerical study. Soil Dynamics and Earthquake Engineering, 172, 108025. doi:10.1016/j.soildyn.2023.108025.
[26] Idriss, I. M., & Boulanger, R. W. (2006). Semi-empirical procedures for evaluating liquefaction potential during earthquakes. Soil Dynamics and Earthquake Engineering, 26(2-4 SPEC. ISS.), 115–130. doi:10.1016/j.soildyn.2004.11.023.
[27] S Liao, S.S.C. and Whitman, R.V. (1986) Catalouge of Liquefaction and Non-Liquefaction Occurrences during Earthquakes. Report, Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, United States.
[28] Nagase, H., Shimizu, K., Hiro-Oka, A., Mochinaga, S., & Ohta, M. (2000). Effects of over consolidation on liquefaction strength of sandy soil samples. Proceedings of 12th world conference on earthquake engineering, 30 January - Friday 4, Auckland, New Zealand.
[29] Mahmoudi, Y., Cherif Taiba, A., Hazout, L., Belkhatir, M., & Baille, W. (2020). Packing Density and Overconsolidation Ratio Effects on the Mechanical Response of Granular Soils. Geotechnical and Geological Engineering, 38(1), 723–742. doi:10.1007/s10706-019-01061-2.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.