Assessing Liquefaction Potential in Alluvial Plains Through Spatiotemporal Analysis Using Liquefaction Probability Index

Badr Berkat, Ahmed Akhssas, Omar Elfilali

Abstract


Liquefaction is one of the most important processes in soil dynamics. It is a loss of strength coupled with a rapid increase in pore pressure, causing soil particles to burst for a short period. Several approaches have been developed to calculate the residual or liquefied shear strength of cohesionless soils. Using the liquefaction probability index (LPI) created by Juang et al. (2003), the primary goal of this publication is to map spatiotemporal variations in the liquefaction potential of deposits in the Oued Drader and Marja Zerga alluvial plains of the mio-plio-quaternary Gharb basin. The cone penetration test (CPT) and semi-empirical techniques developed to measure the risk of liquefaction and create a mapping of liquefiable zones on a national scale for the first time are the primary sources of information used in the computation of the liquefaction potential index (LPI), which will be highly applicable and relevant for upcoming research projects. According to the IPL calculation, liquefaction is expected to be confirmed for the sandy and silty-sandy formations in Oued Drader and Marja Zerga. The spatial-temporal variations will depend on the formation's granulometry, saturation level, and liquidity limit. The lateral and spatial variety of the Marja Zerga and Oued Drader plain deposits is reflected in this architecture of liquefaction variation.

 

Doi: 10.28991/CEJ-2024-010-06-018

Full Text: PDF


Keywords


Liquefaction Probability Index; Dense Ground; CPT.

References


Seed, H. B., & Idriss, I. M. (1971). Simplified Procedure for Evaluating Soil Liquefaction Potential. Journal of the Soil Mechanics and Foundations Division, 97(9), 1249–1273. doi:10.1061/jsfeaq.0001662.

Robertson, P. K., & Wride, C. (1998). Evaluating cyclic liquefaction potential using the cone penetration test. Canadian Geotechnical Journal, 35(3), 442–459. doi:10.1139/t98-017.

Idriss, I.M. and Boulanger, R.W. (2008) Soil Liquefaction during Earthquake. Earthquake Engineering Research Institute, Oakland, United States.

Juang, C. H., Yuan, H., Lee, D.-H., & Lin, P.-S. (2003). Simplified Cone Penetration Test-based Method for Evaluating Liquefaction Resistance of Soils. Journal of Geotechnical and Geoenvironmental Engineering, 129(1), 66–80. doi:10.1061/(asce)1090-0241(2003)129:1(66).

Chen, Q., Wang, C., & Hsein Juang, C. (2016). CPT-Based Evaluation of Liquefaction Potential Accounting for Soil Spatial Variability at Multiple Scales. Journal of Geotechnical and Geoenvironmental Engineering, 142(2), 04015077. doi:10.1061/(asce)gt.1943-5606.0001402.

Baise, L. G., Lenz, J. A., & Thompson, E. M. (2008). Discussion of “Mapping Liquefaction Potential Considering Spatial Correlations of CPT Measurements” by Chia-Nan Liu and Chien-Hsun Chen. Journal of Geotechnical and Geoenvironmental Engineering, 134(2), 262–263. doi:10.1061/(asce)1090-0241(2008)134:2(262).

Latifi, F. E., Baba, K., Ardouz, G., & Bouanani, L. E. L. (2023). Evaluation of Liquefaction Potential based on Cone Penetration Test (CPT) and Semi-empirical Methods. Civil Engineering Journal (Iran), 9(2), 423–436. doi:10.28991/CEJ-2023-09-02-013.

Youd, T. L., & Idriss, I. M. (2001). Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils. Journal of Geotechnical and Geoenvironmental Engineering, 127(4), 297–313. doi:10.1061/(asce)1090-0241(2001)127:4(297).

Lankelma G.Z. (2023). Static Penetrometer Specialists. Available online: https://www.lankelma.com/ (accessed on May 2024). (In French).

Chen, C. J., & Juang, C. H. (2000). Calibration of SPT- and CPT-Based Liquefaction Evaluation Methods. Innovations and Applications in Geotechnical Site Characterization, 49-64. doi:10.1061/40505(285)4.

Lee, D. H., Ku, C. S., & Yuan, H. (2004). A study of the liquefaction risk potential at Yuanlin, Taiwan. Engineering Geology, 71(1–2), 97–117. doi:10.1016/S0013-7952(03)00128-5.

Wang, J. S., Hwang, J. H., Deng, Y. C., & Lu, C. C. (2023). Model uncertainties of SPT, CPT, and VS-based simplified methods for soil liquefaction assessment. Bulletin of Engineering Geology and the Environment, 82(7), 260. doi:10.1007/s10064-023-03300-6.

Touijrate, S., Baba, K., Ahatri, M., & Bahi, L. (2018). Validation and Verification of Semi-Empirical Methods for Evaluating Liquefaction Using Finite Element Method. MATEC Web of Conferences, 149, 02028. doi:10.1051/matecconf/201814902028.

Lunne, T., Powell, J. J. M., & Robertson, P. K. (2002). Cone Penetration Testing in Geotechnical Practice. CRC Press, Boca Raton, United States. doi:10.1201/978148229504.

Killi, M., El Mansouri, B., Chao, J., & et Ait Fora, A. (2007). Soil water balance and recharge of the deep-water table in the Gharb plain (Morocco). Scientific article, Drought 2008. 19(2), 145-151.

Aberkane, M. (1989). Study of the Quaternary formations of the Rharb Basin margins (northwestern Morocco). Thesis, University of Bordeaux, Bordeaux, France.

Haida, M., Ait Fora, A., Probst, J. L., & Snoussi, M. (1999). Hydrology and hydro-climatical fluctuations in the watershed of Sebou between 1940 and 1994. Sécheresse, 3(10), 221-226. (In French).

Akil, M. (1990). Quaternary coastal deposits between Casablanca and Cape Beddouza (Moroccan coastal Meseta): geomorphological and sedimentological studies. DES, Troisième cycle de Géologie. Faculté des Sciences de Rabat, Université Mohammed, 137. (In French).

Iwasaki, T., Tokida, K. I., Tatsuoka, F., Watanabe, S., Yasuda, S., & Sato, H. (1982). Microzonation for soil liquefaction potential using simplified methods. Proceedings of the 3rd international conference on microzonation, 28 June -1 July, 1982, Seattle, United States.

Puri, N., & Jain, A. (2014). Preliminary Investigation for Screening of Liquefiable areas in Haryana State, India. ISET Journal of Earthquake Technology, 51(1-4), 19-34.

H. Feinberg, H. (1986). The third series of the outside zones of the Rif (Maroc). Notes et Mémoires du Service Géologique du Maroc, 315. (In French).

Wernli, R. (1987). Neogene post-nappe micropalaeontology of northern Morocco and systematic description of planktonic foraminifera. Service Géologique du Maroc (SGM), Rabat - Morocco. (In French).

Erico, F. (1991). Geological and geophysical synthesis study of the Gharb basin. Report by the Office National of Petroleum Research. Rabat. Morocco.

Cherkaoui, T.E., & Asebriy, L. (2003). Seismic risk in northern Morocco Work. Institut Scientifique, Ser. Geol. & Geogr. Phys., No. 21, 225-232.

Duque, J., Tafili, M., & Mašín, D. (2023). On the influence of cyclic preloadings on the liquefaction resistance of sands: A numerical study. Soil Dynamics and Earthquake Engineering, 172, 108025. doi:10.1016/j.soildyn.2023.108025.

Idriss, I. M., & Boulanger, R. W. (2006). Semi-empirical procedures for evaluating liquefaction potential during earthquakes. Soil Dynamics and Earthquake Engineering, 26(2-4 SPEC. ISS.), 115–130. doi:10.1016/j.soildyn.2004.11.023.

S Liao, S.S.C. and Whitman, R.V. (1986) Catalouge of Liquefaction and Non-Liquefaction Occurrences during Earthquakes. Report, Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, United States.

Nagase, H., Shimizu, K., Hiro-Oka, A., Mochinaga, S., & Ohta, M. (2000). Effects of over consolidation on liquefaction strength of sandy soil samples. Proceedings of 12th world conference on earthquake engineering, 30 January - Friday 4, Auckland, New Zealand.

Mahmoudi, Y., Cherif Taiba, A., Hazout, L., Belkhatir, M., & Baille, W. (2020). Packing Density and Overconsolidation Ratio Effects on the Mechanical Response of Granular Soils. Geotechnical and Geological Engineering, 38(1), 723–742. doi:10.1007/s10706-019-01061-2.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-06-018

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Badr BERKAT

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message