Multi-Objective Optimization of Stress Concentration Factors for Fatigue Design of Internal Ring-Reinforced KT-Joints Undergoing Brace Axial Compression

Adnan Rasul, Saravanan Karuppanan, Veeradasan Perumal, Mark Ovinis, Mohsin Iqbal

Abstract


Stress concentration factors are important to determine fatigue life based on the S-N curve methodology, where the lower the stress concentration factor, the higher the fatigue life. In this work, we developed internal ring-reinforced KT-joints, one of the most commonly used joints in the offshore industry, for the most practical ranges with the least stress concentration factors, followed by the formulation of a novel set of parametric equations for determining the stress concentration factors of internal ring-reinforced KT-joints. Using numerical investigation based on a finite element model and a response surface approach with 8 parameters (λ, δ, ψ, ζ, θ, τ, γ, and β) as input and eleven outputs (SCF 0° to SCF 90° and peak SCF), the stress at ten locations around the brace was evaluated, since efficient response surface methodology has been proven to give comprehensive and accurate predictions. The KT-joint with the following parameters: λ=0.951515, δ=0.2, ψ=0.8, ζ=0.31, θ=45.15°, τ=0.60, γ=16.25, and β=0.40 had the least stress concentration factor. The KT-joint with the optimized parameters was validated through finite element analysis. The resulting percentage difference was less than 6%, indicating the applicability of the response surface methodology with high accuracy.

 

Doi: 10.28991/CEJ-2024-010-06-03

Full Text: PDF


Keywords


KT-joint; Response Surface Methodology; Stress Concentration Factor; Ring-Stiffeners; Fatigue; Multi-Objective Optimization; Finite Element Analysis.

References


Ahmadi, H., & Imani, H. (2022). SCFs in offshore two-planar tubular TT-joints reinforced with internal ring stiffeners. Ocean Systems Engineering, 12(1), 1–22. doi:10.12989/ose.2022.12.1.001.

Wardenier, J., Kurobane, Y., Packer, J. A., Van der Vegte, G. J., & Zhao, X. L. (2008). Design guide for circular hollow section (CHS) joints under predominantly static loading. CIDECT, Geneva, Switzerland.

Iqbal, M., Karuppanan, S., Perumal, V., Ovinis, M., & Rasul, A. (2023). Rehabilitation Techniques for Offshore Tubular Joints. Journal of Marine Science and Engineering, 11(2), 461. doi:10.3390/jmse11020461.

Ahmadi, H., Ali Lotfollahi-Yaghin, M., Yong-Bo, S., & Aminfar, M. H. (2012). Parametric study and formulation of outer-brace geometric stress concentration factors in internally ring-stiffened tubular KT-joints of offshore structures. Applied Ocean Research, 38, 74–91. doi:10.1016/j.apor.2012.07.004.

Zavvar, E., Hectors, K., & De Waele, W. (2021). Stress concentration factors of multi-planar tubular KT-joints subjected to in-plane bending moments. Marine Structures, 78. doi:10.1016/j.marstruc.2021.103000.

Iqbal, M., Karuppanan, S., Perumal, V., Ovinis, M., & Nouman, H. (2023). Empirical modeling of stress concentration factors using finite element analysis and artificial neural networks for the fatigue design of tubular KT-joints under combined loading. Fatigue & Fracture of Engineering Materials & Structures, 46(11), 4333–4349. doi:10.1111/ffe.14122.

Ahmadi, H., Lotfollahi-Yaghin, M. A., & Aminfar, M. H. (2012). The development of fatigue design formulas for the outer brace SCFs in offshore three-planar tubular KT-joints. Thin-Walled Structures, 58, 67–78. doi:10.1016/j.tws.2012.04.011.

Dehghani, A., & Aslani, F. (2019). A review on defects in steel offshore structures and developed strengthening techniques. Structures, 20, 635–657. doi:10.1016/j.istruc.2019.06.002.

Lee, M. M. K., & Llewelyn-Parry, A. (1999). Strength of ring-stiffened tubular T-joints in offshore structures: A numerical parametric study. Journal of Constructional Steel Research, 51(3), 239–264. doi:10.1016/S0143-974X(99)00027-9.

Ahmadi, H., Lotfollahi-yaghin, M. A., & Yong-bo, S. (2013). Experimental and Numerical Investigation of Geometric SCFs in Internally Ring-Stiffened Tubular KT-Joints of Offshore Structures. Journal of the Persian Gulf, 43(1), 7-8.

Pan, Z., Wu, G., Si, F., Shang, J., Zhou, H., Li, Q., & Zhou, T. (2022). Parametric study on SCF distribution along the weld toe of internally ring-stiffened two-planar tubular KK joints under axial loading. Ocean Engineering, 248, 110826. doi:10.1016/j.oceaneng.2022.110826.

Krishna, G. C. S., & Nallayarasu, S. (2022). Experimental and numerical investigation on stress concentration at brace-ring intersection (BRI) of internally ring stiffened tubular T-joints. Applied Ocean Research, 126, 103288. doi:10.1016/j.apor.2022.103288.

Kuang, J. G., Potvin, A. B., & Leick, R. D. (1975). Stress Concentration in Tubular Joints. Proceedings of the Offshore Technology Conference, Paper OTC 2205, Houston, United States.

HSE OTH 354. (1997). Stress Concentration Factors for Simple Tubular Joints: Assessment of Existing and Development of New Parametric Formulate. UK Health and Safety Executive (HSE), Bootle, United Kingdom.

Offshore, W. (1991). In-service database for ring-stiffened tubular joints. Report WOL, 35, 91.

Nwosu, D. I., Swamidas, A. S. J., & Munaswamy, K. (1995). Numerical stress analysis of internal ring-stiffened tubular T-joints. Journal of Offshore Mechanics and Arctic Engineering, 117(2), 113–125. doi:10.1115/1.2827061.

Azari Dodaran, N., Ahmadi, H., & Lotfollahi-Yaghin, M. A. (2018). Static strength of axially loaded tubular KT-joints at elevated temperatures: Study of geometrical effects and parametric formulation. Marine Structures, 61, 282–308. doi:10.1016/j.marstruc.2018.06.009.

Lotfollahi-Yaghin, M. A., & Ahmadi, H. (2010). Effect of geometrical parameters on SCF distribution along the weld toe of tubular KT-joints under balanced axial loads. International Journal of Fatigue, 32(4), 703–719. doi:10.1016/j.ijfatigue.2009.10.008.

Ahmadi, H. (2016). A probability distribution model for SCFs in internally ring-stiffened tubular KT-joints of offshore structures subjected to out-of-plane bending loads. Ocean Engineering, 116, 184–199. doi:10.1016/j.oceaneng.2016.02.037.

Ahmadi, H., Mohammadi, A. H., & Yeganeh, A. (2015). Probability density functions of SCFs in internally ring-stiffened tubular KT-joints of offshore structures subjected to axial loading. Thin-Walled Structures, 94, 485–499. doi:10.1016/j.tws.2015.05.012.

Ahmadi, H., Yeganeh, A., Mohammadi, A. H., & Zavvar, E. (2016). Probabilistic analysis of stress concentration factors in tubular KT-joints reinforced with internal ring stiffeners under in-plane bending loads. Thin-Walled Structures, 99, 58–75. doi:10.1016/j.tws.2015.11.010.

Ahmadi, H., & Zavvar, E. (2015). Stress concentration factors induced by out-of-plane bending loads in ring-stiffened tubular KT-joints of jacket structures. Thin-Walled Structures, 91, 82–95. doi:10.1016/j.tws.2015.02.011.

Ahmadi, H., & Lotfollahi-Yaghin, M. A. (2015). Stress concentration due to in-plane bending (IPB) loads in ring-stiffened tubular KT-joints of offshore structures: Parametric study and design formulation. Applied Ocean Research, 51, 54–66. doi:10.1016/j.apor.2015.02.009.

Ahmadi, H., Lotfollahi-Yaghin, M. A., & Yong-Bo, S. (2013). Chord-side SCF distribution of central brace in internally ring-stiffened tubular KT-joints: A geometrically parametric study. Thin-Walled Structures, 70, 93–105. doi:10.1016/j.tws.2013.04.011.

Sadat Hosseini, A., Zavvar, E., & Ahmadi, H. (2021). Stress concentration factors in FRP-strengthened steel tubular KT-joints. Applied Ocean Research, 108, 102525. doi:10.1016/j.apor.2021.102525.

Iqbal, M., Karuppanan, S., Perumal, V., Ovinis, M., & Rasul, A. (2023). Numerical Investigation of Crack Mitigation in Tubular KT-Joints Using Composite Reinforcement. The 4th International Electronic Conference on Applied Sciences. doi:10.3390/asec2023-16290.

Aidibi, A., Babamohammadi, S., Fatnuzzi, N., Correia, J. A. F. O., & Manuel, L. (2021). Stress Concentration Factor Evaluation of Offshore Tubular KT Joints Based on Analytical and Numerical Solutions: Comparative Study. Practice Periodical on Structural Design and Construction, 26(4), 1–10. doi:10.1061/(asce)sc.1943-5576.0000622.

Iqbal, M., Karuppanan, S., Perumal, V., Ovinis, M., & Hina, A. (2023). An Artificial Neural Network Model for the Stress Concentration Factors in KT-Joints Subjected to Axial Compressive Load. Materials Science Forum, 1103, 163–175. doi:10.4028/p-ypo50i.

American Petroleum Institute (API). (2007). Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms — Working Stress Design. American Petroleum Institute (API), Washington, United States.

DNV-RP-C203 (2016). Fatigue Design of Offshore Steel Structures. Det Norske Veritas, Oslo, Norway.

Sadat Hosseini, A., Bahaari, M. R., & Lesani, M. (2019). Parametric Study of FRP Strengthening on Stress Concentration Factors in an Offshore Tubular T-Joint Subjected to In-Plane and Out-of-Plane Bending Moments. International Journal of Steel Structures, 19(6), 1755–1766. doi:10.1007/s13296-019-00244-0.

Khan, M. B., Iqbal Khan, M., Shafiq, N., Abbas, Y. M., Imran, M., Fares, G., & Khatib, J. M. (2023). Enhancing the mechanical and environmental performance of engineered cementitious composite with metakaolin, silica fume, and graphene nanoplatelets. Construction and Building Materials, 404, 133187. doi:10.1016/j.conbuildmat.2023.133187.

N’Diaye, A., Hariri, S., Pluvinage, G., & Azari, Z. (2007). Stress concentration factor analysis for notched welded tubular T-joints. International Journal of Fatigue, 29(8), 1554–1570. doi:10.1016/j.ijfatigue.2006.10.030.

AWS D1.1/D1.1M. (2020). Structural Welding Code-Steel. American Welding Society (AWS) D1 Committee on Structural Welding, American National Standards Institute, Washington, United States.

IIW-XV-E. (1999). Recommended fatigue design procedure for welded hollow section joints. International Institute of Welding, Genoa, Italy.

Hosseini, A. S., Bahaari, M. R., & Lesani, M. (2020). SCF distribution in FRP-strengthened tubular T-joints under brace axial loading. Scientia Iranica, 27(3), 1113–1129. doi:10.24200/SCI.2018.5471.1293.

Sadat Hosseini, A., Bahaari, M. R., & Lesani, M. (2019). Stress concentration factors in FRP-strengthened offshore steel tubular T-joints under various brace loadings. Structures, 20, 779–793. doi:10.1016/j.istruc.2019.07.004.

Ahmadi, H., Lotfollahi-Yaghin, M. A., & Aminfar, M. H. (2011). Geometrical effect on SCF distribution in uni-planar tubular DKT-joints under axial loads. Journal of Constructional Steel Research, 67(8), 1282–1291. doi:10.1016/j.jcsr.2011.03.011.

Lan, X., Wang, F., Ning, C., Xu, X., Pan, X., & Luo, Z. (2016). Strength of internally ring-stiffened tubular DT-joints subjected to brace axial loading. Journal of Constructional Steel Research, 125, 88–94. doi:10.1016/j.jcsr.2016.06.012.

Masilamani, R., & Nallayarasu, S. (2021). Experimental and numerical investigation of ultimate strength of ring-stiffened tubular T-joints under axial compression. Applied Ocean Research, 109, 102576. doi:10.1016/j.apor.2021.102576.

Efthymiou, M. (1988). Development of SCF formulae and generalized influence functions for use in fatigue analysis. OTJ 88. Recent Developments in Tubular Joints Technology, Surrey, United Kingdom.

Chang, E., & Dover, W. D. (1999). Parametric equations to predict stress distributions along the intersection of tubular X and DT-joints. International Journal of Fatigue, 21(6), 619–635. doi:10.1016/S0142-1123(99)00018-3.

Bao, S., Wang, W., Chai, Y. H., & Li, X. (2020). Hot spot stress parametric equations for three-planar tubular Y-joints subject to in-plane bending moment. Thin-Walled Structures, 149, 106648. doi:10.1016/j.tws.2020.106648.

Nassiraei, H., Mojtahedi, A., & Lotfollahi-Yaghin, M. A. (2018). Static strength of X-joints reinforced with collar plates subjected to brace tensile loading. Ocean Engineering, 161, 227–241. doi:10.1016/j.oceaneng.2018.05.017.

Nassiraei, H. (2020). Local joint flexibility of CHS T/Y-connections strengthened with collar plate under in-plane bending load: Parametric study of geometrical effects and design formulation. Ocean Engineering, 202, 107054. doi:10.1016/j.oceaneng.2020.107054.

Karim, M. A., Abdullah, M. Z., Waqar, A., Deifalla, A. F., Ragab, A. E., & Khan, M. (2023). Analysis of the mechanical properties of the single layered braid reinforced thermoplastic pipe (BRTP) for oil & gas industries. Results in Engineering, 20, 101483. doi:10.1016/j.rineng.2023.101483.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-06-03

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Adnan Rasul, Saravanan Karuppanan, Veeradasan Perumal, Mark Ovinis, Mohsin Iqbal

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message