Serviceability Analysis of Pedestrian Overhead Bridges and Underpasses

Fazal E. Ghafoor, Malik Sarmad Riaz, Ahmed F. Deifalla, Marc Azab, Omer Javaid, Muhammad Nouman Sattar, Muhammad Maqbool Sadiq

Abstract


A grade-separated crossing allows a bicycle/pedestrian to continue over or under a barrier without conflict with a vehicle. However, the serviceability of these facilities is compromised in underdeveloped countries, including Pakistan. This research examines the effectiveness of pedestrian bridges and underpasses in terms of their usage by pedestrians. A total of 80,017 pedestrian crossings were observed at four sites (3 overhead bridges and one underpass) for four weeks (one week per site) using manual and video photography. The data about age, gender, and serviceability of each pedestrian was collected and analyzed using the chi-square test, t-test, and descriptive analysis. The study site selection was based on different characteristics, i.e., the number of lanes, type of median barriers, and type of facility (bridge/underpass). The analysis shows that most of the pedestrians (71.83%) did not use the crossing facilities, resulting in the poor serviceability of these structures. A comparison between bridges and underpasses also reveals that underpass usage (62.5%) is statistically more significant than bridge usage (11.62%). There is an effect of age (p<0.001) and gender (p<0.001) on the serviceability of these facilities as well, with pedestrians aged more than 25 years old and females using the facilities more than their counterparts. The study also provides implications for the effect of barriers and the height of facilities on the serviceability of these facilities. The number of lanes and the presence of a median barrier, as well as the height of the facility (number of steps), are the primary factors influencing the serviceability of grade-separated pedestrian crossings.

 

Doi: 10.28991/CEJ-2023-09-04-09

Full Text: PDF


Keywords


Pedestrian Bridges; Underpasses; Vehicle Speed; Serviceability; Pedestrian Crossing.

References


Zegeer, C. V. (2002). Pedestrian facilities users guide: Providing safety and mobility. Diane Publishing, Collingdale, United States.

Moradi, S. E., & Taleghani, N. (2003). An epidemiologic survey of pedestrians passed away in traffic accident. Scientific Journal of Forensic Medicine, 9(30), 75-81.

Ammar, D., Xu, Y., Jia, B., & Bao, S. (2022). Examination of Recent Pedestrian Safety Patterns at Intersections through Crash Data Analysis. Transportation Research Record, 2676(12), 331–341. doi:10.1177/03611981221095513.

van Haperen, W., Riaz, M. S., Daniels, S., Saunier, N., Brijs, T., & Wets, G. (2019). Observing the observation of (vulnerable) road user behaviour and traffic safety: A scoping review. Accident Analysis and Prevention, 123, 211–221. doi:10.1016/j.aap.2018.11.021.

Demiroz, Y. I., Onelcin, P., & Alver, Y. (2015). Illegal road crossing behavior of pedestrians at overpass locations: Factors affecting gap acceptance, crossing times and overpass use. Accident Analysis and Prevention, 80, 220–228. doi:10.1016/j.aap.2015.04.018.

Riaz, M. S., Cuenen, A., Polders, E., Akram, M. B., Houda, M., Janssens, D., & Azab, M. (2022). Child Pedestrian Safety: Study of Street-Crossing Behaviour of Primary School Children with Adult Supervision. Sustainability (Switzerland), 14(3), 1503. doi:10.3390/su14031503.

Guo, Y., Wang, X., Meng, X., Wang, J., & Liu, Y. (2019). Pedestrians’ Speed Analysis for Two-Stage Crossing at a Signalized Intersection. Civil Engineering Journal, 5(3), 505. doi:10.28991/cej-2019-03091263.

Riaz, M. S., Cuenen, A., Janssens, D., Brijs, K., & Wets, G. (2019). Evaluation of a gamified e-learning platform to improve traffic safety among elementary school pupils in Belgium. Personal and Ubiquitous Computing, 23(5–6), 931–941. doi:10.1007/s00779-019-01221-4.

Hasanat-E-rabbi, S., Hamim, O. F., Debnath, M., Hoque, M. S., McIlroy, R. C., Plant, K. L., & Stanton, N. A. (2021). Exploring the relationships between demographics, road safety attitudes, and self-reported pedestrian behaviours in Bangladesh. Sustainability (Switzerland), 13(19), 10640. doi:10.3390/su131910640.

Southworth, M. (2005). Designing the walkable city. Journal of urban planning and development, 131(4), 246-257. doi:10.1061/(ASCE)0733-9488(2005)131:4(246).

Fonseca, F., Fernandes, E., & Ramos, R. (2022). Walkable Cities: Using the Smart Pedestrian Net Method for Evaluating a Pedestrian Network in Guimarães, Portugal. Sustainability (Switzerland), 14(16), 10306. doi:10.3390/su141610306.

Zhu, M., Sze, N. N., Newnam, S., & Zhu, D. (2023). Do footbridge and underpass improve pedestrian safety? A Hong Kong case study using three-dimensional digital map of pedestrian network. Accident Analysis & Prevention, 186, 107064. doi:10.1016/j.aap.2023.107064.

US Department of Transportation. (2022). Pedestrian Overpasses/Underpasses. Pedestrian Safety Guide and Countermeasure Selection System. Federal Highway Administration, Washington, United States.

Lajeunesse, S., Ryus, P., Kumfer, W., Kothuri, S., & Nordback, K. (2021). Measuring pedestrian level of stress in urban environments: Naturalistic walking pilot study. Transportation Research Record, 2675(10), 109–119. doi:10.1177/03611981211010183.

Delclòs-Alió, X., Rodríguez, D. A., Medina, C., Miranda, J. J., Avila-Palencia, I., Targa, F., Moran, M. R., Sarmiento, O. L., & Quistberg, D. A. (2022). Walking for transportation in large Latin American cities: walking-only trips and total walking events and their sociodemographic correlates. Transport Reviews, 42(3), 296–317. doi:10.1080/01441647.2021.1966552.

Muthoni, M. M. (2008). Challenges Facing Pedestrians and Their Planning Implications for Westlands Commercial Center. PhD Thesis, University of Nairobi, Nairobi, Kenya.

Rankavat, S., & Tiwari, G. (2016). Pedestrian’s perceptions for utilization of pedestrian facilities – Delhi, India. Transportation Research Part F: Traffic Psychology and Behaviour, 42, 495–499. doi:10.1016/j.trf.2016.02.005.

Sung, H., Lee, S., Cheon, S., & Yoon, J. (2022). Pedestrian Safety in Compact and Mixed-Use Urban Environments: Evaluation of 5D Measures on Pedestrian Crashes. Sustainability (Switzerland), 14(2), 646. doi:10.3390/su14020646.

Jiang, Y., & Yang, Z. (2012). Discussion on overpass pedestrian system in downtown area. Advanced Materials Research, 594–597, 1449–1455. doi:10.4028/www.scientific.net/AMR.594-597.1449.

Maigo, L. W. (2018). Provision and Utilization of Pedestrian Footbridges in Cities: A case study of Mombasa road corridor. Ph.D. Thesis, University of Nairobi, Nairobi, Kenya.

Simpson, N. O., Stewart, K. M., Schroeder, C., Cox, M., Huebner, K., & Wasley, T. (2016). Overpasses and underpasses: Effectiveness of crossing structures for migratory ungulates. Journal of Wildlife Management, 80(8), 1370–1378. doi:10.1002/jwmg.21132.

Räsänen, M., Lajunen, T., Alticafarbay, F., & Aydin, C. (2007). Pedestrian self-reports of factors influencing the use of pedestrian bridges. Accident Analysis and Prevention, 39(5), 969–973. doi:10.1016/j.aap.2007.01.004.

Bandara, D., & Hewawasam, C. (2020). A Comparative Study on Effectiveness of Underpass and Overpass among Pedestrians in Different Urban Contexts in Sri Lanka. Journal of Service Science and Management, 13(05), 729–744. doi:10.4236/jssm.2020.135046.

Cantillo, V., Arellana, J., & Rolong, M. (2015). Modelling pedestrian crossing behaviour in urban roads: A latent variable approach. Transportation Research Part F: Traffic Psychology and Behaviour, 32, 56–67. doi:10.1016/j.trf.2015.04.008.

Mfinanga, D. A. (2014). Implication of pedestrians[U+05F3] stated preference of certain attributes of crosswalks. Transport Policy, 32, 156–164. doi:10.1016/j.tranpol.2014.01.011.

Patra, M., Perumal, V., & Rao, K. V. K. (2020). Modelling the effects of risk factor and time savings on pedestrians’ choice of crossing facilities at signalised intersections. Case Studies on Transport Policy, 8(2), 460–470. doi:10.1016/j.cstp.2019.10.010.

Hidalgo-Solórzano, E., Campuzano-Rincón, J., Rodríguez-Hernández, J. M., Chias-Becerril, L., Reséndiz-López, H., Sánchez-Restrepo, H., Baranda-Sepúlveda, B., Franco-Arias, C., & Híjar, M. (2010). Use and non-use of pedestrian bridges in Mexico City: The pedestrian perspective. Salud Publica de Mexico, 52(6), 502–510. doi:10.1590/s0036-36342010000600004.

Hasan, R., & Napiah, M. (2018). The perception of Malaysian pedestrians toward the use of footbridges. Traffic Injury Prevention, 19(3), 292–297. doi:10.1080/15389588.2017.1373768.

Gupta, U., Tiwari, G., Chatterjee, N., & FAzio, J. (2009). Case study of pedestrian risk behavior and survival analysis. The 8th International Conference of Eastern Asia Society for Transportation Studies, 16-18 November, 2009, Surabaya, Indonesia.

Hasan, R., & Napiah, M. (2014). The effect of structure and street characteristics on the footbridge usage. Journal of Applied Science and Agriculture, 9(21(Special)), 52-59.

Manjanja, R. A. (2013). Non-usage of pedestrian footbridges in Kenya: The case of Uthiru Pedestrian footbridge on Waiyaki way. Ph.D. Thesis, University of Nairobi, Nairobi, Kenya.

Civil Lease. (2020). Pedestrian Crossing Definition, Principle, and Classification. Civil Lease. Available online: https://www.civilease.com/2020/05/pedestrian-crossing.html (accessed on March 2023).

Mohamad Azril Bin Mohamad Anuar, M. A. (2009). Pedestrian friendly grade separated pedestrian crossing. Ph.D. Thesis, Universiti Teknologi Petronas, Seri Iskandar, Malaysia.

Gumińska, L. (2017). The effects of selected factors on pedestrian crossings in urban areas. MATEC Web of Conferences, 122. doi:10.1051/matecconf/201712201003.

Hulse, L. M. (2023). Pedestrians’ perceived vulnerability and observed behaviours relating to crossing and passing interactions with autonomous vehicles. Transportation Research Part F: Traffic Psychology and Behaviour, 93, 34-54. doi:10.1016/j.trf.2022.12.007.

Arellana, J., Fernández, S., Figueroa, M., & Cantillo, V. (2022). Analyzing pedestrian behavior when crossing urban roads by combining RP and SP data. Transportation research part F: traffic psychology and behaviour, 85, 259-275. doi:10.1016/j.trf.2022.01.012.

Hasan, R., & Napiah, M. (2017). Utilization of footbridges: Influential factors and improvement proposals. Advances in Transportation Studies, 43, 43–60. doi:10.4399/97888255077374.

Wang, L., Zhong, H., Huang, W., & Ma, W. (2020). Pedestrian Spatial Violation Analyses for Urban Roadways. Journal of Transportation Engineering, Part A: Systems, 146(11), 4020125. doi:10.1061/jtepbs.0000400.

Soliz, A., & Pérez-López, R. (2022). ‘Footbridges’: pedestrian infrastructure or urban barrier? Current Opinion in Environmental Sustainability, 55, 101161. doi:10.1016/j.cosust.2022.101161.

Tucker, B., & Manaugh, K. (2018). Bicycle equity in Brazil: Access to safe cycling routes across neighborhoods in Rio de Janeiro and Curitiba. International Journal of Sustainable Transportation, 12(1), 29–38. doi:10.1080/15568318.2017.1324585.

Ajzen, I. (1985). From Intentions to Actions: A Theory of Planned Behavior. Action Control. SSSP Springer Series in Social Psychology, Springer, Berlin, Germany. doi:10.1007/978-3-642-69746-3_2.


Full Text: PDF

DOI: 10.28991/CEJ-2023-09-04-09

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Fazal E Ghafoor, Malik Sarmad Riaz, Ahmed Farouk Deifalla, Marc Azab, Omer Javaid, Muhammad Nouman Sattar, Muhammad Maqbool Sadiq

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message