Torsional Strength of Reinforced Concrete Beams with Brine and Olive Oil Mill Wastewater
Abstract
Doi: 10.28991/CEJ-2023-09-03-012
Full Text: PDF
Keywords
References
Alzgool, H. A., Alfraihat, A. S., & Alzghool, H. (2022). Reinforced-concrete Bond with Brine and Olive Oil Mill Wastewater. Civil Engineering Journal (Iran), 8(2), 319–333. doi:10.28991/CEJ-2022-08-02-010.
Alshboul, Z. A., Alzgool, H. A., & Alzghool, H. (2022). Sustainable Use of Brine Water in Concrete Cement Mixes Alter Compression-Bending Strengths. International Review of Civil Engineering, 13(1), 67–73. doi:10.15866/irece.v13i1.20568.
Alzgool, H. A. (2020). Strength characteristics of concrete with brine and olive oil mill wastewaters. International Journal of Engineering Research and Technology, 13(10), 2831–2838. doi:10.37624/IJERT/13.10.2020.2831-2838.
Aras, U., Kalaycıoğlu, H., Yel, H., & Kuştaş, S. (2022). Utilization of olive mill solid waste in the manufacturing of cement-bonded particleboard. Journal of Building Engineering, 49, 104055. doi:10.1016/j.jobe.2022.104055.
Kashyap, J., Willis, C. R., Griffith, M. C., Ingham, J. M., & Masia, M. J. (2012). Debonding resistance of FRP-to-clay brick masonry joints. Engineering Structures, 41, 186–198. doi:10.1016/j.engstruct.2012.03.032.
Mahdi, F., Abbas, H., & Khan, A. A. (2010). Strength characteristics of polymer mortar and concrete using different compositions of resins derived from post-consumer PET bottles. Construction and Building Materials, 24(1), 25–36. doi:10.1016/j.conbuildmat.2009.08.006.
Siddique, R., Khatib, J., & Kaur, I. (2008). Use of recycled plastic in concrete: A review. Waste Management, 28(10), 1835–1852. doi:10.1016/j.wasman.2007.09.011.
Mostofinejad, D., & Mohammadi Anaei, M. (2012). Effect of confining of boundary elements of slender RC shear wall by FRP composites and stirrups. Engineering Structures, 41, 1–13. doi:10.1016/j.engstruct.2012.03.019.
Yao, C., & Nakashima, M. (2012). Application of headed studs in steel fiber reinforced cementitious composite slab of steel beam-column connection. Earthquake Engineering and Engineering Vibration, 11(1), 11–21. doi:10.1007/s11803-012-0094-4.
Ju, H., & Serik, A. (2023). Torsional Strength of Recycled Coarse Aggregate Reinforced Concrete Beams. CivilEng, 4(1), 55–64. doi:10.3390/civileng4010004.
El-Mandouh, M. A., Hu, J. W., Shim, W. S., Abdelazeem, F., & ELsamak, G. (2022). Torsional Improvement of RC Beams Using Various Strengthening Systems. Buildings, 12(11). doi:10.3390/buildings12111776.
Tais, A. S., & Abdulrahman, M. B. (2023). Improving the Torsional Strength of Reinforced Concrete Hollow Beams Strengthened with Externally Bonded Reinforcement CFRP Stripe Subjected to Monotonic and Repeated Loads. Information Sciences Letters, 12(1), 427–441. doi:10.18576/isl/120136.
Nobuaki Otsuki, Tsuyoshi Saito, & Yutaka Tadokoro. (2012). Possibility of Sea Water as Mixing Water in Concrete. Journal of Civil Engineering and Architecture, 6(11). doi:10.17265/1934-7359/2012.10.002.
Miller, S. A., Horvath, A., & Monteiro, P. J. M. (2018). Impacts of booming concrete production on water resources worldwide. Nature Sustainability, 1(1), 69–76. doi:10.1038/s41893-017-0009-5.
Wegian, F. M. (2010). Effect of seawater for mixing and curing on structural concrete. IES Journal Part A: Civil & Structural Engineering, 3(4), 235–243. doi:10.1080/19373260.2010.521048.
Tsagaraki, E., Lazarides, H. N., & Petrotos, K. B. (2007). Olive mill wastewater treatment. In Utilization of By-Products and Treatment of Waste in the Food Industry (pp. 133–157). doi:10.1007/978-0-387-35766-9_8.
Kalkan, I., & Kartal, S. (2017). Torsional rigidities of reinforced concrete beams subjected to elastic lateral torsional buckling. International Journal of Civil and Environmental Engineering, 11(7), 969-972.
Anik, M. F. R., Shihan, M. R., Brinta, F. L., & Chowdhury, S. R. (2020). A Review Paper on Increasing Torsional Strength of RC Beam using Steel Fiber Reinforced Concrete. Journal of Structural Engineering, its Applications and Analysis, 3(1), 1-10. doi:10.5281/zenodo.3895671.
Zheng, Y., Zhuo, J., Zhang, P., & Ma, M. (2022). Mechanical properties and meso-microscopic mechanism of basalt fiber-reinforced recycled aggregate concrete. Journal of Cleaner Production, 370, 133555. doi:10.1016/j.jclepro.2022.133555.
Rashidi, M., & Takhtfiroozeh, H. (2016). The Evaluation of Torsional Strength in Reinforced Concrete Beam. Mechanics, Materials Science & Engineering, 7, 1-11.
Joh, C., Kwahk, I., Lee, J., Yang, I. H., & Kim, B. S. (2019). Torsional behavior of high-strength concrete beams with minimum reinforcement ratio. Advances in Civil Engineering, 2019, 1–11. doi:10.1155/2019/1432697.
FR, K., & BH, A. B. (2016). Improvement of Torsional Resistance in Ultra-High Performance Fibre Reinforced Concrete Beams. Journal of Steel Structures & Construction, 2(1). doi:10.4172/2472-0437.1000112.
Bernardo, L. F. A., Teixeira, M. M., De Domenico, D., & Gama, J. M. R. (2022). Improved Equations for the Torsional Strength of Reinforced Concrete Beams for Codes of Practice Based on the Space Truss Analogy. Materials, 15(11), 3827. doi:10.3390/ma15113827.
Prakash, M., Satyanarayanan, K. S., Parthasarathi, N., Senthil, S. S., Vishal, M., & Deepakraj, V. (2022). An experimental study on reinforced concrete beam with continuous spiral stirrups under pure torsion. European Journal of Environmental and Civil Engineering, 1–13. doi:10.1080/19648189.2022.2064339.
Mures, J. K., Chkheiwer, A. H., & Ahmed, M. A. (2021). Experimental Study on Torsional Behavior of steel Fiber Reinforced Concrete Members under Pure Torsion. IOP Conference Series: Materials Science and Engineering, 1090(1), 012065. doi:10.1088/1757-899x/1090/1/012065.
Askandar, N. H., & Mahmood, A. D. (2020). Torsional Strengthening of RC Beams with Continuous Spiral Near-Surface Mounted Steel Wire Rope. International Journal of Concrete Structures and Materials, 14(1). doi:10.1186/s40069-019-0386-4.
Yu, Z., & Shan, D. (2021). Experimental and numerical studies of T-shaped reinforced concrete members subjected to combined compression-bending-shear-torsion. Advances in Structural Engineering, 24(12), 2809–2825. doi:10.1177/13694332211012577.
DOI: 10.28991/CEJ-2023-09-03-012
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 husein A Alzgool

This work is licensed under a Creative Commons Attribution 4.0 International License.