Shear Strength of Reinforced Concrete Squat Walls
Abstract
Doi: 10.28991/CEJ-2023-09-02-03
Full Text: PDF
Keywords
References
Paulay, T., & Priestley, M. N. (1992). Seismic design of reinforced concrete and masonry buildings (Vol. 768). Wiley, New York, United States. doi:10.1002/9780470172841.
Terzioglu, T., Orakcal, K., & Massone, L. M. (2018). Cyclic lateral load behavior of squat reinforced concrete walls. Engineering Structures, 160, 147–160. doi:10.1016/j.engstruct.2018.01.024.
Gulec, C. K., & Whittaker, A. S. (2009). Performance-based assessment and design of squat reinforced concrete shear walls. Technical Report MCEER-09-0010, State University of New York, Buffalo, United States.
Cortés-Puentes, W. L., & Palermo, D. (2018). Performance of pre-1970s squat reinforced concrete shear walls. Canadian Journal of Civil Engineering, 45(11), 922–935. doi:10.1139/cjce-2017-0595.
Gulec, C. K., Whittaker, A. S., & Stojadinovic, B. (2008). Shear strength of squat rectangular reinforced concrete walls. ACI Structural Journal, 105(4), 488–497. doi:10.14359/19863.
Benjamin, J. R., & Williams, H. A. (1957). The Behavior of One-Story Reinforced Concrete Shear Walls. Journal of the Structural Division, 83(3). doi:10.1061/jsdeag.0000118.
Cardenas, A. E., Hanson, J. M., Corley, W. G., & Hognestad, E. (1973). Design provisions for shear walls. ACI Journal, 70(3), 221-230. doi:10.14359/11201.
Paulay, T., Priestley, M. J. N., & Synge, A. J. (1982). Ductility in Earthquake Resisting Squat Shear walls. Journal of the American Concrete Institute, 79(4), 257–269. doi:10.14359/10903.
Shaingchin, S., Lukkunaprasit, P., & Wood, S. L. (2007). Influence of diagonal web reinforcement on cyclic behavior of structural walls. Engineering Structures, 29(4), 498–510. doi:10.1016/j.engstruct.2006.05.016.
Cheng, M. Y., Wibowo, L. S. B., Giduquio, M. B., & Lequesne, R. D. (2021). Strength and deformation of reinforced concrete squat walls with high-strength materials. ACI Structural Journal, 118(1), 125–137. doi:10.14359/51728082.
Kim, J. H., & Park, H. G. (2022). Shear Strength of Flanged Squat Walls with 690 MPa Reinforcing Bars. ACI Structural Journal, 119(2), 209–220. doi:10.14359/51734142.
Chandra, J., Chanthabouala, K., & Teng, S. (2018). Truss model for shear strength of structural concrete walls. ACI Structural Journal, 115(2), 323–335. doi:10.14359/51701129.
Sivaguru, V., & Rao, G. A. (2021). Strength and behavior of reinforced concrete squat shear walls with openings under cyclic loading. ACI Structural Journal, 118(5), 235–250. doi:10.14359/51732832.
Kassem, W. (2015). Shear strength of squat walls: A strut-and-tie model and closed-form design formula. Engineering Structures, 84, 430–438. doi:10.1016/j.engstruct.2014.11.027.
Wood, S. L. (1990). Shear strength of low-rise reinforced concrete walls. Structural Journal, 87(1), 99-107. doi:10.14359/2951.
Snchez-Alejandre, A., & Alcocer, S. M. (2010). Shear strength of squat reinforced concrete walls subjected to earthquake loading trends and models. Engineering Structures, 32(8), 2466–2476. doi:10.1016/j.engstruct.2010.04.022.
Gulec, C. K., & Whittaker, A. S. (2011). Empirical Equations for Peak Shear Strength of Low Aspect Ratio Reinforced Concrete Walls. ACI Structural Journal, 108(1), 80-89. doi:10.14359/51664205.
Hsu, T. T. C., & Mo, Y. L. (1985). Softening of Concrete in Low-Rise Shear walls. Journal of the American Concrete Institute, 82(6), 883–889. doi:10.14359/10410.
Massone, L. M., & Melo, F. (2018). General solution for shear strength estimate of RC elements based on panel response. Engineering Structures, 172, 239–252. doi:10.1016/j.engstruct.2018.06.038.
Hwang, S.-J., Fang, W.-H., Lee, H.-J., & Yu, H.-W. (2001). Analytical Model for Predicting Shear Strength of Squat Walls. Journal of Structural Engineering, 127(1), 43–50. doi:10.1061/(asce)0733-9445(2001)127:1(43).
Hwang, S.-J., & Lee, H.-J. (2002). Strength Prediction for Discontinuity Regions by Softened Strut-and-Tie Model. Journal of Structural Engineering, 128(12), 1519–1526. doi:10.1061/(asce)0733-9445(2002)128:12(1519).
Ma, J. X., Chen, K. Y., Wang, Y. H., & Li, B. (2021). Peak shear strength of J-shaped reinforced concrete squat walls. Gongcheng Lixue/Engineering Mechanics, 38(4), 123–135. doi:10.6052/j.issn.1000-4750.2020.05.0337.
Chetchotisak, P., Chomchaipol, W., Teerawong, J., & Shaingchin, S. (2022). Strut-and-tie model for predicting shear strength of squat shear walls under earthquake loads. Engineering Structures, 256, 114042. doi:10.1016/j.engstruct.2022.114042.
Chen, X. L., Fu, J. P., Yao, J. L., & Gan, J. F. (2018). Prediction of shear strength for squat RC walls using a hybrid ANN–PSO model. Engineering with Computers, 34(2), 367–383. doi:10.1007/s00366-017-0547-5.
Baghi, H., Baghi, H., & Siavashi, S. (2019). Novel empirical expression to predict shear strength of reinforced concrete walls based on particle swarm optimization. ACI Structural Journal, 116(5), 247–260. doi:10.14359/51716773.
Gondia, A., Ezzeldin, M., & El-Dakhakhni, W. (2020). Mechanics-Guided Genetic Programming Expression for Shear-Strength Prediction of Squat Reinforced Concrete Walls with Boundary Elements. Journal of Structural Engineering, 146(11), 4020223. doi:10.1061/(asce)st.1943-541x.0002734.
Tariq, M., Khan, A., Ullah, A., Zamin, B., Kashyzadeh, K. R., & Ahmad, M. (2022). Gene Expression Programming for Estimating Shear Strength of RC Squat Wall. Buildings, 12(7), 918. doi:10.3390/buildings12070918.
Feng, D.-C., Wang, W.-J., Mangalathu, S., & Taciroglu, E. (2021). Interpretable XGBoost-SHAP Machine-Learning Model for Shear Strength Prediction of Squat RC Walls. Journal of Structural Engineering, 147(11), 4021173. doi:10.1061/(asce)st.1943-541x.0003115.
Parsa, P., & Naderpour, H. (2021). Shear strength estimation of reinforced concrete walls using support vector regression improved by Teaching–learning-based optimization, Particle Swarm optimization, and Harris Hawks Optimization algorithms. Journal of Building Engineering, 44, 102593. doi:10.1016/j.jobe.2021.102593.
Beale, M. H., Hagan, M. T., & Demuth, H. B. (2010). Neural network toolbox. User’s Guide, MathWorks, Three Apple Hill Drive Natick, United States.
Onyelowe, K. C., Gnananandarao, T., Ebid, A. M., Mahdi, H. A., Razzaghian Ghadikolaee, M., & Al-Ajamee, M. (2022). Evaluating the Compressive Strength of Recycled Aggregate Concrete Using Novel Artificial Neural Network. Civil Engineering Journal, 8(8), 1679–1693. doi:10.28991/CEJ-2022-08-08-011.
Al-Rawashdeh, M., Yousef, I., & Al-Nawaiseh, M. (2022). Predicting the Inelastic Response of Base Isolated Structures Utilizing Regression Analysis and Artificial Neural Network. Civil Engineering Journal, 8(6), 1178–1193. doi:10.28991/CEJ-2022-08-06-07.
Mansour, M. Y., Dicleli, M., & Lee, J. Y. (2004). Nonlinear Analysis of R/C Low-Rise Shear Walls. Advances in Structural Engineering, 7(4), 345–361. doi:10.1260/1369433041653525.
Smith, G. N. (1986). Probability and statistics in civil engineering. Collins professional and technical books, New York, United States.
Safiee, N. A., & Ashour, A. (2017). Prediction of punching shear capacity of RC flat slabs using artificial neural network. Asian Journal of Civil Engineering, 18(2), 285–309.
ACI 318-19. (2019). Building Code Requirements for Structural Concrete. American Concrete Institute, Farmington Hills, United States.
EN1998-1. (2004). Design for earthquake resistance, Part 1: general rules, seismic actions and rules for buildings. European Committee for Standardization (CEN), Brussels, Belgium.
Barda, F. (1972). Shear strength of low-rise walls with boundary elements. Ph.D. Thesis, Lehigh University, Bethlehem, United States.
Maier, J., & Thürlimann, B. (1985). Fracture tests on reinforced concrete discs. Report/Institute for Structural Analysis and Construction ETH Zurich, Zurich, Switzerland. (In German). doi:10.1007/978-3-0348-5190-9.
Lefas, I. D., & Kotsovos, M. D. (1990). Strength and deformation characteristics of reinforced concrete walls under load reversals. ACI Structural Journal, 87(6), 716–726. doi:10.14359/2994.
Garson, G. D. (1991). Interpreting neural-network connection weights. AI Expert, 6(4), 46-51.
Krolicki, J., Maffei, J., & Calvi, G. M. (2011). Shear Strength of Reinforced Concrete Walls Subjected to Cyclic Loading. Journal of Earthquake Engineering, 15(sup1), 30–71. doi:10.1080/13632469.2011.562049.
Model Code 2010. (2010). Fib Bulletin 65/66. Federation Internationale Du Beton. Lausanne, Switzerland.
Pauletta, M., Di Luca, D., & Russo, G. (2015). Exterior beam column joints - Shear strength model and design formula. Engineering Structures, 94, 70–81. doi:10.1016/j.engstruct.2015.03.040.
Russo, G., Venir, R., & Pauletta, M. (2005). Reinforced concrete deep beams - Shear strength model and design formula. ACI Structural Journal, 102(3), 429–437. doi:10.14359/14414.
DOI: 10.28991/CEJ-2023-09-02-03
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Ahmed Faleh Al-Bayati
This work is licensed under a Creative Commons Attribution 4.0 International License.