Influence of Earthquake Parameters on the Bi-directional Behavior of Base Isolation Systems

Dana Abed, Jafar Al Thawabteh, Yazan Alzubi, Jamal Assbeihat, Eid Al-Sahawneh

Abstract


The introduction and development of the base isolation systems, especially the friction isolator device, were done recently to improve the capacity of adaptive behavior. The efficiency of multi-phase friction pendulums comes from their complexity, which helps reduce the structural responses and enhance structures' energy dissipation under lateral loads. Nevertheless, the influence of various earthquakes' properties on the behavior of base-isolation systems subjected to bi-directional seismic loading is still unclear. Hence, further research and studies regarding the behavior and capability of these systems under bi-directional loading are still necessary before incorporating this device in real-life practical applications. Therefore, this paper is intended to investigate the bi-directional behavior of the friction isolator subjected to various ground motion records. In order to do so, different versions of the friction pendulum system are selected and compared within the study context. Generally, the study's results have shown that the behavior of the friction isolator is highly dependent on low values of the PGA/PGV ratio. Besides, pulse-like earthquakes considerably impact the response of the isolator compared to non-pulse-like ones.

 

Doi: 10.28991/CEJ-2022-08-10-02

Full Text: PDF


Keywords


Base Isolation System; Friction Pendulum; Lead Rubber; Bi-directional Behavior.

References


Seo, C. Y., Karavasilis, T. L., Ricles, J. M., & Sause, R. (2014). Seismic performance and probabilistic collapse resistance assessment of steel moment resisting frames with fluid viscous dampers. Earthquake Engineering and Structural Dynamics, 43(14), 2135–2154. doi:10.1002/eqe.2440.

Kitayama, S., & Constantinou, M. C. (2018). Seismic Performance of Buildings with Viscous Damping Systems Designed by the Procedures of ASCE/SEI 7-16. Journal of Structural Engineering, 144(6), 4018050. doi:10.1061/(asce)st.1943-541x.0002048.

Becker, T. C., & Mahin, S. A. (2012). Experimental and analytical study of the bi-directional behavior of the triple friction pendulum isolator. Earthquake Engineering and Structural Dynamics, 41(3), 355–373. doi:10.1002/eqe.1133.

Warn, G. P., & Ryan, K. L. (2012). A review of seismic isolation for buildings: Historical development and research needs. Buildings, 2(3), 300–325. doi:10.3390/buildings2030300.

Touaillon, J. (1870). Improvement in buildings. US Letters Patent, (99973), United States of Patent and Trademark, Alexandria, United States.

Constantinou, M. C., Whittaker, A. S., Kalpakidis, Y., Fenz, D. M., & Warn, G. P. (2007). Performance of seismic isolation hardware under service and seismic loading. Technical Rep. No. MCEER-07, States University of New York, New York, United States.

Symans, M. D., Cofer, W. F., & Fridley, K. J. (2002). Base isolation and supplemental damping systems for seismic protection of wood structures: Literature review. Earthquake Spectra, 18(3), 549–572. doi:10.1193/1.1503342.

Robinson, W. H. (1982). Lead-rubber hysteretic bearings suitable for protecting structures during earthquakes. Earthquake Engineering & Structural Dynamics, 10(4), 593–604. doi:10.1002/eqe.4290100408.

Sasaki, T., Sato, E., Ryan, K. L., Okazaki, T., Mahin, S. A., & Kajiwara, K. (2012). NEES/E-defense base-isolation tests: effectiveness of friction pendulum and lead-rubber bearing systems. Proceedings of the 15th World Conference of Earthquake Engineering, 24-28 September, 2012, Lisbon, Portugal.

Abdel Raheem, S. E., & Hayashikawa, T. (2007). Bi-directional Seismic Response Control for Bridge Structures. IABSE Reports. doi:10.2749/weimar.2007.0068.

Hashemi, S., & Aghashiri, M. H. (2017). Seismic responses of base-isolated flexible rectangular fluid containers under horizontal ground motion. Soil Dynamics and Earthquake Engineering, 100, 159–168. doi:10.1016/j.soildyn.2017.05.010.

Rawat, A., Matsagar, V. A., & Nagpal, A. K. (2019). Numerical study of base-isolated cylindrical liquid storage tanks using coupled acoustic-structural approach. Soil Dynamics and Earthquake Engineering, 119, 196–219. doi:10.1016/j.soildyn.2019.01.005.

Vern, S., Shrimali, M. K., Bharti, S. D., Datta, T. K., & Noroozinejad Farsangi, E. (2022). Seismic Control of Base-Isolated Liquid Storage Tanks Subjected to Bi-directional Strong Ground Motions. Arabian Journal for Science and Engineering, 47(4), 4511–4530. doi:10.1007/s13369-021-06171-9.

Zelleke, D. H., Saha, S. K., & Matsagar, V. A. (2020). Multihazard Response Control of Base-Isolated Buildings under Bidirectional Dynamic Excitation. Shock and Vibration, 2020, 1-24. doi:10.1155/2020/8830460.

Jing, W., Cheng, X., & Shi, W. (2018). Dynamic Responses of Sliding Isolation Concrete Rectangular Liquid Storage Structure with Limiting Devices Under Bidirectional Earthquake Actions. Arabian Journal for Science and Engineering, 43(4), 1911–1924. doi:10.1007/s13369-017-2814-6.

Robinson, W. H., & Tucker, A. G. (1977). A lead-rubber shear damper. Bulletin of the New Zealand Society for Earthquake Engineering, 10(3), 151–153. doi:10.5459/bnzsee.10.3.151-153.

Kalpakidis, I. (2015). Lead-Rubber Bearings with Emphasis on Their Implementation to Structural Design. Encyclopedia of Earthquake Engineering, 1286–1295. doi:10.1007/978-3-642-35344-4_307.

Nagarajaiah, S., Reinhorn, A. M., & Constantinou, M. C. (1991). Nonlinear dynamic analysis of 3-D-base-isolated structures. Journal of Structural Engineering, 117(7), 2035-2054. doi:10.1061/(ASCE)0733-9445(1991)117:7(2035).

Zayas, V. A., & Mahin, S. A. (1987). The FPS earthquake resisting system experimental report. Report No. UCB/EERC87/01, Earthquake Engineering Research Center, University of California, Berkeley, United States.

Keikha, H., & Ghodrati Amiri, G. (2021). Seismic Performance Assessment of Quintuple Friction Pendulum Isolator with a Focus on Frictional Behavior Impressionability from Velocity and Temperature. Journal of Earthquake Engineering, 25(7), 1256–1286. doi:10.1080/13632469.2019.1568929.

Fenz, D. M., & Constantinou, M. C. (2008). Mechanical behavior of multi-spherical sliding bearings (No. 7). Technical Report MCEER-08-0007, States University of New York, New York, United States.

Fenz, D. M., & Constantinou, M. C. (2006). Behaviour of the double concave Friction Pendulum bearing. Earthquake Engineering and Structural Dynamics, 35(11), 1403–1424. doi:10.1002/eqe.589.

Tsai, C. S., Chen, B. J., Pong, W. S., & Chiang, T. C. (2004). Interactive behavior of structures with multiple friction pendulum isolation system and unbounded foundations. Advances in Structural Engineering, 7(6), 539–550. doi:10.1260/1369433042863189.

Moeindarbari, H., & Taghikhany, T. (2014). Seismic optimum design of triple friction pendulum bearing subjected to near-fault pulse-like ground motions. Structural and Multidisciplinary Optimization, 50(4), 701–716. doi:10.1007/s00158-014-1079-x.

Fenz, D. M., & Constantinou, M. C. (2008). Modeling triple friction pendulum bearings for response-history analysis. Earthquake Spectra, 24(4), 1011–1028. doi:10.1193/1.2982531.

Fenz, D. M., & Constantinou, M. C. (2008). Spherical sliding isolation bearings with adaptive behavior: Experimental verification. Earthquake Engineering and Structural Dynamics, 37(2), 185–205. doi:10.1002/eqe.750.

Malekzadeh, M., & Taghikhany, T. (2012). Multi-stage performance of seismically isolated bridge using triple pendulum bearings. Advances in Structural Engineering, 15(7), 1181–1196. doi:10.1260/1369-4332.15.7.1181.

Morgan, T. A., & Mahin, S. A. (2010). Achieving reliable seismic performance enhancement using multi-stage friction pendulum isolators. Earthquake Engineering and Structural Dynamics, 39(13), 1443–1461. doi:10.1002/eqe.1043.

Baker, J. W. (2007). Quantitative classification of near-fault ground motions using wavelet analysis. Bulletin of the Seismological Society of America, 97(5), 1486–1501. doi:10.1785/0120060255.

Zhu, T. J., Tso, W. K., & Heidebrecht, A. C. (1988). Effect of Peak Ground a/v Ratio on Structural Damage. Journal of Structural Engineering, 114(5), 1019–1037. doi:10.1061/(asce)0733-9445(1988)114:5(1019).

ASCE/SEI 7-10. (2013). Minimum design loads for buildings and other structures. American Society of Civil Engineers, Reston, United States. doi:10.1061/9780784412916.

Applied Technology Council. (2009). Quantification of building seismic performance factors. US Department of Homeland Security, FEMA, Washington, United States.

Michaud, D., & Léger, P. (2014). Ground motions selection and scaling for nonlinear dynamic analysis of structures located in Eastern North America. Canadian Journal of Civil Engineering, 41(3), 232–244. doi:10.1139/cjce-2012-0339.

Mazza, F., & Labernarda, R. (2018). Effects of nonlinear modelling of the base-isolation system on the seismic analysis of r.c. buildings. Procedia Structural Integrity, 11, 226–233. doi:10.1016/j.prostr.2018.11.030.

Chen, Z. Y., & Liu, Z. Q. (2019). Effects of pulse-like earthquake motions on a typical subway station structure obtained in shaking-table tests. Engineering Structures, 198, 109557. doi:10.1016/j.engstruct.2019.109557.

Pant, D. R., & Wijeyewickrema, A. C. (2013). Influence of near-fault ground motions on the response of base-isolated reinforced concrete buildings considering seismic pounding. Advances in Structural Engineering, 16(12), 1973–1988. doi:10.1260/1369-4332.16.12.1973.

Rostami, A., & Poursha, M. (2021). A lateral load distribution for the static analysis of base-isolated building frames under the effect of far-fault and near-fault ground motions. Structures, 34, 2384–2405. doi:10.1016/j.istruc.2021.08.125.

Elnashai, A. S., & Di Sarno, L. (2015). Fundamentals of earthquake engineering: from source to fragility. John Wiley & Sons, Hoboken, United States.


Full Text: PDF

DOI: 10.28991/CEJ-2022-08-10-02

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Dana Abed, Jafar Al thawabteh, Yazan Alzubi, Jamal Assbeihat, Eid Al-Sahawneh

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message