The Effect of Adding Steel Fibers and Graphite on Mechanical and Electrical Behaviors of Asphalt Concrete

M. Messaoud, B. Glaoui, O. Abdelkhalek

Abstract


Conductive asphalt concrete can satisfy different and multifunctional applications such as heating roads to get rid of snow and ice and assure auto-detection, auto-cure, and energy recovery. This research aims to evaluate the performance of asphalt concrete with additives like steel fibers and graphite powder. This work is based on destructive tests (direct tensile test FENIX) and non-destructive tests (electrical resistivity measures). The obtained results indicate that the tensile resistance, dissipated energy, and ductility module of asphalt concrete increased with the increasing steel fiber percentage. Direct tensile strength, cracking resistance, and dissipated energy increased as graphite percentage increased, while the ductility module decreased. Electrical resistivity decreased when it added steel fibers and graphite. Therefore, it found that tensile strength increased reversibly with electrical resistance. When adding steel fibers or graphite powder, the dissipated energy of asphalt concrete is increased while electrical resistivity is decreased. The dissipated energy of conductive asphalt concrete with steel fibers is higher than that with graphite powder. Electrical resistivity decreased significantly with increasing steel fibers, compared to electrical resistivity with graphite. The obtained results indicate that asphalt concrete cracking resistance is higher with the optimal percentage of steel fibers added at 1% and better mechanical performance.

 

Doi: 10.28991/CEJ-2022-08-02-012

Full Text: PDF


Keywords


Asphalt Concrete; Conductor; Steel Fibers; Graphite; FENIX Test; Electrical Resistivity; Dissipated Energy; Ductility Module.

References


Shanbara, H. K., Ruddock, F., & Atherton, W. (2018). A laboratory study of high-performance cold mix asphalt mixtures reinforced with natural and synthetic fibres. Construction and Building Materials, 172, 166–175. doi:10.1016/j.conbuildmat.2018.03.252.

Wu, S., Ye, Q., & Li, N. (2008). Investigation of rheological and fatigue properties of asphalt mixtures containing polyester fibers. Construction and Building Materials, 22(10), 2111–2115. doi:10.1016/j.conbuildmat.2007.07.018.

Slebi-Acevedo, C. J., Lastra-González, P., Pascual-Muñoz, P., & Castro-Fresno, D. (2019). Mechanical performance of fibers in hot mix asphalt: A review. Construction and Building Materials, 200, 756–769. doi:10.1016/j.conbuildmat.2018.12.171.

Salari, Z., Vakhshouri, B., & Nejadi, S. (2018). Analytical review of the mix design of fiber reinforced high strength self-compacting concrete. Journal of Building Engineering, 20, 264–276. doi:10.1016/j.jobe.2018.07.025.

Wang, H., Yang, J., Liao, H., & Chen, X. (2016). Electrical and mechanical properties of asphalt concrete containing conductive fibers and fillers. Construction and Building Materials, 122, 184–190. doi:10.1016/j.conbuildmat.2016.06.063.

Rew, Y., Baranikumar, A., Tamashausky, A. V., El-Tawil, S., & Park, P. (2017). Electrical and mechanical properties of asphaltic composites containing carbon based fillers. Construction and Building Materials, 135, 394–404. doi:10.1016/j.conbuildmat.2016.12.221.

Wu, S., Pan, P., Chen, M., & Zhang, Y. (2013). Analysis of Characteristics of Electrically Conductive Asphalt Concrete Prepared by Multiplex Conductive Materials. Journal of Materials in Civil Engineering, 25(7), 871–879. doi:10.1061/(asce)mt.1943-5533.0000565.

Serin, S., Morova, N., Saltan, M., & Terzi, S. (2012). Investigation of usability of steel fibers in asphalt concrete mixtures. Construction and Building Materials, 36, 238–244. doi:10.1016/j.conbuildmat.2012.04.113.

Huang, B., Chen, X., & Shu, X. (2009). Effects of Electrically Conductive Additives on Laboratory-Measured Properties of Asphalt Mixtures. Journal of Materials in Civil Engineering, 21(10), 612–617. doi:10.1061/(asce)0899-1561(2009)21:10(612).

García, A., Norambuena-Contreras, J., Bueno, M., & Partl, M. N. (2015). Single and multiple healing of porous and dense asphalt concrete. Journal of Intelligent Material Systems and Structures, 26(4), 425–433. doi:10.1177/1045389X14529029.

García, Á., Schlangen, E., van de Ven, M., & Liu, Q. (2009). Electrical conductivity of asphalt mortar containing conductive fibers and fillers. Construction and Building Materials, 23(10), 3175–3181. doi:10.1016/j.conbuildmat.2009.06.014.

Wu, S., Mo, L., Shui, Z., & Chen, Z. (2005). Investigation of the conductivity of asphalt concrete containing conductive fillers. Carbon, 43(7), 1358–1363. doi:10.1016/j.carbon.2004.12.033.

Slebi-Acevedo, C. J., Lastra-González, P., Pascual-Muñoz, P., & Castro-Fresno, D. (2019). Mechanical performance of fibers in hot mix asphalt: A review. Construction and Building Materials, 200, 756–769. doi:10.1016/j.conbuildmat.2018.12.171.

Xiong, R., Fang, J., Xu, A., Guan, B., & Liu, Z. (2015). Laboratory investigation on the brucite fiber reinforced asphalt binder and asphalt concrete. Construction and Building Materials, 83, 44–52. doi:10.1016/j.conbuildmat.2015.02.089.

Lau, C. K., Chegenizadeh, A., Htut, T. N. S., & Nikraz, H. (2020). Performance of the steel fibre reinforced rigid concrete pavement in fatigue. In Buildings (Vol. 10, Issue 10, pp. 1–18). doi:10.3390/buildings10100186.

Paluri, Y., Mogili, S., Mudavath, H., & Pancharathi, R. K. (2020). A study on the influence of steel fibers on the performance of Fine Reclaimed Asphalt Pavement (FRAP) in pavement quality concrete. Materials Today: Proceedings, 32, 657–662. doi:10.1016/j.matpr.2020.03.147.

Mohammed, M., Parry, T., & Grenfell, J. (J.R.A.). (2018). Influence of fibres on rheological properties and toughness of bituminous binder. Construction and Building Materials, 163, 901–911. doi:10.1016/j.conbuildmat.2017.12.146.

Al-Hadidy, A. I., & Yi-qiu, T. (2009). Mechanistic approach for polypropylene-modified flexible pavements. Materials and Design, 30(4), 1133–1140. doi:10.1016/j.matdes.2008.06.021.

Al-Hadidy, A. I., & Yi-qiu, T. (2009). Effect of polyethylene on life of flexible pavements. Construction and Building Materials, 23(3), 1456–1464. doi:10.1016/j.conbuildmat.2008.07.004.

Mokhtari, A., & Moghadas Nejad, F. (2012). Mechanistic approach for fiber and polymer modified SMA mixtures. Construction and Building Materials, 36, 381–390. doi:10.1016/j.conbuildmat.2012.05.032.

Park, P., El-Tawil, S., Park, S. Y., & Naaman, A. E. (2015). Cracking resistance of fiber reinforced asphalt concrete at -20 °c. Construction and Building Materials, 81, 47–57. doi:10.1016/j.conbuildmat.2015.02.005.

Tapkin, S., Uşar, Ü., Tuncan, A., & Tuncan, M. (2009). Repeated creep behavior of polypropylene fiber-reinforced bituminous mixtures. Journal of Transportation Engineering, 135(4), 240–249. doi:10.1061/(ASCE)0733-947X(2009)135:4(240).

Chen, H., Xu, Q., Chen, S., & Zhang, Z. (2009). Evaluation and design of fiber-reinforced asphalt mixtures. Materials and Design, 30(7), 2595–2603. doi:10.1016/j.matdes.2008.09.030.

Xu, Q., Chen, H., & Prozzi, J. A. (2010). Performance of fiber reinforced asphalt concrete under environmental temperature and water effects. Construction and Building Materials, 24(10), 2003–2010. doi:10.1016/j.conbuildmat.2010.03.012.

Wu, S. P., Mo, L. T., & Shui, Z. H. (2003). Piezoresistivity of Graphite Modified Asphalt-based Composites. Key Engineering Materials, 249, 391–396. doi:10.4028/www.scientific.net/kem.249.391.

Liu, Q., Schlangen, E., Van De Ven, M., Van Bochove, G., & Van Montfort, J. (2012). Evaluation of the induction healing effect of porous asphalt concrete through four point bending fatigue test. Construction and Building Materials, 29, 403–409. doi:10.1016/j.conbuildmat.2011.10.058.

García, A., Norambuena-Contreras, J., & Partl, M. N. (2014). A parametric study on the influence of steel wool fibers in dense asphalt concrete. Materials and Structures/Materiaux et Constructions, 47(9), 1559–1571. doi:10.1617/s11527-013-0135-0.

González, A., Norambuena-Contreras, J., Poulikakos, L., Varela, M. J., Valderrama, J., Flisch, A., & Arraigada, M. (2020). Evaluation of Asphalt Mixtures Containing Metallic Fibers from Recycled Tires to Promote Crack-Healing. Materials, 13(24), 5731. doi:10.3390/ma13245731.

Liu, L., Zhang, X., Xu, L., Zhang, H., & Liu, Z. (2021). Investigation on the piezoresistive response of carbon fiber-graphite modified asphalt mixtures. Construction and Building Materials, 301, 124140. doi:10.1016/j.conbuildmat.2021.124140.

Hasan, R., Ali, A., Decarlo, C., Elshaer, M., & Mehta, Y. (2021). Laboratory Evaluation of Electrically Conductive Asphalt Mixtures for Snow and Ice Removal Applications. Transportation Research Record: Journal of the Transportation Research Board, 2675(8), 48–62. doi:10.1177/0361198121995826.

Hasan, R. (2021). An evaluation of electrically conductive asphalt mixtures for electrically heated flexible pavement systems. Rowan University. Master Thesis, New Jersey, United States.

Liu, X., & Wu, S. (2011). Study on the graphite and carbon fiber modified asphalt concrete. Construction and Building Materials, 25(4), 1807–1811. doi:10.1016/j.conbuildmat.2010.11.082.

Liu, X., Wu, S., Li, N., & Gao, B. (2008). Self-monitoring application of asphalt concrete containing graphite and carbon fibers. Journal Wuhan University of Technology, Materials Science Edition, 23(2), 268–271. doi:10.1007/s11595-006-2268-2.

Liu, X., & Wu, S. (2009). Research on the conductive asphalt concrete’s piezoresistivity effect and its mechanism. Construction and Building Materials, 23(8), 2752–2756. doi:10.1016/j.conbuildmat.2009.03.006.

Wu, S., Zhang, Y., & Chen, M. 2010. Research on mechanical characteristics of conductive asphalt concrete by indirect tensile test. In Fourth International Conference on Experimental Mechanics. International Society for Optics and Photonics. doi:10.1117/12.851473.

Wang, Z., Dai, Q., Guo, S., Wang, R., Ye, M., & Yap, Y. K. (2017). Experimental investigation of physical properties and accelerated sunlight-healing performance of flake graphite and exfoliated graphite nanoplatelet modified asphalt materials. Construction and Building Materials, 134, 412–423. doi:10.1016/j.conbuildmat.2016.12.129.

Pan, P., Wu, S., Xiao, Y., Wang, P., & Liu, X. (2014). Influence of graphite on the thermal characteristics and anti-ageing properties of asphalt binder. Construction and Building Materials, 68, 220–226. doi:10.1016/j.conbuildmat.2014.06.069.

Wang, Z., Dai, Q., & Guo, S. (2018). Microwave-healing performance of modified asphalt mixtures with flake graphite and exfoliated graphite nanoplatelet. Construction and Building Materials, 187, 865–875. doi:10.1016/j.conbuildmat.2018.06.210.

Park, P., Rew, Y., & Baranikumar, A. (2014). Controlling Conductivity of Asphalt Concrete with Graphite. Texas A&M Transportation Institute College Station. Report No SWUTC/14/600451–00025–1, Texas, United States.

Wang, Z., Dai, Q., & Guo, S. (2017). Laboratory performance evaluation of both flake graphite and exfoliated graphite nanoplatelet modified asphalt composites. Construction and Building Materials, 149, 515–524. doi:10.1016/j.conbuildmat.2017.05.100.

Liu, X., Wu, S., Ye, Q., Qiu, J., & Li, B. (2008). Properties evaluation of asphalt-based composites with graphite and mine powders. Construction and Building Materials, 22(3), 121–126. doi:10.1016/j.conbuildmat.2006.10.004.

Liu, Q., Schlangen, E., & Van De Ven, M. (2012). Induction healing of porous asphalt. Transportation Research Record, 2305(2305), 95–101. doi:10.3141/2305-10.

García, A., Bueno, M., Norambuena-Contreras, J., & Partl, M. N. (2013). Induction healing of dense asphalt concrete. Construction and Building Materials, 49, 1–7. doi:10.1016/j.conbuildmat.2013.07.105.

Menozzi, A., Garcia, A., Partl, M. N., Tebaldi, G., & Schuetz, P. (2015). Induction healing of fatigue damage in asphalt test samples. Construction and Building Materials, 74, 162–168. doi:10.1016/j.conbuildmat.2014.10.034.

Pérez-Jiménez, F., Valdés, G., Miró, R., Martínez, A., & Botella, R. (2010). Fénix test: development of a new test procedure for evaluating cracking resistance in bituminous mixtures. Transportation research record, 2181(1), 36-43. doi:10.3141/2181-05.

Liu, Q., Schlangen, E., García, Á., & van de Ven, M. (2010). Induction heating of electrically conductive porous asphalt concrete. Construction and Building Materials, 24(7), 1207–1213. doi:10.1016/j.conbuildmat.2009.12.019.

Eisa, M. S., Mohamady, A., Basiouny, M. E., Abdulhamid, A., & Kim, J. R. (2021). Laboratory evaluation of mechanical properties of modified asphalt and mixture using graphene platelets (GNPS). Materials, 14(19), 5599. doi:10.3390/ma14195599.


Full Text: PDF

DOI: 10.28991/CEJ-2022-08-02-012

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 meymouna messaoud

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message