Reinforced-concrete Bond with Brine and Olive Oil Mill Wastewater
Abstract
Doi: 10.28991/CEJ-2022-08-02-010
Full Text: PDF
Keywords
References
Far, B. K., & Zanotti, C. (2019). Concrete-concrete bond in Mode-I: A study on the synergistic effect of surface roughness and fiber reinforcement. Applied Sciences (Switzerland) (Vol. 9, Issue 12). doi:10.3390/app9122556.
Alzgool, H. A., and Mailyan, D.R. (2016). Concrete and reinforced concrete structures. Dar Majdalawi Bub. and Dis., Amman, Jordan, ISBN 978-9957-02-610-3.
Tsagaraki, E., Lazarides, H. N., & Petrotos, K. B. (2007). Olive mill wastewater treatment. In Utilization of By-Products and Treatment of Waste in the Food Industry. Aristotle University of Thessaloniki, Department of Food Science and Technology. doi:10.1007/978-0-387-35766-9_8.
Srinivasan, V., Seto, K. C., Emerson, R., & Gorelick, S. M. (2013). The impact of urbanization on water vulnerability: A coupled human-environment system approach for Chennai, India. Global Environmental Change, 23(1), 229–239. doi:10.1016/j.gloenvcha.2012.10.002.
Sun, Y., Tong, S. T. Y., Fang, M., & Yang, Y. J. (2013). Exploring the effects of population growth on future land use change in the Las Vegas Wash watershed: An integrated approach of geospatial modeling and analytics. Environment, Development and Sustainability, 15(6), 1495–1515. doi:10.1007/s10668-013-9447-z.
Schleich, J., & Hillenbrand, T. (2009). Determinants of residential water demand in Germany. Ecological Economics, 68(6), 1756–1769. doi:10.1016/j.ecolecon.2008.11.012.
Nishida, T., Otsuki, N., Ohara, H., Garba-Say, Z. M., & Nagata, T. (2013). Some considerations for the applicability of seawater as mixing water in concrete. Sustainable Construction Materials and Technologies, 2013-August, 4014004. doi:10.1061/(asce)mt.1943-5533.0001006.
Miller, S. A., Horvath, A., & Monteiro, P. J. M. (2018). Impacts of booming concrete production on water resources worldwide. Nature Sustainability, 1(1), 69–76. doi:10.1038/s41893-017-0009-5.
Wang, L., Yi, J., Xia, H., & Fan, L. (2016). Experimental study of a pull-out test of corroded steel and concrete using the acoustic emission monitoring method. Construction and Building Materials, 122, 163–170. doi:10.1016/j.conbuildmat.2016.06.046.
Gagg, C. R. (2014). Cement and concrete as an engineering material: An historic appraisal and case study analysis. Engineering Failure Analysis, 40, 114–140. doi:10.1016/j.engfailanal.2014.02.004.
Neville, A. (2001). Seawater in the Mixture”. Concrete International, 23(1), 48-51.
Nobuaki Otsuki, Tsuyoshi Saito, & Yutaka Tadokoro. (2012). Possibility of Sea Water as Mixing Water in Concrete. Journal of Civil Engineering and Architecture, 6(11), 1273–9. doi:10.17265/1934-7359/2012.10.002.
Tsagaraki E., Lazarides H.N., Petrotos K.B. (2007) Olive Mill Wastewater Treatment. In: Oreopoulou V., Russ W. Utilization of By-Products and Treatment of Waste in the Food Industry. Springer, Boston, MA. doi:10.1007/978-0-387-35766-9_8.
Fattah, K. P., Al-Tamimi, A. K., Hamweyah, W., & Iqbal, F. (2017). Evaluation of sustainable concrete produced with desalinated reject brine. International Journal of Sustainable Built Environment, 6(1), 183–190. doi:10.1016/j.ijsbe.2017.02.004.
Tay, J., & Yip, W. (1987). Use of Reclaimed Wastewater for Concrete Mixing. Journal of Environmental Engineering, 113(5), 1156–1161. doi:10.1061/(asce)0733-9372(1987)113:5(1156).
Pramanik, B. K., Shu, L., & Jegatheesan, V. (2017). A review of the management and treatment of brine solutions. Environmental Science: Water Research and Technology, 3(4), 625–658. doi:10.1039/c6ew00339g.
Maier, P. L., & Durham, S. A. (2012). Beneficial use of recycled materials in concrete mixtures. Construction and Building Materials, 29, 428–437. doi:10.1016/j.conbuildmat.2011.10.024.
Collins, F., & Sanjayan, J. G. (2002). The Challenge of the Cement Industry towards the Reduction of Greenhouse Emissions. IABSE Symposium Report, 86, 1–11. doi:10.2749/222137802796337152.
Kwan, W. H., Cheah, C. B., Ramli, M., & Chang, K. Y. (2018). Alkali-resistant glass fiber reinforced high strength concrete in simulated aggressive environment. Materiales de Construccion, 68(329), 147. doi:10.3989/mc.2018.13216.
Elchalakani, M., Aly, T., & Abu-Aisheh, E. (2014). Sustainable concrete with high volume GGBFS to build Masdar City in the UAE. Case Studies in Construction Materials, 1, 10–24. doi:10.1016/j.cscm.2013.11.001.
Xiaochun, Q., Xiaoming, L., & Xiaopei, C. (2017). The applicability of alkaline-resistant glass fiber in cement mortar of road pavement: Corrosion mechanism and performance analysis. International Journal of Pavement Research and Technology, 10(6), 536–544. doi:10.1016/j.ijprt.2017.06.003.
Mangi, S. A., Memon, Z. A., Khahro, S. H., Memon, R. A., & Memon, A. H. (2020). Potentiality of industrial waste as supplementary cementitious material in concrete production. In International Review of Civil Engineering 11(5), 214–221. doi:10.15866/irece.v11i5.18779.
Sadeghi, N., & Sharma, A. (2019). Pull-out test for studying bond strength in corrosion affected reinforced concrete structures - A review. Otto-Graf-Journal, 18, 259–272.
Ahmad, S., Pilakoutas, K., Rafi, M. M., Uz Zaman Khan, Q., & Neocleous, K. (2018). Experimental investigation of bond characteristics of deformed and plain bars in low strength concrete. Scientia Iranica 25(6A), 2954–2966. doi:10.24200/sci.2017.4570.
Rezaei-Soufi, L., Tapak, L., Forouzande, M., & Fekrazad, R. (2019). Effects of motion direction and power of Er, Cr: YSGG laser on pull-out bond strength of fiber post to root dentin in endodontically-treated single-canal premolar teeth. Biomaterials Research, 23(1). doi:10.1186/s40824-019-0165-y.
Tsiotsias, K., & Pantazopoulou, S. J. (2021). Analytical Investigation on the Effect of Test Setup on Bond Strength. CivilEng, 2(1), 14–34. doi:10.3390/civileng2010002.
Kucharska, M., & Jaskowska-Lemanska, J. (2019). Properties of a bond between the steel reinforcement and the new generation concretes- A review. IOP Conference Series: Materials Science and Engineering, 603(4), 42057. doi:10.1088/1757-899X/603/4/042057.
Liu, S., Du, M., Tian, Y., Wang, X., & Sun, G. (2021). Bond behavior of reinforced concrete considering freeze-thaw cycles and corrosion of stirrups. Materials, 14(16), 4732. doi:10.3390/ma14164732.
Wairagade, V. R., & Sonar, I. P. (2019). Bamboo concrete bond strength. International Journal of Engineering and Advanced Technology 9(1), 747–752. doi:10.35940/ijeat.F9323.109119.
Carvalho, E. P., Ferreira, E. G., da Cunha, J. C., Rodrigues, C. de S., & Maia, N. da S. (2017). Experimental investigation of steel-concrete bond for thin reinforcing bars. Latin American Journal of Solids and Structures, 14(11), 1932–1951. doi:10.1590/1679-78254116.
Alzgool, H. A. (2020). Strength characteristics of concrete with brine and olive oil mill wastewaters. International Journal of Engineering Research and Technology, 13(10), 2831–2838. doi:10.37624/IJERT/13.10.2020.2831-2838.
Alzgool, H. A., Alshbul, Z., Alfraihat, A. S., & Alzghool, H. (2021). The Effect of using Olive Oil Mill Wastewater on Bending and Compression Properties of cement mortar”. JoSE, 12(2), 85–91.
Neville, A. M., & Brooks, J. J. (1987). Concrete Technology, Longman Scientific & Technical, London, England.
DOI: 10.28991/CEJ-2022-08-02-010
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Husein A Alzgool
This work is licensed under a Creative Commons Attribution 4.0 International License.