Effect of Grain Size and Distribution on Mechanical Behavior of Dune Sand

Amel Boudia, Abdelmadjid Berga

Abstract


Sand is a major component of soils. It is widely used in manufacturing and construction. In geomechanics, one characterizes sand according to various aims. This paper investigates, for local sands, the effect of grain size and granular distribution on the mechanical behavior in terms of strength and stress-strain relationship. For this purpose, dune sands of the great Occidental Erg, from Algeria, are analyzed, according to the Mohr-Coulomb criterion. The study uses three kinds of sands. Every kind is divided into three sizes classes. Then, the experimental program conducts a set of direct shear tests, under various vertical stresses, using the small shear box (60 × 60 mm). The results show that the particle size and distribution have a direct effect on the mechanical behavior of the dune sand. Then, the dominant size class governs the natural sand behavior. Moreover, the peak shear strength increases as particle size increases. This indicates that there is an increase in peak friction angle with the increase of particles size and the sands consider as a purely cohesionless material. In addition, the experimental analysis shows that density and confinement stress is not sufficient to interpret the mechanical behavior. Indeed, mineralogy and surface state can influence the shear strength. These conclusions lead to the relevance of the sand genesis and the importance of the local materials thematic.

 

Doi: 10.28991/cej-2021-03091730

Full Text: PDF


Keywords


The Great Occidental Erg; Dune Sands; Grain Size; Direct Shear Test; Shear Strength; Mohr-Coulomb Criterion; Soil Behavior; Local Materials.

References


Gratzfeld, Joachim. “Extractive industries in arid and semi-arid zones: Environmental planning and management”. International Union for Conservation of Nature. Gland, Switzerland and Cambridge; UK, (2003).doi.org/10.2305/iucn.ch.2004.cem.1.en.

Callot, Y. A. N. N. "Evolution polyphasee d'un massif dunaire subtropical; le Grand Erg occidental (Algerie)." Bulletin de la Société géologique de France 4, no. 6 (1988): 1073-1079. doi:10.2113/gssgfbull.iv.6.1073.

Scheffel, R.L and Wernet, S.J. ”Natural Wonders of the World”. United States of America: Reader's Digest Association, Inc. (1980): 168–169.

Fontoura, Tahyara Barbalho, Olavo Francisco dos Santos Junior, Ricardo Nascimento Flores Severo, Roberto Quental Coutinho, and Paulo Leite de Souza Junior. “Unconfined Compression Strength of an Artificially Cemented Aeolian Dune Sand of Natal/Brazil.” Soils and Rocks 44, no. 1 (March 31, 2021): 1–8. doi:10.28927/sr.2021.049920.

Moulay Omar, Hassan, Belkacem Mekerta, Armelle Jarno, Saber Imanzadeh, Abdellah Alem, and Said Taibi. “Optimization of Dune Sand-Based Mixture Material for Pavement Design.” European Journal of Environmental and Civil Engineering (February 13, 2021): 1–21. doi:10.1080/19648189.2021.1877827.

Lee, Euibae, Jeongwon Ko, Jaekang Yoo, Sangjun Park, and Jeongsoo Nam. “Analysis of the Aggregate Effect on the Compressive Strength of Concrete Using Dune Sand.” Applied Sciences 11, no. 4 (February 23, 2021): 1952. doi:10.3390/app11041952.

Daheur, Elhadj Guesmia, Idriss Goual, Said Taibi, and Ratiba Mitiche-Kettab. “Effect of Dune Sand Incorporation on the Physical and Mechanical Behaviour of Tuff: (Experimental Investigation).” Geotechnical and Geological Engineering 37, no. 3 (October 9, 2018): 1687–1701. doi:10.1007/s10706-018-0715-4.

Tiwari, S. K., J. P. Sharma, and J. S. Yadav. "Behaviour of dune sand and its stabilization techniques." Journal of Advanced Research in Applied Mechanics 19, no. 1 (2016): 1-15.

Orlando, Andrés D., Daniel M. Hanes, and Hayley H. Shen. "Scaling effects in direct shear tests." AIP Conference Proceedings. Vol. 1145. No. 1. American Institute of Physics, (2009).

Zhou, Qiang, Hayley H Shen, Brian T Helenbrook, and HongWu Zhang. “Scale Dependence of Direct Shear Tests.” Science Bulletin 54, no. 23 (September 10, 2009): 4337–4348. doi:10.1007/s11434-009-0516-5.

Gan, J. K. M., D. G. Fredlund, and H. Rahardjo. “Determination of the Shear Strength Parameters of an Unsaturated Soil Using the Direct Shear Test.” Canadian Geotechnical Journal 25, no. 3 (August 1, 1988): 500–510. doi:10.1139/t88-055.

Towhata, Ikuo. “Geotechnical Earthquake Engineering.” Springer Series in Geomechanics and Geoengineering (2008). doi:10.1007/978-3-540-35783-4.

Dirgėlienė, Neringa, Šarūnas Skuodis, and Andrius Grigusevičius. “Experimental and Numerical Analysis of Direct Shear Test.” Procedia Engineering 172 (2017): 218–225. doi:10.1016/j.proeng.2017.02.052.

Islam, M. N., Siddika, A., Hossain, M. B., Rahman, A., & Asad, M. A. "Effect of particle size on the shear strength behavior of sands." arXiv preprint arXiv:1902.09079 (2011): 85-95.

Frederick, M. R. "Notes on the shape of particles and its influence on the properties of sands." Proc. of the Midland Soil Mechanics and Foundation Engineering Society (1961): 157-162.

Kolbuszewski, J., and M. R. Frederick. "The significance of particle shape and size on the mechanical behaviour of granular materials." In European Conference on Soil Mechanics and Foundation Engineering, vol. 1, (1963): 253-263.

Zolkov, E., and Go Wiseman. "Engineering properties of dune and beach sands and the influence of stress history." In Proc. of Sixth Int. Conf. on SMFE, vol. 1, (1965): 134-138.

Kirkpatrick, W. M. "Effects of grain size and grading on the shearing behaviour of granular materials." Proceedings of the sixth International Conference on Soil Mechanics and Foundation Engineering. (1965): 273–277.

Marsal, Raul J. "Mechanical properties of rockfill." in Embankemnt-Dam Engineering, R.C. Hirschfeld and S. J. Poulos, Eds. A Wiley Interscience Publication, (1973): 110-200.

Zelasko, Joseph S., Raymond J. Krizek, and Tuncer B. Edil. "Shear Behavior of Sands as a Function of Grain Characteristics." In Proc. Conference on Soil Mechanics and Foundation Engineering (1975): 55-64.

Wang, Weiguang, and Wan Li. “Particle Breakage of Coral Sand in Direct Shear Test.” IOP Conference Series: Materials Science and Engineering 794 (May 15, 2020): 012044. doi:10.1088/1757-899x/794/1/012044.

Wang, Jun-Jie, Hui-Ping Zhang, Sheng-Chuan Tang, and Yue Liang. “Effects of Particle Size Distribution on Shear Strength of Accumulation Soil.” Journal of Geotechnical and Geoenvironmental Engineering 139, no. 11 (November 2013): 1994–1997. doi:10.1061/(asce)gt.1943-5606.0000931.

Mostefa Kara, E., M. Meghachou, and N. Aboubekr. “Contribution of Particles Size Ranges to Sand Friction.” Engineering, Technology & Applied Science Research 3, no. 4 (August 11, 2013): 497–501. doi:10.48084/etasr.361.

Alias, R., A. Kasa, and M. R. Taha. "Particle size effect on shear strength of granular materials in direct shear test." International Journal of Civil and Environmental Engineering 8, no. 11 (2014): 1144-1147.

Zhang, Xiaoming, and Pejman Tahmasebi. “Effects of Grain Size on Deformation in Porous Media.” Transport in Porous Media 129, no. 1 (May 18, 2019): 321–341. doi:10.1007/s11242-019-01291-1.

Hamza, Dadi, Berga Abdelmadjid, and Khelifi Abdelghafour. "Stabilization of Expansive Soil with Coal slurry and Fly Ash." Revista Romana de Inginerie Civila 10.2 (July 2019): 97-109. doi:10.37789/rjce.

Zaouai, Said, Ahmed Tafraoui, Abdelkadir Makani, and Farid Benmerioul. “Hardened and Transfer Properties of Self-Compacting Concretes Containing Pre-Coated Rubber Aggregates with Crushed Dune Sand.” Journal of Rubber Research 23, no. 1 (November 26, 2019): 5–12. doi:10.1007/s42464-019-00030-x.

Taleb, Hosni Abderrahmane, and Abdelmadjid Berga. “Finite Element Analysis of Slope Stability Reinforced with Pile.” International Review of Civil Engineering (IRECE) 8, no. 1 (January 31, 2017): 25. doi:10.15866/irece.v8i1.11147.

Belbekri, M., B. Draoui, and A. Berga. "Hydromechanical coupling in the soil-structure interaction." Romanian Journal of Civil Engineering 11, no. 1 (2020): 70-81.

Terfaya, Nazihe, A. Berga, M. Raous, and N. Abou-Bekr. “A Contact Model Coupling Friction and Adhesion: Application to Pile/Soil Interface.” International Review of Civil Engineering (IRECE) 9, no. 1 (January 31, 2018): 20. doi:10.15866/irece.v9i1.14034.

Taylor, Donald W. Fundamentals of soil mechanics. Vol. 66. No. 2. LWW, 1948.

Skempton, A. W., and A. W. Bishop. “The Measurement of the Shear Strength of Soils.” Géotechnique 2, no. 2 (December 1950): 90–108. doi:10.1680/geot.1950.2.2.90.

Shibuya, S., T. Mitachi, and S. Tamate. “Interpretation of Direct Shear Box Testing of Sands as Quasi-Simple Shear.” Géotechnique 47, no. 4 (September 1997): 769–790. doi:10.1680/geot.1997.47.4.769.

Lings, M. L., and M. S. Dietz. “An Improved Direct Shear Apparatus for Sand.” Géotechnique 54, no. 4 (May 2004): 245–256. doi:10.1680/geot.2004.54.4.245.

Ismail, Muhd Nur, Abdul Rahman, and Sanudin Hj. Tahir. “Wave-Dominated Shoreline Deposits in the Late Miocene Sedimentary Sequence in the Miri Formation North Sarawak, Malaysia.” Geological Behavior 1, no. 2 (December 7, 2017): 14–19. doi:10.26480/gbr.02.2017.14.19.

Magnant J P. “Description, identification et classification des sols”. Laboratoire Central des Ponts et Chaussées (LCPC), Document c208, Techniques de l’Ingénieur, l’expertise technique et scientifique de référence. (1997). doi:10.1680/pcb.27602

Dołżyk-Szypcio, Katarzyna. “Direct Shear Test for Coarse Granular Soil.” International Journal of Civil Engineering 17, no. 12 (March 12, 2019): 1871–1878. doi:10.1007/s40999-019-00417-2.

Bareither, Christopher A., Craig H. Benson, and Tuncer B. Edil. “Comparison of Shear Strength of Sand Backfills Measured in Small-Scale and Large-Scale Direct Shear Tests.” Canadian Geotechnical Journal 45, no. 9 (September 2008): 1224–1236. doi:10.1139/t08-058.

Bond,A and Harris,A.” Decoding Eurocode 7”. London: Taylor & Francis. (2008): 621.

Skuodis, Šarūna, Arnoldas Norkus, Neringa Dirgėlienė, and Liudvikas Rimkus. “Determining Characteristic Sand Shear Parameters Of Strength Via A Direct Shear Test.” Journal of Civil Engineering and Management 22, no. 2 (March 1, 2016): 271–278. doi:10.3846/13923730.2015.1073174.

Ziaie Moayed, Reza, Mahdi Alibolandi, and Amir Alizadeh. “Specimen Size Effects on Direct Shear Test of Silty Sands.” International Journal of Geotechnical Engineering (July 4, 2016): 198-205. doi:10.1080/19386362.2016.1205166.

Nakao, Tomoyo, and Stephen Fityus. "Direct shear testing of a marginal material using a large shear box." Geotechnical Testing Journal 31.5 (2008): 393-403.

Shang, GuoWen, LiQiang Sun, Sa Li, XiaoLong Liu, and WenWei Chen. “Experimental Study of the Shear Strength of Carbonate Gravel.” Bulletin of Engineering Geology and the Environment 79, no. 5 (January 7, 2020): 2381–2394. doi:10.1007/s10064-019-01704-x.


Full Text: PDF

DOI: 10.28991/cej-2021-03091730

Refbacks

  • There are currently no refbacks.




Copyright (c) 2021 Amel Boudia, Abdelmadjid BERGA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message