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Abstract 

This paper investigates the capability of utilizing Multivariate Adaptive Regression Splines (MARS) and Gene Expression 

Programing (GEP) methods to estimate the compressive strength of self-compacting concrete (SCC) incorporating Silica 

Fume (SF) as a supplementary cementitious materials. In this regards, a large experimental test database was assembled 

from several published literature, and it was applied to train and test the two models proposed in this paper using the 

mentioned artificial intelligence techniques. The data used in the proposed models are arranged in a format of seven input 

parameters including water, cement, fine aggregate, specimen age, coarse aggregate, silica fume, super-plasticizer and one 

output. To indicate the usefulness of the proposed techniques statistical criteria are checked out. The results testing datasets 

are compared to experimental results and their comparisons demonstrate that the MARS (R2=0.98 and RMSE= 3.659) and 

GEP (R2=0.83 and RMSE= 10.362) approaches have a strong potential to predict compressive strength of SCC 

incorporating silica fume with great precision. Performed sensitivity analysis to assign effective parameters on compressive 

strength indicates that age of specimen is the most effective variable in the mixture. 

Keywords: Compressive Strength; Multivariate Adaptive Regression Splines; Gene Expression Programing; Self Compacting Concrete; 

Silica Fume. 

 

1. Introduction 

Concrete as one of the important construction materials has been commonly applied around the world. A number of 

accessible knowledge about concrete technology have been mostly generated in the different parts of world especially 

in the developed. Recently, special concrete types such as self-compacting concrete and high-performance concrete are 

widely applied. Among various trends and developments in building industry, the introduction of self-compacting 

concrete (SCC) represents acceptable potential and attracted interest to exploit the alternative raw materials, wastes, 

byproducts and secondary materials as mineral additives. It is commonly characterized as a special concrete which has 

desirable fluid features such as increasing flow capability, good segregation resistance and settling by its own weight 

even at the existence of congested reinforcement at deep and narrow element sections of non-conventional geometry. 

Thus, SCC has ability of consolidating itself without using the external and internal vibration during the placing 

processes. Therefore, it avoids bleeding and segregation and maintains its stability at the same time [1, 2].  

Owing to the complicated composition which is required for SCC for accomplishing its favorable features, a suitable 

mix design process is crucial taking into account the available raw materials and proportioned with different chemical 

or mineral admixtures: an optimal balance among the fine materials, coarse and chemical admixtures is the challenge to 
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improve distribution of grain size and particle packing, therefore, ensuring greater cohesiveness. Based on the [3], 

variations of mineral additives or cement because of changing the production process as well as changing the aggregate 

type may lead remarkably variations on characteristics of fresh SCC; in this way, it is crucial to have a robust mixture 

which is minimally influenced using the variability external resources. Towards that direction, the usage of powder 

industrial by-products and wastes as mineral additives for environmental friendly benefits in production of lightweight 

SCC has been paid attention of scholars as a possible way for renewable sources [4-7]. A wide variety of secondary 

materials have been proposed to be incorporated in the mix [8-13], containing fly ash (FAS), limestone powder (LP), 

ground-granulated blast-furnace slag (GGBFS), rice husk ash (RHA) and silica fume (SF), as chemical admixtures, 

viscosity modifying admixtures (VMA) and new generation of superplasticizers (SP). 

During the last decades, usage of artificial intelligence techniques for estimating and modeling a wide range of issues 

especially in civil engineering because of their advantages [14-15]. The use of artificial intelligence techniques, such as 

artificial neural network (ANN) [16], adaptive neurofuzzy inference system (ANFIS) [17-18], genetic programming 

(GP) [19-22], and support vector machines (SVMs) [23], to model the compressive behavior of concrete has received 

significant attention. The previous studies and experiences of the researchers have indicated that in addition to different 

experimental research works, using the various artificial intelligence approaches in evaluating and forecasting the fresh 

and hardened properties of the concrete has become a importance [22-24]. There are a few research literatures 

concerning modeling of the silica fume contained self-compacting concrete. Pala et al. [25] investigated the influence 

of silica fume replacement content and fly ash on the strength of concrete cured for a long-term period of time using 

ANNs. Their investigations included concrete mixes at various ratio of water cementations materials which containing 

lowest and highest volumes of FA and with or without the additional small amount of SF. 24 different mixtures with 

144 various samples had been gathered form the literature to achieve this purpose. Based on the results, ANNs had 

remarkably potential as a proper tool to evaluate the impact of cementitious material on the compressive strength of 

concrete. It was shown that FA content contributed little at early ages but much at later ages to the strength of concrete. 

Additionally, Sarıdemir [26] applied artificial neural network to model 195 specimens produced with 33 various mixture 

proportions including SF and MK. The used data in the multilayer feed forward neural networks models have been 

arranged in the form of eight input parameters which consist of the age of specimen, metakaolin (MK), silica fume (SF), 

cement, sand, water, aggregate and superplasticizer. He revealed that ANN as an artificial intelligence has highly 

potential for prediction of 1, 3, 7, 28, 56, 90 and 180 days compressive strength values of concretes including SF and 

MK.  

The main objective of this research work is building models (i.e., MARS and GEP) which can show explicit formulas 

to predict compressive strength of concrete consist of SF. Also, it is notable to say that this is the first study to predict 

compressive strength of self-compacting concrete incorporating silica fume using MARS and GEP soft computing 

approaches. In this way, a reliable comprehensive database with a wide range of mixture proportions and material 

components have been collected from prior literatures which have been published in different Journals. In the proposed 

models, the inputs considered from the literature consist of parameters which effect on the compressive strength (such 

as water, cement, fine aggregate, specimen age, coarse aggregate, silica fume and superplasticizer). After it, the variables 

with significantly statistical contribution for the models estimation are determined. Additionally, sensitivity analysis 

(SA) was performed for determining the most effective parameters.  A summary of the experimental database is provided 

in Section 2. Details of the predictive machine learning approaches adopted in this study are presented in Section 3. 

Discussions on the development processes of the proposed models, and a comparison of model predictions statistics of 

the proposed and the sensitivity analysis of the input variables are supplied in Section 4. Finally, Section 5 consisting a 

summary and conclusion of outline results is given. 

2. Compressive Strength Data Set 

The core objective of this study is developing MARS and GEP approaches to predict hardened properties of SCC 

containing SF. In most previous research, all applications predict one property of concrete through a large number of 

components. The primary goal in this model is to predict a large number of outputs from a limited number of inputs, the 

more we can predicted a number of properties of SCC from a limited number of its components as much as possible, 

the model will be successful and applicable in the field. Sufficient data are collected to build a database consisting a set 

of data on silica fume SCC mixtures. The data were obtained from different sources and used for training and testing 

the proposed models. To construct these models, a total number of 142 different experimental data was assembled from 

the literature [27-33]. 

The data used in the proposed models are arranged in a format of seven input parameters that cover the cement, water, 

fine aggregate, coarse aggregate, age of specimen, superplasticizer, and silica fume. It is clear that that the techniques 

derived utilizing the GEP, MARS or other similar methods, in most cases, have a predictive possibility within the data 

range used for their development. The amount of data used for the training process of the GEP and MARS methods 

bears heavily on the reliability of the final models. The majority of previous works construct a database from their 

experimental results, so the results are limited just for their environment, but our database is built from many different 
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sources of data including the literature in different countries; moreover, it can be applied in a wider area. The boundary 

values for input and output variables used in the GEP and MARS models are listed in Table 1. 

Table 1. Mix components and inputs and outputs range of model 

Components Abbreviation Minimum Maximum Average 

Input variables 

Cement (kg/m3) PC 360 570 452.18 

Water (kg/m3) W 135 205 162.71 

Silica fume (kg/m3) SF 0 90 24.5 

Super plasticizer (kg/m3) SP 0 43 14.98 

Fine aggregate (kg/m3) F.A 648 1157 814.95 

Coarse aggregate (kg/m3) C.A 595 1087 924.92 

Age of sample (day) AS 1 180 42.61 

Output variable 

Compressive strength (MPa) FC 24.5 115.6 75.33 

Moreover, the input parameters are distributed in different ranges in a homogeneous form for training the model as 

shown in Table 2. 

Table 2. Distribution of inputs in the data base 

Cement Water Silica fume Superplasticizer Fine aggregate Coarse aggregate AS 

Range Freq Range Freq Range Freq Range Freq Range Freq Range Freq Range Freq 

360-413 24 135-153 61 0-23 21 0-9 65 648-775 86 595-718 25 1-46 97 

414-465 60 154-170 24 24-45 60 10-21 42 776-903 8 719-841 23 47-90 31 

466-517 50 171-188 46 46-68 41 22-38 12 904-1030 25 842-992 16 91-135 4 

518-570 8 189-205 11 69-90 20 38-43 23 1031-1157 19 993-1087 76 136-180 10 

3. Predictive Machine Learning Approaches 

In present study, the two heuristic machine learning methods, GEP and MARS, which are applied in prediction of 

compressive strength of SCC, are briefly described as follows. 

3.1. Gene Expression Programing 

Recently GEP as a new method of artificial intelligence techniques was developed which is extended from GP 

approach. The GEP is a searching model which evolves computer programs in forms of decision trees, mathematical 

expressions, and logical expressions [34-36]. Furthermore, GEP technique has attracted the attention of researches in 

characterizations prediction in civil engineering problems. In this study, GEP model based formulation has been applied 

for predicting the compressive strength of self-compacting concrete (SCC) incorporating Silica Fume (SF). The GEP 

model is coded as linear chromosomes that are expressed to Expression Trees (ETs).  

It is a fact that ETs are complicated computer programming which are usually evolved for solving a practical issue, 

and are considered on the basis of their fitness at solution of that issue. The corresponding mathematical expressions 

can be extracted from these tree structures. the ETs population will discover traits. Thus, they will adapt to the particular 

problem which they are recruited in order to solve [34, 35, and 37]. 

   GEP development contains five steps. At First, fitness function, fi, of an individual program (i) is determined as 

follows:  

𝑓𝑖 =∑(𝑀 − |𝐶(𝑖,𝑗) − 𝑇𝑗 |)

𝐶𝑖

𝑗=1

 (1) 

In which  , 𝐶(𝑖,𝑗) , and 𝑇𝑗   are the selection range, value given by the individual chromosome i for fitness case j, the 

largest value for fitness case j.  

After that, the set of terminals T and function F were determined so as to generate the chromosomes. In this study, the 

terminal as seven independent parameters have been shown as 
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 𝑇(𝐶𝑆) = {𝑊, 𝐹𝐴, 𝐶𝐴, 𝐶, 𝑆𝐹, 𝑆𝑃, 𝐴𝑆} (2) 

In order to find the proper function set, it is important to peer review previous evaluation of compressive strength. In 

this regards, basic mathematical functions (√, power, exp) and four basic operators (+, -, *, /) have been used to forecast 

the compressive strength. In the third step, chromosomal architecture is configured. Selection of liking function is stood 

in the fourth step. At the final step, the genetic operators which case variation and their rate is selected. 

3.2. Multivariate Adaptive Regression Splines 

Multivariate adaptive regression spline (MARS) is a non-linear and non-parametric regression method that presented 

by Friedman [38]. It is constructed by non-linear responses between a system input and output using a set of splines 

(piecewise polynomials) with different gradients. There is no need a permanent assumption about basic functional 

relationship between input and output variables. Endpoints of the segments are called nodes. A node defines endpoint 

of an area of data and beginning of another area of data. Resulted splines (known as base functions) provide more 

flexibility for the model and consider curvatures, thresholds and other deviations of linear functions (Friedman 1991). 

MARS method creates basis functions (BFs) by step searching. Adaptive regression algorithm is used to select nodes 

position. MARS models are created via a two-step method. In first step, functions are added up and probabilistic nodes 

are found for performance improvement led to a model with a perfect curve fitting (primary phase). Second step involves 

removal of minimum real terms (secondary phase). In this method, an open source code from Jacobson's is applied to 

conduct the analysis presented in this paper [39]. 

Suppose y is a deterministic output and X = (X1, ... , Xp) is input variable matrix, P. Thus, it is considered that data 

are obtained from an unknown “real” model. Consequently, the response is as follows:  

𝑦 = 𝑓(𝑋1,… ,𝑋𝑝) + 𝑒 = 𝑓(𝑥) + 𝑒 (3) 

Where, e is error distribution. MARS is used to approximate function f by employing basis functions (BFs). Basis 

functions are referred to splines (smooth polynomials) comprising piecewise-linear functions and piecewise-cubic 

functions. In this study, piecewise-linear functions are employed, thus these functions are explained in the following. 

Piecewise-linear functions are a type of max (0, x-t), where a node is located on t value. max(.) denotes that only 

positive part of (.) is used; otherwise, it is zero. 

max(0, 𝑥 − 𝑡)     {
𝑥 − 𝑡           𝑖𝑓 𝑥 ≥ 𝑡
0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

          (4) 

MARS Model is a linear combination of BFs and their mutual relations which is expressed as follows:  

𝑓(𝑥) = 𝛽0 + ∑ 𝛽𝑚

𝑀

𝑚=1

λ𝑚(𝑥)              
(5) 

Where, λm is smoothing parameter. Each λm(x) is a basis function which might comprise one spline function or product 

of two or more spline functions (data might impose using higher degrees; here maximum a second degree is considered). 

Coefficients β are constant and can be estimated using least squares method. MARS modeling stems from data. First, 

primary method is applied to training data for fitting model of (4). This method which is created in width of β0 and basis 

couple, results in maximum reduction of training error.  Next model is added to the model, based on present model of 

basic function M: 

 𝛽̂𝑀+1𝜆1(𝑋)max(0, 𝑋𝑗 − 𝑡) + 𝛽̂𝑀+2𝜆1(𝑋)max(0, 𝑡 − 𝑋𝑗) 
(6) 

Where least squares method is used to estimate. Mutual effects between BFs which are present in the model are also 

considered, since the basis function is added to model space. Then BFs are added to the model to obtain the maximum 

number of terms which results in a perfect fitness model. Then a secondary removal discipline is employed to reduce 

number of terms. This removal method is applied to find a model which is closest to optimal range by eliminating 

extraneous variables. In this method, BFs with minimum contribution to the model are eliminated to find the best sub-

model. Therefore, BFs selected from set of all BFs which were used in primary selection step, comprise the final 

optimized model.  Generalized cross validation (GCV) method is used to compare subsets of the model due to its low 

computational cost. The test equation which is an adaptive amount is used to approximate high dimensional BFs for 

decreasing perfect fitness probability. N observations are used to calculate GCV of the training data model [40]. 

GCV =

1
N
∑ [yi − f(xi)]
N
i=1

2

[1 − 
M + d × (M − 1)/2

N
]
2  (7) 
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Where M is the number of BFs, N is the number of observations, d is the estimation parameter, and f (xi) represents 

values predicted for MARS model. Average errors of evaluated training data model’s squares are the numerator which 

is estimated as a fraction. The numerator increases complexity of the model by assuming an ascending variance. It is 

worth mentioning that (M-1)/2 is the number of nodes of the basis function. GCV not only estimates the number of BFs 

of a model but also it estimates the number of nodes [41, 42]. In order to minimize (4), one BF is eliminated in each 

removal step such that the presented model is fitted sufficiently. MARS is an adaptive technique, since BFs and positions 

of variable node are selected by data-driving and are specific for each problem. 

3.3. Evaluation Metrics 

Models for predicting the expansion strain of SCC should be evaluated in a proper way. In this study, the models 

constructed according to the GEP and MARS were statistically measured with the following index [43]: 

(1) Coefficient of determination (R2) 

𝑅2 = 1− (
∑ (𝑂 − 𝑃)2𝑁
𝑖=1

∑ 𝑃2𝑁
𝑖=1

) (8) 

(2) Root mean squared error (RMSE) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑃 − 𝑂)2

𝑁

𝑖=1
 (9) 

(3) Mean absolute percentage deviation (MAPD) 

𝑀𝐴𝑃𝐷 =
100%

𝑁
∑ |

𝑃 − 𝑂

𝑃
|

𝑁

𝑖=1
 (10) 

Where O is the measured value of compressive strength, P is the predicted value of compressive strength, and N is the 

number of dataset sample. 

4. Results and Discussion 

In this section, the reliability, the effectiveness and the robustness of the proposed models, for the finding of the 

optimum solution, are compared each other using statistical metrics. 

4.1. GEP Development 

In this study, compressive strength characterizations are estimated by applying the GEP model. Moreover, the 

functional set and the operational parameters recruited in the GEP models are reported in Table 3.  

Table 3. Parameters of the optimized GEP model  

Parameters Description of parameters Setting of parameters 

P1 Function set +,-,×,/,exp, power 

P2 Mutation rate 0.138 

P3 Inversion rate 0.546 

P4 One point and two point recombination rate 0.277 

P5 Gene recombination rate 0.277 

P6 Gene transportation rate 0.277 

P7 Maximum tree depth 6 

P8 Number of Gene 3 

P9 Number of Chromosomes 30 

To predict the compressive strength, the best possible individual in each generation were 30 chromosomes. The best 

ETs of compressive strength predicted which returned by GEP model is represented by Figure 1. 

 



Civil Engineering Journal         Vol. 4, No. 7, July, 2018 

1547 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. GEP model in CS prediction 

 In addition, the relationship between input and output variables which returned by ETs of GEP is expressed as. 

(√((𝑑4 − 𝑑6) × √𝑑6) − 𝑑0) + 𝑑6) +

(

 
 √
√𝑑6 − (

𝑑4
𝑑4
)

𝑑6 + 𝑐5
× 𝑑5

)

 
 
+ (√((𝑑4 + 𝑑4) + (𝑐0 + 𝑑4)) + ((𝑑3 + 𝑑4) + (𝑐0 + 𝑑4))) (11) 

In Figure 3, constant values illustrated in ETs are G2C5=5.63 and G3C0=-903.47, and the actual variables are the d0=W, 

d3=SP, d4=C, d5=SF, and d6=AS. 

4.2. MARS development 

An open source code of MARS (ARESLab) from Jekabsons [39] which develops the main functionality of the MARS 

model for regression proposed in (Friedman, 1991), is applied to perform the analysis described in this study. Table 4 

illustrated that MARS analytical details containing numbers of interactions in the final model, basis functions (BFs), 

GCV value and so on. This study also used a 10-fold cross-validation technique for avoiding the model performance 

assessment bias. To identify crucial variables and interactions among the variables in high-dimensional models, 

decomposition of Analysis of variance (ANOVA) that is a well-known statistics method has been carried out for the 

model by help of the training dataset. 
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Table 4. Different parameters of the MARS model 

Parameters Values 

Output Compressive strength (FC) 

Type of BFs Piecewise-linear 

Max function 45 

Number of BFs 20 

Generalized cross- validation 46.25 

Self- interactions Yes 

Max interactions 2 

Threshold 1.0000e-04 

Prune Yes 

Execution time 16 sec 

During the preparation of MARS model, firstly, 30 basic functions were selected and after it (pruning step), 11 basic 

functions were pruned. Finally, optimum MARS model with 19 basic functions was determined. Pruning benchmarks 

which were introduced with GVC parameter in the MARS development were equal to 0.0063. According to section of 

MARS review which mentioned previously, every basic function has coefficient and constant values which were 

adjusted in development process of MARS technique by the least square method. Moreover, the details of BFs for CS 

are represented by Table 5. Based on this Table, the fast processing of MARS model is obvious. The interpretable MARS 

method for compressive strength prediction for 28 days ages of SCC including silica fume is described as: 

CS =  −304 − 2.99 × BF1 + 0.318 × BF2 − 3.18 × BF3 + 0.495 × BF4 + 3.45 × BF5 + 13 × BF6 − 32.7 × BF7 − 15.8
× BF8 + 0.0105 × BF9 + 0.0447 × BF10 + 0.198 × BF11 − 0.0537 × BF12 + 0.0535 × BF13 − 4.1
× BF14 + 0.16 × BF15 − 0.00945 × BF16 + 0.0106 × BF17 − 0.16 × BF18 + 0.161 × BF19    

(12) 

The rejection or admission of proposed techniques was investigated using their ability for CS estimating. In order to 

test the model accuracy, a comparative study had been carried out in terms of R2, RMSE, and MAPD benchmarks.  

Figure 2 and 3 showed the fitting sufficiently and error indices of the proposed techniques to forecast CS in training 

and testing stages. 

Table 5. Basis functions and related equations of MARS model for compressive strength 

Basis function Equation 

BF1 max(0, 7 - AS) 

BF2 max(0, 896 - CA) 

BF3 max(0, 680 - FA) 

BF4 max(0, SP - 8) 

BF5 max(0, 8 - SP) 

BF6 max(0, AS - 3) 

BF7 max(0, 3 - AS) 

BF8 max(0, AS - 28) 

BF9 max(0, FA- 680) * max(0, AS - 28) 

BF10 max(0, FA - 680) * max(0, 28 - AS) 

BF11 BF7 * max(0, 720 - FA) 

BF12 max(0, 28 - AS) * max(0, FA - 958) 

BF13 max(0, 28 - AS) * max(0, 958 - FA) 

BF14 max(0, PC - 437) 

BF15 BF6 * max(0, PC - 437) 

BF16 BF6 * max(0, FA - 948) 

BF17 BF6 * max(0, 948 - FA) 

BF18 BF14 * max(0, AS - 28) 

BF19 BF14 * max(0, 28 - AS) 
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As clearly seen in Figure 2 and 3, CS predicted values which provided by Equation 12 were remarkably closer to 

perfect line in comparison with that of GEP model. Additionally, the most of CS estimated using MARS and GEP 

models have a relative error below and over 20%, respectively. It means that the Equation 12 returned by MARS 

provides the permissible prediction. 

Figure 2. Scatter plot of observed and predicted CS for training of the proposed models 

Figure 3. Scatter plot of observed and predicted CS for testing of the proposed models 

The comparison values of CS observed versus predicted ones for MARS and GEP is presented by Figure 4. Based on 

Figure 4, it is obvious that MARS model had better performance for local maximum and minimum of data point of CS 

forecasting in comparison GEP model. Predicted and observed differences of CS related to GEP model also indicated 

that this model was not as a suitable tool for CS estimating. 

Figure 4. Residual values of MARS and GEP models 

Moreover, Comparisons of computed R2, RMSE and MAPD values between GEP and MARS models for training and 

testing stage are presented in Table 6,  According to Table 6, GEP model with lower R (0.83) and higher RMSE (10.362) 
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values could not provide CS values comparing to MARS model with R2=0.98 and RMSE=3.659. in addition, MAPD 

computed by MARS model was 66.69% lower in comparison with computed this value using GEP model. 

In testing stage of CS predicting, the MARS model with R2=0.939, RMSE=6.327, MAPD=7.437 had higher precision 

than GEP model (R2=0.81, RMSE=7.982, MAE=8.635). Generally, it can be said that the MARS method as a useful 

tool could predict compressive strength of the SCC including SF. 

Table 6. Results of performances for proposed models  

MARS GEP 
Statistics metrics 

Testing Training Testing Training 

0.883 0.98 0.81 0.83 R2 

6.327 3.659 7.982 10.362 RMSE 

7.437 4.657 8.635 13.981 MAPD 

4.3. Sensitivity Analysis 

To determine input variable which has highly influence on the output, MARS approach was selected to perform a 

sensitivity analysis. The analysis was conducted such that, one parameter of effective variables on prediction of CS was 

removed each time to investigate the effect of that input on output. The sensitivity value (%) of the dependent variable 

to each independent variable is computed using Equation 13 and 14 as: 

𝑁𝑖 = 𝑓𝑚𝑎𝑥(𝑥𝑖) − 𝑓𝑚𝑖𝑛(𝑥𝑖) (13) 

𝑆𝑖 =
𝑁𝑖

∑ 𝑁𝑗
𝑛
𝑗=1

× 100 (14) 

Where 𝑓𝑚𝑎𝑥(𝑥𝑖) is the maximum of the estimated output and fmin (xi ) is the minimum of the predicted output over the 

ith input domain, where other variables are equal to their mean values. The result of sensitivity analysis via the proposed 

MARS is represented in Figure 5. Results of the analysis demonstrated that AS is the most effective parameter on the 

compressive strength of SCC containing silica fume and W has the least influence on the CS. The other effective 

parameters on the CS according to their rank can be seen in Figure 5. 

Figure 5. Relative importance input variables in sensitivity analysis with MARS 

5. Conclusion  

This study evaluated the feasibility of utilizing GEP and MARS models to estimate 28 days compressive strength of 

SCC containing metakaolin. Proposed approaches were developed using 117 data sets consist of mixture proportions 

specification. Compressive strength at 28 days was considered as output while C, C.A, F.A, MK, W and B were selected 

as inputs. MARS method by providing 12 basic functions could predict CS28. Whereas, GEP model could build 3 ETs 

in order to estimate it.  The compressive strength values estimated at training and testing stages by multivariate adaptive 

regression   splines were equal to (R=0.989, RMSE=3.659, MAPD=4.657) and (R=0.939, RMSE=6.327, MAPD=7.437) 

respectively, indicated high ability of MARS model compared to results given by GEP approach at training (R=0.911, 
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RMSE=10.362, MAPD=13.981) and testing and (R=0.90, RMSE=7.982, MAPD=8.635) respectively. Finally, 

sensitivity analysis was conducted for evaluating the effect of input variables on CS28 forecasting. Regarding to the 

results of sensitivity analysis, AS variable was selected as important input for prediction of CS28. The work presented 

in this paper demonstrates the ability of the soft-computing methods to predict the behavior of SCC, which provides the 

designers and researchers with an alternative technique to conventional methods. 
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