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Abstract 

This study illustrates the benefits of data pre-processing through supervised data-mining techniques and utilizing those 

processed data in an artificial neural networks (ANNs) for streamflow prediction. Two major categories of physical 

parameters such as snowpack data and time-dependent trend indices were utilized as predictors of streamflow values.  

Correlation analysis of different models indicate that, for the period of January to June, using fewer predictors led to 

simpler modeling with equivalent accuracy on daily prediction models. This did not hold in all periods. For monthly 

prediction models, accuracy was improved compared to earlier works done to predict monthly streamflow for the same 

case of Elephant Butte Reservoir (EB), NM. Overall, superior prediction performance was achieved by utilizing data-

mining techniques for pre-processing historical data, extracting the most effective predictors, correlation analysis, 

extracting and utilizing combined climate variability indices, physical indices, and employing several developed ANNs for 

different prediction periods of the year. 

Keywords: Artificial Neural Networks; Data Mining; Streamflow Prediction; Reservoir Management. 

 

1. Introduction 

Elephant Butte Reservoir, a multi-objective reservoir, provides electrical power and water for south-central New 

Mexico and West Texas, including irrigation water for 68,708.25 ha (169, 650 acres) of farmland. Caballo Reservoir, 

located 40.25 km (25 miles) downstream of Elephant Butte Reservoir, is fed primarily by water released from Elephant 

Butte Reservoir and provides direct release of irrigation water downstream into the Rio Grande Project during the 

primary cropping season. Consequently, the two reservoirs can be represented as an integrated control volume, whose 

streamflows, outflows, and storage volume can be simulated simultaneously. A reliable release plan from Caballo 

Reservoir to meet existing water demands downstream in the Rio Grande Project directly depends on the Caballo 
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Reservoir’s storage level, whose optimal operation plan must be developed under uncertain conditions. In addition, 

providing the optimal storage levels in both reservoirs can minimize total evaporation loss from both reservoirs. Such 

optimization requires accurately estimating streamflow volume to the reservoir and considering the control volume 

elements in both reservoirs. Based on the geometric characteristics of both Elephant Butte and Caballo Reservoirs, 

increasing the water storage volume has different effects on the surface areas of each reservoir. Therefore, since water 

surface area directly correlates to evaporation loss, selecting the appropriate reservoir to store specific water volumes in 

operational periods is a critical decision. In addition, the streamflows to the reservoirs should be predicted to anticipate 

the storage level variation in the reservoirs. The initial operation plans based on optimization are defined for seven days 

ahead, 15 days ahead, and one month ahead, based on the predicted values for streamflow to the Elephant Butte 

Reservoir and related parameters of the control volume. These parameters include evaporation volumes from both 

Elephant Butte and Caballo Reservoir; tributary streamflows to the reservoirs; and seepage volume from both reservoirs. 

The developed prediction models are incorporated in a decision support system that uses the predicted values for 7 days 

ahead, 15 days ahead, and one month ahead to provide the optimal release plans from Elephant Butte Reservoir into the 

Caballo Reservoir. The study area has been shown in Figure 1.  

Neural networks are widely used to predict dependent variables and they are suitable for addressing objectives 

identified in this study. Liao et al. (2012) investigated applied data mining techniques through research from 2000 to 

2011, and their study shows that artificial intelligence has been utilized significantly and successfully for different types 

of prediction models. Generally, neural networks utilize several effective criteria (observations) for a dependent target 

parameter to conclude its value [1]. The application of neural networks has been widely studied by several researchers 

who investigate how different neural network characteristics would change the processing cost and computational time 

[1, 2, and 3]. 

Neural networks are mainly used for linear and nonlinear regressions and as classification methods where prediction 

is done based on the linear and nonlinear combinations of the input variables. After the training process which optimizes 

the ANNs, the output values are estimated as a non-linear function of the weighted sum of the input values.  Labadie’s 

review study (2004) shows that ANNs have been widely used as an alternative to multiple regression models, and ANNs 

are an appropriate method for finding patterns in data and classifying nonlinear systems [4]. Although some 

classification techniques such as Decision Trees (DTs) produce decision rules, which are more transparent for 

categorizing and prediction purposes, ANNs are more powerful in mapping nonlinear relationships between the effective 

parameters and the dependent target values [4, 5].   

ANN models have long been used by several researchers to predict daily streamflow, monthly streamflow, water 

quality, water level on the river, rainfall-runoff relationships, calculating solitary wave run-up, and several specific 

hydraulic characteristics [4, 6-14]. Researching the same study area of this study, Abudu et al. (2010) utilized ANN to 

forecast monthly streamflow for Rio Grande basin through spring-summer runoff season.  Stedinger et al. (1984) found 

that utilizing a long period of historical data results in more accurate streamflow prediction models. In addition, they 

showed that adding the snowpack data significantly improves the prediction accuracy [15]. Along with the ANN, hybrid 

models have been widely used to predict the streamflow and future strategic planning of different resources [16-20]. 

Humphery et al. (2016) utilized a hybrid approach of Bayesian networks and neural networks for streamflow prediction 

[12]. Faruk (2010) used a hybrid ARIMA and neural networks to predict the water quality time series data [21]. 

In most of the previous studies, where an ANN were applied, the effective parameters on the target values were 

recognized and utilized as predictors. Since there are hundreds of available potential input variables for stream 

streamflow forecasting, more robust and complex statistical analysis are required in selecting the effective parameters 

as predictors and designing the structure of the neural networks to improve prediction accuracy. In this study, we utilized 

physically-based conceptual relationships between the effective parameters on the target values and extracted the 

existing time-dependent’s trend parameters through the historical stream streamflow data. Applying these two concepts 
improved the prediction accuracy. Different configurations of predictors were utilized to build dozens of Artificial 

Neural Networks models, and the predictors included daily observed stream streamflow values; temperature; month 

number; season number; snowpack indices, including snow telemetry precipitation data and snow water equivalent 

(measured in 12 snow telemetry stations); previous year’s streamflow (previous year for the predicted year); average 

streamflow of previous 2 years (previous 2 years for the predicted year; the average streamflow of previous 5 years 

(previous 5 years for the predicted year); and number of days in the predicted month. In the materials and methods 

section, the procedure of extracting the trend parameters is described. Finally, the effective parameters including 

physical parameters, time parameters, and trend parameters were utilized to develop the streamflow prediction models. 

Extracting and utilizing the climate variability indices along with neural networks led us to a superior prediction 

performance for stream flow values through different times of the year. 
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Figure. 1. Study watershed area, SNOTEL sites, and Rio Grande upstream of Elephant Butte Reservoir 

In addition, prediction analysis for a specific period of the year is crucially important: having an annually accurate 

prediction model does not mean it is an accurate model for each specific period of the year (each individual month). 

Most of the time, because of agricultural, environmental and industrial purposes, a separate model should be developed 

for each individual prediction period. Therefore, this study develops several prediction functional models for several 

considered prediction periods. We utilized Artificial Neural Networks (ANN) as an appropriate forecast model for this 

case of study since reviewed ANN studies that produced superior modeling results. We employ ANNs to develop 

prediction models that forecast the daily (7 days ahead and 15 days ahead) and monthly stream flows to Elephant Butte 

Reservoir. The developed prediction model builds on a large body of work in data mining techniques, which are utilized 

to classify, predict or extract existing knowledge from historical data.  The remainder of the paper is organized as 

follows. Section 2 describes the material and methods. Then we report the numerical results in Section 3. In the last two 
sections we present our discussions and conclusions. 

2. Material and Methods 

After considering the conceptual relationships between the physical parameters and the streamflow magnitude, we 

applied several data mining techniques to select the most appropriate predictors and prediction models. Neurosolution 

6.0 was utilized to develop the ANN as predictive models. To develop the ANN model, the effective variables were 

selected through both correlation analysis and a network modeling process. Historical data from 1961 to 2015 were 

processed and utilized to develop both monthly and daily streamflow prediction models for the Elephant Butte Reservoir. 

Two major physical parameters and time-dependent trend indices were utilized as predictors of streamflow values. Time-

dependent trend indices were extracted through data processing and data mining techniques. The selected physical 

variables were snow water equivalent (SWE), temperature, precipitation indices, and daily and monthly streamflow 

values; the temporal variables were the month and the day of the month. Additionally, to model the existing trend in the 

historical data, three additional indices were defined, based on the magnitudes of the yearly streamflow of the past year, 

the average streamflow of the past 2 years, and the average streamflows of past 5 years. The magnitudes for these indices 

were classified through 10 different classes. The values of 10 and 1 represent the highest streamflow magnitude and the 

lowest streamflow magnitude, respectively. Based on the feedforward NN, the input variables were fed to the nodes 

(neurons) on the input layer. Considering the accuracy analysis, the optimal network was designed for different 

prediction models, for which a more detailed procedure is described in sections 2.1, 2.2, and 3. 
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2.1. Artificial Neural Networks 

Neural networks are computational prediction models, which were developed based on inspiration from functionality 

of the human brain, which can identify the complex relationships between input and output values and recognize patterns 

among the input and output values [22- 26]. In prediction models, neural networks are generally presented through 

interconnected neurons, which utilize portion of some data as training data to compute future values. In this context, 

historical data may be used to train the model to predict future outcomes. To develop an accurate neural network, the 

most meaningful information should be utilized. Depending on the simplicity or complexity of the relationships, simple 
and complex models can be examined to find the best model representing the relationships between the predictors and 

predicted values [22, 23]. Basically, the best model of the network depends on not just the quality of the utilized data, 

but on informed trial and error process to obtain the best model that reveals the hidden relationships in the data. 

Considering these requirements, we utilized a feed-forward network of ANN, which is the most commonly used ANN 

model. Figure 2 illustrates a typical structure of an ANN model with one input layer, one hidden layer, and one output 

layer. 

 

Figure 2. Typical structure of a feedforward neural networks (FFNN) model including one input layer, one hidden layer, 

and with one output layer [22, 23]  

The output values in three-layered feedforward neural networks (FFNNs) are generally driven based on the nonlinear 

transformation of linear combinations of input parameters as described by Kim and Valdes (2003), in which the output 

values explicitly expressed as follows [23, 24]: 

𝑦̂𝑘 = 𝑓0[∑ 𝑤𝑘𝑗 . 𝑓ℎ (∑ 𝑤𝑗𝑖𝑥𝑖 + 𝑤𝑗0

𝑁

𝑖=1

) + 𝑤𝑘0

𝑀

𝑗=1

] 
(1) 

Where wji is the assigned weight that connects the ith neuron from input layer to the jth neuron of the hidden layer; 

wj0 is the bias value assigned to the jth neuron in the hidden layer; fh is the assigned activation function applied on the 

hidden neurons; wkj is the assigned weight that connects the jth neuron of the hidden layer to the kth neuron of the 

output layer;  wk0 is the bias value assigned to the kth neuron in the output layer; and f0 is the assigned activation 

function applied on the output neurons: 

E(n) =
1

2
∑ ∑[ypk(n) − ŷpk(n)]2

L

k=1

N

p=1

 
(2) 

Where N is the number of inputs (observations); L is the number of predicted outputs; 𝑦𝑝𝑘(𝑛) is the actual or desired 

target values; and 𝑦̂𝑝𝑘(𝑛) is the value predicted by the network for the 𝑘th neuron through 𝑛th iteration [22, 23]. 

2.2. The Characteristics of Developed ANNs 

In this study, we utilized available daily and monthly data from 1961 to 2015. In most of the analysis, 60%, 15%, and 

25% of data were used as training, cross validation (CV), and testing datasets, respectively. The hyperbolic tangent 

function was utilized as activation function through the hidden layer, and a linear function was selected as the activation 

function in the output layer. Considering the convergence speed, stability in the learning process, and learning error 

values, the Momentum was selected as a learning rule for updating the weights through all the designed networks. For 

the training process, step size and momentum were taken as 1 and 0.7, respectively. 
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In most of the designed ANNs, defining one hidden layer derived higher accuracy. Based on the training process monitoring, the maximum number of epochs were selected as 

1000 to 5000 epochs in separate models. The appropriate number of nodes (neurons) on the hidden layer was obtained through a trial and error process. Then, based on the accuracy 

performance (error magnitude), in most of the designed ANNs, 12 to 15 nodes were assigned to the hidden layer. Based on the accuracy performance of the developed models, training, 

cross validation, and testing procedures, the optimal ANN prediction models were selected. Finally, three categories of daily prediction models for the annual period, the January to 

June season, and the March to April season were introduced. 

3. Numerical Results 

3.1. Correlation analysis 

Regression analysis were performed between each individual predictor and predicted future daily streamflow values to investigate the existing significant correlation between the 

predictors and the future predicted values [22, 23]. To investigate the effectiveness of different predictors on predicted streamflow values, we analyzed several linear regression models 

between each individual predictor and the predicted streamflow values as suggested in the literature [23]. Table 1 illustrates the statistical test results of the developed linear regression 

models. The results indicate whether each individual predictor has a statistical significant effect on the predicted value or not. In addition, the effects of the SWE for the months of 

January to June on the monthly streamflow values were investigated. 

Table 1.  Examined T-test analysis for regression analysis between each individual considered predictor and predicted daily streamflow values 

Note: the bold values indicate the non-significant correlation between the predictors and the daily streamflow values through different future time steps ahead. The P-values are compared with the Alpha-

level of 0.05. P-values less than Alpha-level = 0.05 indicate the significant existing correlation between the predictors and the predicted streamflow values. The P-values greater than the Alpha-level = 

0.05 indicate that the evaluated parameter statistically does not have significant correlation with the related predicted streamflow value.  

P-value 𝐼𝑡1  𝐼𝑡2  𝐼𝑡3  𝐼𝑡4  𝐼𝑡5  𝐼𝑡6  𝐼𝑡7  𝐼𝑡8  𝐼𝑡9  𝐼𝑡10  𝐼𝑡11  𝐼𝑡12  𝐼𝑡13  𝐼𝑡14  𝐼𝑡15  

MI 3.53E-05 1.14E-06 2.03E-08 1.23E-10 1.88E-13 7.08E-17 2.36E-20 1.37E-24 5.2E-29 7.73E-34 3.57E-38 4.6E-42 5.66E-46 3.78E-50 4.25E-54 

DI 0.27680 0.21027 0.08612 0.01013 0.00141 0.00013 7.26E-05 0.00082 0.00682 0.04620 0.16539 0.45628 0.98537 0.45779 0.20748 

PY 0.003 7.46E-06 9.03E-09 1.35E-11 1.48E-14 1.24E-17 1.01E-20 4.58E-23 1.61E-25 4.34E-28 9.74E-31 4.31E-33 2.83E-35 1.89E-37 1.43E-39 

P2Y 0.10976 0.01473 0.00220 0.00029 4.99E-05 7.99E-06 1.53E-06 4.03E-07 1.21E-07 3.76E-08 1.3E-08 4.92E-09 1.94E-09 8.62E-10 3.97E-10 

P5Y 0.03902 0.00471 0.00057 7.29E-05 9.16E-06 1.14E-06 1.64E-07 2.58E-08 4.18E-09 6.53E-10 1.04E-10 1.98E-11 3.6E-12 7.35E-13 1.88E-13 

SI 2.31E-05 1.46E-07 1.23E-09 6.06E-12 9.03E-15 5.26E-18 2.56E-21 2.72E-25 1.67E-29 3.98E-34 2.15E-38 5.72E-42 2.08E-45 4.07E-49 1.66E-52 

PM−1 0.80880 0.90004 0.91807 0.96412 0.99423 0.97066 0.90145 0.74373 0.65389 0.65105 0.702657 0.816241 0.967637 0.994966 0.9839 

PM−2 0.222195 0.132627 0.056644 0.017911 0.002793 0.000425 6.48E-05 1.18E-05 2.9E-06 1.13E-06 5.93E-07 6.04E-07 5.46E-07 3.48E-07 2.47E-07 

SWE 5.75E-20 7.74E-37 3.6E-55 2.38E-75 6.49E-96 8.9E-118 8.8E-140 2.7E-155 1.9E-171 7.4E-188 2.3E-203 4.6E-217 3.6E-230 2.6E-242 2.5E-253 

SWEEm∗  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

It 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Table 2 shows the correlation coefficients between SWE indices through the months of January to June of the basin an 

monthly streamflow.  

Table 2. Correlation coefficients between the SWE indices through months of January to June and monthly streamflow (used 

historical data: 1961–2015) 

Month Jan. 1 Feb. 1 Mar. 1 Apr. 1 1-May Jun. 1 

Jan. 0.138      

Feb. 0.154 0.169     

Mar. 0.341 0.407 0.468    

Apr. 0.403 0.575 0.658 0.662   

May 0.429 0.666 0.715 0.864 0.782  

Jun. 0.416 0.664 0.695 0.810 0.762 0.446 

Jul. 0.353 0.457 0.460 0.587 0.602 0.506 

Aug. 0.154 0.072 * 0.012 0.114 0.094 

Sep. 0.108 0.153 0.150 0.144 0.152 0.062 

Oct. 0.185 0.232 0.188 0.157 0.161 * 

Nov. 0.345 0.311 0.247 0.358 0.476 0.371 

Dec. 0.415 0.479 0.463 0.583 0.664 0.548 

Note: In Table 2 and 3, the star sign (*) indicates that there is not significant correlation between the SWE values 

and related daily values in different months. 

Some models can be accurate in the training process with a lower amount of error and a higher regression coefficient 

amount but exhibit lower accuracy in testing the test dataset. Therefore, the error and regression coefficient from the testing 

data set should be evaluated for each variable for its inclusion in the final prediction model. Table 3 shows the numerical 

results (obtained coefficients of determination) of some of developed networks as prediction models with acceptable 

performances in term of accuracy.  

As shown in Figure 1, the SNOTEL (snow precipitation indices and snow water equivalent) data were obtained and 

processed from 12 stations on the headwater of the watershed. In the developed hybrid model, the most significant 

autoregressive lags along with the meaningful predictors of developed ANN models were utilized [22, 23].   

Considering the results from Tables 1, 2, and 3, the best daily streamflow prediction models for specific prediction periods 

were obtained as follows (Sabzi et al., 2017): 

𝐼𝑡+1,𝑡+2,𝑡+3,𝑡+4,𝑡+5,𝑡+6,𝑡+7 = 𝑓(𝐼𝑡 , 𝑆𝑊𝐸, 𝑃𝑀−2 , 𝑆𝑖 , 𝑀𝑖 , 𝑃5𝑌𝑖 , 𝑃2𝑌𝑖 , 𝑃𝑌𝑖)                                                             (1)                              

𝐼𝑡+1,𝑡+2,𝑡+3,𝑡+4,𝑡+5,𝑡+6,𝑡+7 = 𝑓(𝐼𝑡 , 𝑆𝑊𝐸𝑚∗ , 𝑃𝑀−1, 𝑃𝑀−2, 𝑆𝑖 , 𝑀𝑖 , 𝐷𝑖 , 𝑃5𝑌𝑖 , 𝑃2𝑌𝑖 , 𝑃𝑌𝑖)                                          (2)                                                            

𝐼𝑡+1,𝑡+2,𝑡+3,𝑡+4,𝑡+5,𝑡+6,𝑡+7 = 𝑓(𝐼𝑡 , 𝑆𝑊𝐸𝑚∗ , 𝑆𝑊𝐸𝐸𝑚∗ , 𝑃𝑀−1, 𝑃𝑀−2, 𝑆𝑖 , 𝑀𝑖 , 𝐷𝑖 , 𝑃5𝑌𝑖 , 𝑃2𝑌𝑖 , 𝑃𝑌𝑖)                         (3)                                                              

𝐼𝑡+1,𝑡+2,𝑡+3,𝑡+4,𝑡+5,𝑡+6,𝑡+7 = 𝑓(𝐼𝑡 , 𝑆𝑊𝐸𝑡∗ , 𝑃𝑀−2, 𝑀𝑖)                                                                                        (4)                                                                                     

where 𝐼𝑡 indicates the observed daily value at a specific day, SWE represents the snow water equivalent at the first day of 

the prediction month,  SWEEm∗ represents the snow water equivalent at the first day of the month with higher correlation 

of the SWE and predicted streamflow values in the prediction month, 𝑃𝑀−2  represents the precipitation index at two 

previous month of the predicted month, 𝑆𝑖 represents season index, 𝑀𝑖 stands for the number of the predicted month, P5Yi 

represents the average of annual streamflow value in the past 5 years of the predicted year, P2Yi represents the average of 

annual streamflow value in the past 2 years of the predicted year, and PYi represents the average of annual streamflow value 

in the past year of the predicted year [22, 23]. 

The hybrid model is defined through Eq. (7) as follows: 

𝐼𝑡+1,𝑡+2,𝑡+3,𝑡+4,𝑡+5,𝑡+6,𝑡+7 = 𝑓(𝐼𝑡 , 𝐼𝑡−1, 𝐼𝑡−2 , 𝐼𝑡−7, 𝐼𝑡−8, 𝐼𝑡−24, 𝐼𝑡−30, 𝑆𝑊𝐸𝑡∗ , 𝑃𝑀−2, 𝑀𝑖)                                    (7)                   

Where  𝐼𝑡−1, 𝐼𝑡−2, 𝐼𝑡−7, 𝐼𝑡−8, 𝐼𝑡−24, 𝐼𝑡−30 are the lagged daily streamflow values at 1, 2, 7, 8, 24, and 30 days in the past [23].      
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Table 3.  Numerical results of the developed networks for prediction models through different periods of the year 

Input variables (Predictors)   Correlation coefficient (r) between predicted and observed daily streamflow values 

MI DI PYI P2YI P5YI SI PM PM-1 PM-2 SWEEM SWEt 𝐼𝑡 T 
No. of 

Month 

Predictio

n period 
𝐼𝑡1 𝐼𝑡2 𝐼𝑡3 𝐼𝑡4 𝐼𝑡5 𝐼𝑡6 𝐼𝑡7  

* * * * * * - * * - * * - 
January to 

June 
7 days 0.989 0.981 0.969 0.957 0.946 0.938 0.928  

* * * * * * - * * * * * - 
January to 

June 
7 days 0.991 0.980 0.968 0.958 0.945 0.934 0.925  

* - * * * * - - * - * * - 
January to 

June 
7 days 0.993 0.982 0.971 0.959 0.948 0.936 0.927  

* - - - - - - - * - * * - 
January to 

June 
7 days 0.992 0.982 0.971 0.960 0.948 0.937 0.926  

* - - - - - - * * - * * - 
January to 

June 
7 days 0.993 0.982 0.971 0.958 0.947 0.937 0.926  

* - - - - - - * * - * * - 

  𝐼𝑡1 𝐼𝑡2 𝐼𝑡3 𝐼𝑡4 𝐼𝑡5 𝐼𝑡6 𝐼𝑡7  
January to 

June 
15 days 0.990 0.975 0.967 0.953 0.940 0.927 0.917  

 
 𝐼𝑡8 𝐼𝑡9 𝐼𝑡10 𝐼𝑡11 𝐼𝑡12 𝐼𝑡13 𝐼𝑡14 𝐼𝑡15 

 0.908 0.903 0.893 0.888 0.874 0.870 0.871 0.856 

* * * * * * - * * * * * - 12 Month 7 days 0.982 0.965 0.948 0.929 0.911 0.897 0.884  

* - - - - - - * * - * * - 12 Month 15 days 

𝐼𝑡1 𝐼𝑡2 𝐼𝑡3 𝐼𝑡4 𝐼𝑡5 𝐼𝑡6 𝐼𝑡7  

0.982 0.962 0.937 0.927 0.910 0.895 0.879  

𝐼𝑡8 𝐼𝑡9 𝐼𝑡10 𝐼𝑡11 𝐼𝑡12 𝐼𝑡13 𝐼𝑡14 𝐼𝑡15 

0.869 0.857 0.847 0.838 0.828 0.822 0.818 0.812 

* - - - - - - * * * * * - 
March to 

July 
7 days 

0.988 0.973 0.956 0.941 0.924 0.908 0.893 
 

* - - - - - - * * * * * - 
March to 

July 
15 days 

𝐼𝑡1 𝐼𝑡2 𝐼𝑡3 𝐼𝑡4 𝐼𝑡5 𝐼𝑡6 𝐼𝑡7  

0.985 0.968 0.946 0.940 0.918 0.907 0.896  

𝐼𝑡8 𝐼𝑡9 𝐼𝑡10 𝐼𝑡11 𝐼𝑡12 𝐼𝑡13 𝐼𝑡14 𝐼𝑡15 

0.884 0.871 0.861 0.840 0.832 0.822 0.816 0.810 

* - - - - - - - * - It, t-1, t-2, t-7, t-8, t-24, t-30  _ 

January to 
June 

(Hybrid 
Model) 

7 days 

0.983 0.973 0.962 0.948 0.934 0.921 0.910  
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     Figure 3. shows the graphical representation of the predicted values versus actual values for 7-day-ahead 

streamflow predictions to the Elephant Butte reservoir developed based on Eq. (4).  Through this paper, we use US 

system of units, based on which 1 acre-foot (ac-ft) = 1,233.482 cubic meters. Table 4 shows the accuracy performance 

of the developed model based on the Eq. (6) versus different predicted streamflow values through different time steps 

ahead.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. a. One day ahead daily streamflow prediction 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
3. b. Two days ahead daily streamflow prediction 
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3. c. Three days ahead daily streamflow prediction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

3. d. Four days ahead daily streamflow prediction 

y = 0.9628x + 76.173
R² = 0.9421

0

2000

4000

6000

8000

10000

12000

0 2000 4000 6000 8000 10000 12000

P
re

d
ic

te
d
 d

ai
ly

 i
n
fl

o
w

 v
al

u
e,

 a
c-

ft

Actual daily flow value, ac-ft

y = 0.9574x + 81.556
R² = 0.918

0

2000

4000

6000

8000

10000

12000

0 2000 4000 6000 8000 10000 12000

P
re

d
ic

te
d
 d

ai
ly

 i
n
fl

o
w

 v
al

u
e,

 a
c-

ft

Actual daily flow value, ac-ft



Civil Engineering Journal                                     

                                Vol. 4, No. 5, May, 2018 

1144 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. e. Five days ahead daily streamflow prediction  
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. f. Six days ahead daily streamflow prediction 

y = 0.9423x + 121.47
R² = 0.896
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3. g. Seven days ahead daily streamflow prediction 

  

Figure 3. One day to seven days ahead daily streamflow prediction based on the 6 months data for January-June, 1961-

2015, CV: 15%, Test: 25%, and Train: 60% 

 

Table 4. Accuracy performance of the model versus different predicted streamflow values through different time steps ahead 

Performance 𝑰𝒕𝟏 𝑰𝒕𝟐 𝑰𝒕𝟑 𝑰𝒕𝟒 𝑰𝒕𝟓 𝑰𝒕𝟔 𝑰𝒕𝟕 

MSE 51,836 126,980 201,925 290,175 370,151 426,975 511,016 

NMSE 0.015 0.037 0.058 0.083 0.107 0.122 0.146 

MAE 133.909 205.941 253.910 301.517 343.963 388.089 408.393 

Min Abs Error 0.083 0.020 0.108 0.009 0.152 0.112 0.005 

Max Abs Error 1,793.183 2,708.357 3,285.706 3,882.992 4,115.903 4,559.752 4,709.103 

r 0.993 0.982 0.971 0.958 0.947 0.937 0.926 

 

According to the Table 4, the parameters of MSE, MAE, and NMSE represent the Mean Squared Error, Mean of 

Absolute Error, and Normalized Mean Squared Error respectively.  

3.2. Importance degrees of predictors 

The predictors’ importance degrees represent the reduction of the target variance for each predictor. Considering the 

variance of targets, sensitivity measure of the predictors is utilized to rank their importance degrees. Considering a 

prediction model including k predictors, 𝐸(𝑉(𝑌|𝑋𝑖)) is the variance over 𝑋−𝑖 ( a (k-1) dimensional vector representing 

all involved predictors except 𝑋𝑖 where 𝐸 is over 𝑋𝑖. As a result, 𝐸(𝑉(𝑌|𝑋𝑖)) is an appropriate measure to indicate 

that how influential is 𝑋𝑖 . As a result, smaller amounts of 𝐸(𝑉(𝑌|𝑋𝑖))  stand for more influential predictors. 

Unconditional total variance, 𝑉𝑌 is computed as two complement variances through Eq. (8) as follows:  

𝑉𝑌 = 𝐸(𝑉(𝑌|𝑋𝑖)) + 𝑉(𝐸(𝑌|𝑋𝑖))                                                                                                                          (8) 
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Where 𝑉(𝐸(𝑌|𝑋𝑖))  stands for main effect of 𝑋𝑖  on 𝑌 , and 𝐸(𝑉(𝑌|𝑋𝑖))  considers the residuals. The sensitivity 

measure (importance degree) was introduced by Saltelli et al (2004) and for each predictor, its measure of sensitivity 

is defined as a ratio of 𝑉(𝐸(𝑌|𝑋𝑖)) to the total variance 𝑉𝑌. The sensitivity measure is calculated through Eq. 9) as 

follows [24]: 

𝑆𝑖 =
𝑉𝑖

𝑉𝑌
=

𝑉(𝐸(𝑌|𝑋𝑖))

𝑉𝑌
                                                                                                                                                (9) 

Where 𝑌 represents the target value, in which is defined as a function of predictors (𝑌 = 𝑓(𝑋1, 𝑋2, … , 𝑋𝑘)), 𝑋𝑖 is the 

predictor, and 𝑘 is the number of predictors. Then, normalized sensitivities represent the predictors’ importance 

degrees, which are calculated through Eq. (10) as follows: 

𝑉𝐼𝑖 =
𝑆𝑖

∑ 𝑆𝑖
𝑘
𝑖=1

                                                                                                                                                                                 (10) 

Where 𝑆𝑖  was calculated in previous step through Eq. (9). Tables 5 and 6 represent the importance degrees of 

predictors in forecasting streamflow values for different time steps ahead based on the models as represented through 

Eqs. (4) and (6) respectively. 

Table 5. Importance degrees for different predictors of streamflow for the developed model based on the Eq. (5). 

Nodes Importance degrees of predictor on predicted streamflow values 

Predictors 𝑰𝒕𝟏 𝑰𝒕𝟐 𝑰𝒕𝟑 𝑰𝒕𝟒 𝑰𝒕𝟓 𝑰𝒕𝟔 𝑰𝒕𝟕 

DI 0.009 0.007 0.009 0.010 0.017 0.021 0.031 

PYI 0.014 0.017 0.024 0.034 0.044 0.064 0.111 

P2YI 0.020 0.012 0.017 0.016 0.018 0.018 0.024 

P5YI 0.025 0.012 0.018 0.025 0.022 0.025 0.020 

PRCP (m-1) 0.026 0.014 0.017 0.020 0.016 0.017 0.042 

SI 0.029 0.023 0.028 0.033 0.038 0.052 0.036 

MI 0.030 0.027 0.029 0.036 0.041 0.057 0.044 

SWE 0.035 0.028 0.049 0.062 0.059 0.049 0.060 

PRCP (m-2) 0.038 0.037 0.037 0.046 0.058 0.058 0.066 

𝐼𝑡 0.774 0.824 0.772 0.719 0.687 0.639 0.566 

Table 6. Importance degrees for different predictors of streamflow for the developed model based on the Eq. (4). 

Nodes Importance degrees of predictor on predicted streamflow values 

Predictors 𝐼𝑡1 𝐼𝑡2 𝐼𝑡3 𝐼𝑡4 𝐼𝑡5 𝐼𝑡6 𝐼𝑡7 

PRCP (m-2) 0.009 0.015 0.018 0.017 0.038 0.039 0.051 

MI 0.017 0.017 0.020 0.035 0.033 0.037 0.018 

SWE 0.018 0.055 0.054 0.097 0.088 0.118 0.160 

PRCP (m-1) 0.019 0.012 0.029  0.042 0.058 0.038 0.073 

𝐼𝑡 0.938 0.902 0.878 0.808 0.783 0.768 0.698 

 

  

 



Civil Engineering Journal                                                                     Vol. 4, No. 5, May, 2018 

1147 

Figure 4 shows the desired output and actual output of the network for test dataset based on 6 months’ data (January to June). In all developed models, test 

datasets were selected based on the recent dataset. Testing based on the latest observed data assures the applicability of the developed networks based on recent 

predictors’ values for predicting future datasets.  

 

 

Figure 4. Seven days ahead daily streamflow prediction based on the 6 months’ data (January to June), used data period: 1961-2015, Cross Validation (CV): %15, 

Testing: %25, and Training: %60 

Figure 5 illustrates the graphical representation of the predicted values versus actual values for 7-day-ahead streamflow predictions to the Elephant Butte 

reservoir developed based on Eq. (4) and applied on annual data (6 months).
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3. a. One day ahead daily streamflow prediction, for 12 months period 

 

  

  
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 
3. b. Two days ahead daily streamflow prediction, for 12 months period 

y = 0.9668x + 71.931
R² = 0.9641
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y = 0.8898x + 177.24
R² = 0.9306
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3. c. Three days ahead daily streamflow prediction, for 12 months period 

 

  

  

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

3. d. Four days ahead daily streamflow prediction, for 12 months period 

y = 0.8462x + 203.28
R² = 0.898
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y = 0.7991x + 293.09
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3. e. Five days ahead daily streamflow prediction, for 12 months period 

 

  

  

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

3. f. Six days ahead daily streamflow prediction, for 12 months period 

y = 0.7668x + 344.39
R² = 0.83
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3. g. Seven days ahead daily streamflow prediction, for 12 months period 

Figure 5. Seven days ahead daily streamflow prediction based on the 6-month data, 1961-2015, Cross Validation 

(CV): %15, Testing: %25, and Training: %60
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Figure 6 shows the desired output (observed values in test dataset) and actual output of the network for test dataset based on annual 

daily data. 

 

 

Figure 6. Desired output and actual network output for one to seven days ahead daily streamflow prediction based on the 12 months data, 1961-2007, Cross Validation 

(CV): %15, Testing: %25, and Training: %60 
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Table 7. Accuracy performance of the model versus different predicted streamflow values using different time steps ahead 

based on the 12-month data and developed model using Eq. 6. 

Performance 𝑰𝒕𝟏 𝑰𝒕𝟐 𝑰𝒕𝟑 𝑰𝒕𝟒 𝑰𝒕𝟓 𝑰𝒕𝟔 𝑰𝒕𝟕 

MSE 84638.477 166999.527 245012.308 331103.609 409315.532 475256.840 537477.879 

NMSE 0.036 0.071 0.105 0.142 0.175 0.203 0.230 

MAE 158.302 230.514 269.439 329.618 372.736 398.215 425.277 

Min Abs Error 0.011 0.007 0.058 0.048 0.164 0.184 0.053 

Max Abs Error 4167.692 4987.699 5770.438 7214.738 8242.337 8049.779 8584.266 

r 0.982 0.964 0.948 0.929 0.911 0.897 0.884 

 

4. Discussion 

The predictors’ importance degrees for daily and monthly streamflow values are analyzed by both Neurosolution 

and SPSS software packages. Tables 5 and 6 show that the daily and monthly streamflow values are the most dominant 

prediction element in predicting the streamflow values seven days one month in advance. This finding confirms Sabzi 

et al.’s (2017) results {22, 23]. The analysis of importance degrees along with the accuracy performance led us to select 

the optimal prediction models for each daily prediction period applicable for January to June, March to July, and an 

annual period (12 months). For example, the correlation analysis showed that precipitation indices of previous two 

months are more important than the precipitation index of the previous month. Therefore, it is reasonable to use the 

precipitation indices of the previous two months as one of the key predictors. In contradiction to standard engineering 

judgment, the incorporation of temperature did not show a significant improvement in model accuracy. This observed 

independency of streamflow values and average temperature should be explored further.  

In this study, along with the developed ANN models, several hybrid models were developed, in which in the hybrid 

daily prediction models, the significant effects of different preceding time periods (past values of streamflow considering 

different previous timeframes) were recognized through ARIMA, which is a statistical univariate time series prediction 

model. As illustrated through Eq. (7), the effective preceding time values (effective lagged streamflow values) were 

incorporated in the prediction models. The accuracy performance analysis showed that a hybrid model did not improve 

the performance of the developed prediction models, however. Table 7 shows the accuracy performance of the developed 

model based on the Eq. (6) 6 versus different predicted streamflow values through different time steps ahead based on 

the 12 months data. Eq. (11) indicates the developed monthly streamflow prediction based on combination of physical, 

temporal, and time dependent streamflow trend indices. The time dependent stream flow trend indices were obtained 

through supervised data mining techniques as suggested in the literature [22, 23]. 

Im = f(Im−1, SWEEm , SWEm, Pm−1, Pm−2, Si, Mi, P5Yi, P2Yi, PYi)                                                   (11)                                     

where monthly streamflow Im in mth depends on the streamflow Im−1 that is from one month before, SWEEm at first 

day of the effective month (the month that its SWE index has significant effect on the streamflow at mth month), SWEm 

at the first day of the predicted month, Pm−1 precipitation index of the month before the predicted month, Pm−2 

precipitation index of the 2 months before the predicted month, Si season number, Mi month number, P5Yi average of 

streamflow of the past 5 years, P2Yi average streamflow of the past 2 years, and PYi average streamflow of the previous 

year [22].  

Table 8 indicates the sensitivity analysis of the mean of the monthly streamflow to the variation of the utilized 

predictors. Sensitivity analysis of the mean of streamflow to its predictors indicates the importance degree of predictors. 

In this process, after developing the pre-trained network, through batch testing, each individual predictor is changed by 

± one standard deviation while rest of the variables means are fixed. Then, the predicted value is computed based on the 

limited steps of ± standard deviation (usually 50 steps) below and above the predictor’s mean.  The same process is done 

for rest of the predictors. Then, the variability of the predicted value (Im) affected by variability of the predictors is 

obtained. Finally, to rank the effectiveness of the input variables on the outputs (predicted values), relative importance 

indices were developed by normalizing the sensitivity of the variables [8]. 
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Table 8. Sensitivity analysis of effective parameters on monthly streamflow prediction (April to September) 

Predictor 𝑴𝒊 𝑷𝒀𝒊 𝑷𝟐𝒀𝒊 𝑷𝟓𝒀𝒊 𝑺𝒊 𝑷𝒎−𝟏 𝑷𝒎−𝟐 𝑺𝑾𝑬𝑬𝒎 𝑺𝑾𝑬𝒎 𝑰𝒎−𝟏 

Sensitivity on 𝐼𝑚  7379 4285 2308 12300 932 3658 11647 18187 23540 57297 

 
Incorporating the time and time dependent trend indices of 𝑆𝑖 , 𝑀𝑖 , 𝑃5𝑌𝑖 , 𝑃2𝑌𝑖 , 𝑎𝑛𝑑 𝑃𝑌𝑖  improved the prediction 

accuracy with higher coefficient of determination (𝑅2 = 0.912) compared to the models with the same data excluding 

those time dependent trends (𝑅2 = 0.9).         

Figure 7 illustrates the estimated and observed monthly streamflow values for the test dataset. The model monthly 

streamflow predictive model was developed based on the Eq. (11). 

 
Figure 7. Monthly streamflow prediction model (April to September) with 10 input variables and one hidden layer 

5.  Conclusions 

Considering the statistical analysis and accuracy performance, the key predictors in most of the developed streamflow 

prediction models were found to be daily observed streamflow value, SNOTEL precipitation indices, and SWE amounts. 

As shown in tables 1, 2, and 3, for the developed comprehensive daily streamflow prediction model applicable 

throughout the year (12 months), the effective SWE indices were utilized as a predictor along with other effective 

predictors. For example, for the months of July, November and December, the SWE indices are zero, but according to 

the correlation analysis results in table 2, the SWE amount in May has a significant correlation with the streamflow 

values in July, November, and December. Therefore, SWE of May would be an effective predictor of the streamflow 

amount in July, November and December. As a result, incorporating the results of correlation analysis as shown in tables 

1 and 2 enabled us to utilize effective SWE (SWEE) and SWE along with other effective predictors in the prediction 

model. Accuracy performances along with the higher coefficient of determination were two key elements in selecting 

the optimal prediction models for each specific prediction period. The correlation analysis, along with the accuracy 

performance analysis, led us to select the relatively parsimonious model that used fewer predictors. Comparison of the 

hybrid ANN with regular ANN showed that hybrid models of ANN with the statistical univariate ARIMA model did 

not improve the prediction performances. This can be because of the parsimonious concept of the model, where using 

fewer predictors can lead to a simpler model with equivalent prediction accuracy. Therefore, in this case, ANN would 

be a better prediction model than hybrid ANN. Cumulatively, the pre-processing of data with data mining techniques 

improved the prediction accuracy of the developed models. Although the prediction accuracy improvement was not 

significant for daily prediction models, the prediction accuracy improvement was significant for monthly streamflow 

predictions. Table 8 provides crucially beneficial importance degrees of the predictors which developed time dependent 

streamflow trend indices of 𝑃5𝑌𝑖 , 𝑃2𝑌𝑖 , 𝑎𝑛𝑑 𝑃𝑌𝑖  improved prediction accuracy compared to the previous studies 

performed on the same case study.  This suggests that prediction accuracy in ANNs depends on the optimal structure of 

ANNs, the intelligent selection of predictors, and the pre-processing of those predictors using supervised data mining 

techniques. 

Developing the importance degrees of predictors provides an intelligent basis for optimal selection of predictors 

considering the availability of data on predictors. Finally, providing detailed correlation analysis and accuracy 
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performances of the developed daily streamflow models in Tables 3 along with developed importance degrees, as shown 

in Tables 5, 6, and 8, provides the valuable basis for developing diverse models for different periods of the year; the 

same utilized approach in this study is applicable and extendible for similar hydrological case studies.   
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