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Abstract 

Kundasang, Sabah, is one of the most geohazard-prone highland regions in Malaysia. Slope failures are frequently triggered 

by heavy rain. Silt-rich zones present a particular stability problem, since silt has low cohesion and drains faster than clay, 

which means that slopes can undergo rapid saturation and lose shear strength during sustained and intense rainfall. Previous 

research works in Kundasang have focused on landslide susceptibility through rainfall thresholds and GIS terrain analysis. 

However, depth-specific, high-resolution silt distribution maps have not yet been produced. This study addresses the 

research gap using geostatistical modeling of geotechnical data from boreholes to map silt distribution patterns. Soil 

samples from 70 boreholes were analyzed by classifying soil types down to 10 m depth in 2.5 m segments. Using Ordinary 

Kriging in ArcGIS 10.3, the best-fit semivariogram model for each depth was selected based on the lowest Root Mean 

Square Error values (ranging from 5.33 to 11.92). The findings reveal that high-silt zones (areas with over 30% silt content) 

cover around 40% of the study area and cluster mainly in western and northern Kundasang, particularly in the upper 7.5 m 

of soil. These correspond to areas previously documented as highly susceptible to rainfall-induced slope failures. The 

depth-specific silt distribution maps produced in this study provide important geotechnical inputs to enhance future 

landslide susceptibility assessments, improve slope stability analyses, and support risk-informed land-use planning for 

local authorities in geohazard-prone highland areas. 
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1. Introduction 

In tropical and mountainous regions, steep terrain and heterogeneous soil compositions are inherent factors that cause 

slope instability. These conditions are further aggravated by prolonged or intense rainfall, ultimately inducing major 

geohazards in the form of rainfall-induced slope failures. Within the heterogeneous soil components, silt-rich zones, 

often found near hilly areas [1, 2], are particularly important to identify for slope stability assessments. Although silt is 

favorable for agricultural productivity due to its high nutrient retention and water-holding capacity [3, 4], it possesses 

low cohesion and moderate permeability (higher than clay but lower than sand), making it susceptible to rapid saturation, 

pore pressure build-up, and shear strength loss during prolonged rainfall events [5, 6]. The combination of steep terrain 

and rapid saturation of silt-rich zones contributes to soil movement in hilly areas, triggering shallow translational slides 

and debris flows [7]. 
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Kundasang, located on the southwestern base of Mount Kinabalu, is considered one of the most geohazard-prone 

highland areas in Malaysia, despite being one of the top tourist destinations in the state of Sabah due to its proximity to 

the country’s highest mountain. Despite its importance as a tourism and agricultural hub, Kundasang is highly 

susceptible to rainfall-induced soil movements, landslides, and debris flows, which have severely impacted public 

infrastructure, farmlands, and residential areas [8, 9]. As noted earlier, identifying silt-rich zones within the Kundasang 

area is imperative, as these zones significantly increase the risk of slope failures, posing threats to local residents and 

potential damage to property and infrastructure. 

Previous landslide susceptibility studies in Kundasang have primarily employed GIS-based terrain analysis and 

statistical methods. Roslee et al. [10] produced landslide susceptibility maps using factor analysis models, while Shahrir 

et al. [11] applied bivariate frequency ratio approaches to assess natural and artificial slopes. More recently, Krishnan 

et al. [12] developed a debris-flow susceptibility map from Pekan Nabalu to Kundasang using weights-of-evidence 

modeling, and Roslee et al. [8] applied frequency ratio models to produce a debris-flow susceptibility map for the area. 

In addition, Mohd Salleh et al. [13] utilized vegetation anomaly indicators derived from remote sensing to classify 

translational landslide activity. Although these studies successfully identified high-risk zones using topographic, 

hydrological, and environmental factors, they did not characterize the depth-specific subsurface geotechnical variability 

that strongly influences slope stability. 

Despite advances in surface-based susceptibility modeling, a critical research gap remains in understanding the three-

dimensional subsurface distribution of problematic soil layers, particularly silt-rich zones known to be highly susceptible 

to rainfall-induced failures. Previous studies in Kundasang relied on generalized geological maps without systematic 

spatial interpolation to produce continuous, depth-specific geotechnical profiles. This limitation is significant because 

slope stability depends not only on surface terrain but also on variations in soil properties with depth. The shallow 

subsurface (0–10 m) is especially important, as high silt content at these depths is problematic, given that most landslides 

in Kundasang fail along planes within this zone. 

Recent advances in geostatistical modeling now enable the production of high-resolution subsurface soil maps 

that illustrate both vertical and spatial variability in soil properties. To address this gap, the present study employs 

geostatistical modeling—specifically Ordinary Kriging (OK)—to map the spatial and vertical variability of silt 

using systematic borehole data. Unlike previous GIS-based susceptibility models that rely on surface terrain 

attributes, OK provides a framework for interpolating subsurface geotechnical properties while accounting for 

spatial autocorrelation and quantifying prediction uncertainty through semivariogram analysis. In this study, the 

OK method was applied to generate high-resolution, depth-specific silt distribution maps for Kundasang town, 

capturing the three-dimensional heterogeneity of subsurface conditions. To the best of the authors’ knowledge, this 

is the first subsurface characterization study in Sabah using geostatistical methods. Two primary objectives were 

established: (i) to determine the optimal semivariogram models for accurate spatial prediction of silt content using 

Root Mean Square Error (RMSE)-based evaluation, and (ii) to produce layered silt distribution maps at 2.5 m 

intervals from 0 to 10 m depth. The outputs provide essential geotechnical inputs for comprehensive landslide 

susceptibility assessment, slope stability analysis, and risk-informed land-use planning in geohazard-prone highland 

areas such as Kundasang. 

The remainder of this paper is organized as follows: Section 2 describes the study area, including its geological 

characteristics and documented geohazard events. Section 3 presents the geotechnical data sources and explains the 

selected geostatistical methodology, including the Ordinary Kriging method and semivariogram model selection. 

Section 4 presents the results and discussion, analyzing semivariogram performance and depth-specific silt distribution 

maps and relating these findings to documented slope failures. Section 5 provides the study’s conclusions and 

recommendations for future research. 

2. Study Area  

2.1. Location and Geological Characteristics  

Kundasang town (Figure 1-a) is located on the terrain formed by the Trusmadi and Crocker Formations [10, 14]. 

Figure 1-b shows that the area has steep slopes, with some places exceeding 35° [15]. Table 1 summarizes the main soil 

units, landform features, and typical properties of each formation. The geological map (Figure 2) produced by Roslee et 

al. [14] shows that Kundasang is mostly on the Trusmadi Formation [16]. While the geological map gives a broad picture 

of subsurface conditions affecting slope behavior, the borehole data presented in this study provides much finer detail 

on the geotechnical properties across the study area. 
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Figure 1. (a) Location of Kundasang, Sabah. (b) View of Mount Kinabalu and Kundasang town 

Table 1. Formation and Soil Properties in Kundasang, Sabah 

Formation Properties Trusmadi Formation Crocker Formation 

Lithology Phyllite and slate Interbedded sandstone-shale and shale 

Landform Mountains above 1200 m (4000 ft) above sea level Mountains 

Main Soil Units 
Greyic and Orthic Acrisols, Gleyic Podzol, Humic 

Gleysols, Dystic Histosol, and Lithosol 

Orthic Acrisol, Chromic and Dystric 

Cambisols, and Lithosol 

Weathering Grade IV to VI IV to VI 

Cohesion, c (kPa) 5.11 – 15.34 3.2 – 17.27 

Angle of Internal Friction (⁰ ) 7.72⁰  - 26.65⁰  7.70⁰  - 29.50⁰  

Plasticity Index (PI) 14 – 23 12 – 23 

Sand percentage (%) 22 – 42 22 – 70 

Silt Percentage (%) 18 – 57 7 – 57 

Clay Percentage (%) 22 – 43 15 – 45 

Moisture Content (%) 5 – 25 5 – 35 

 

Figure 2. Geological map of Kundasang, Sabah [14] 

The different rock types in these formations directly influence the slope behavior and failure. In the humid tropical 

climate of Kundasang, the phyllite and slate of the Trusmadi Formation are subjected to chemical weathering [14], 

breaking down the parent material into clay- and silt-rich residual soil. These fine-grained soils have low cohesion (see 

Section 4.1) and moderate permeability, making it vulnerable to pore pressure buildup during sustained rainfall. Once 

saturated, effective stress drops and shear strength deteriorates [6], leading to shallow translational slides at depths of 

2.5 – 7.5 m where silt concentration is at its highest [14, 17]. In contrast, the Crocker Formation is the complete opposite, 
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where its sandstone breaks down into coarser material with better drainage and higher angle of friction, therefore 

resulting in fewer rainfall-triggered shallow failures. However, deep-seated failures and structurally controlled 

instabilities still occur due to weak bedding planes and toe erosion [11]. The clustering of slope failures in the Trusmadi 

Formation is attributed to these factors, and the failure locations align with the high-silt zone maps in Section 4.3. 

2.2. Documented Geohazard Occurrences  

Kundasang ranks among Malaysia’s more landslide-prone highland regions due to its steep terrain, weathered 

bedrock, and heavy rainfall. In Kundasang, rainfall-related landslides and debris flows are a recurring concern, creating 

challenges for infrastructure, farmlands, and tourism facilities [8, 9, 18]. A well-known case study is the gradual ground 

movement at SMK Kundasang, where ongoing soil displacement caused extensive damage to the school buildings and 

surrounding infrastructure, that authorities relocated the school in 2012 [15]. Inclinometer measurements in Figure 3 

show subsurface displacement near the school, and Figure 4 shows ground deformation on the school grounds (IKRAM, 

2000). Regional landslide hazard assessments have identified Kundasang as a highly susceptible area, a classification 

supported by previously recorded events [10, 11]. 

 

Figure 3. Inclinometer readings indicating subsurface ground movement between 2.5 m and 6.5 m depth [19] 

 

Figure 4. Ground deformation at SMK Kundasang caused by progressive soil movement [19] 

Surface-based landslide susceptibility maps have been created for Kundasang (e.g., Krishnan et al. [12]), but only a 

few researchers have examined how geotechnical properties change with depth and affect slope stability. Filling this 

research gap is important, since depth-specific geotechnical data would strengthen hazard forecasting and enable more 

informed land-use decisions in Kundasang through engineering analyses. 

3. Geotechnical Data and Geostatistical Method  

3.1. Borehole Dataset 

For this study, data from 70 boreholes distributed across Kundasang town were utilized to extract subsurface 

geotechnical information (Figure 5). These records allowed the geotechnical characterization of the study area, to help 

understand the soil properties that influenced their engineering behavior. The dataset was originally compiled for the 

purpose of design and construction of retaining walls and other infrastructure works carried out in response to active 

soil movements recorded between 2000 and 2001 [17, 20]. Shear strength parameters (cohesion, angle of friction) 
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reported in Section 4.1 (Soil Classification) were obtained from consolidated isotropic undrained (CIU) triaxial tests 

conducted on the soil samples, which provide effective stress values by taking into account the pore water pressures 

during the shearing stage. 

 

Figure 5. Borehole locations of study area in Kundasang, Ranau, Sabah 

This analysis focuses on the upper 10 m of the soil, divided into four 2.5 m layers to examine the change of silt 

content with depth. A geostatistical method, Ordinary Kriging (OK), as presented in Section 3.2, was used to map silt 

variability. The 10 m borehole depth was chosen to capture the critical failure zone for translational slides in Kundasang. 

Inclinometer monitoring (Figure 3) shows that the subsurface ground movement happens between 2.5–6.5 m, with 

measurements extending to 10.5 m where conditions remain stable below the active shear zone [19]. Post-failure 

investigations and remedial work recorded by JKR [17, 20] confirm that most shallow translational failures in 

Kundasang occur at similar depths. The 0–10 m investigation depth therefore captures the zone where most translational 

slides occur, as validated by the measured ground movements and documented slope instability events. Additionally, 

this depth range represents the extent of available historical data with consistent soil characterization across all 70 

locations, which allows thorough geostatistical analysis at four 2.5 m intervals to be carried out accordingly. The 

inclusion of the 7.5–10 m interval, despite being below the typical failure zone (2.5–7.5 m as documented in Section 

2.1), serves two purposes: (1) it provides a control depth to demonstrate the methodology’s ability to detect the absence 

of spatial structure in geotechnically stable zones (as seen by the flat semivariogram at this depth, explained in Section 

4.2), and (2) it ensures complete characterization of the full investigation depth used in the original geotechnical studies. 

The 70 boreholes were derived from several geotechnical site investigation reports conducted between 2000 and 

2001, mostly along road corridors and development sites (Figure 5). These investigations targeted locations where slope 

failures had already occurred, rather than following a systematic grid pattern. When the borehole locations (Figure 5) 

were overlaid on the geological map (Figure 2), an uneven distribution of the borehole was obvious. About 48–50 

boreholes (~70%) are in the Trusmadi Formation (in western and northern sectors), while 20–22 boreholes (~30%) are 

in the Crocker Formation to the east. This imbalance reflects where the geotechnical work is mostly concentrated: on 

higher-risk areas within the Trusmadi Formation, where phyllite and slate weather into silt-rich soils that are vulnerable 

to rainfall-induced failure. Despite the unbalanced sampling between formations, the borehole distribution shows 

variable spacing patterns across the study area (Figure 5). Dense sampling with approximately 100–300 m spacing was 

obtained in the western and central sectors, while sparser coverage (400–800 m spacing) characterizes the eastern 

Crocker Formation sector. This sampling pattern is considered sufficient for exploratory geostatistical characterization 

at the regional scale, though the authors acknowledge that the prediction uncertainty is higher in the under-sampled 

zones. Future site-specific assessments in the eastern sector should include systematic investigation grids at 200–300 m 

spacing to reduce kriging variance and improve prediction reliability for site-level engineering design. 

The silt percentage data wasn’t adjusted for elevation or slope angle. The raw particle size test results were used for 

the spatial interpolation to preserve natural soil variability across the site. OK accounts for spatial trends through 

semivariogram modeling without requiring elevation normalization. Topographic position and slope angle affect 

weathering and soil development, but these influences show up in the measured silt content values and get built into the 

interpolated surfaces automatically.  

3.2. Ordinary Kriging and Semivariogram Models 

Ordinary Kriging (OK) was chosen as our geostatistical method because of its effectiveness for modeling spatial 

variability in geotechnical data. D.G. Krige developed the technique in the 1950s for estimating mineral resources, and 
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Georges Matheron expanded and formalized it in the 1960s. OK has since become fundamental to geostatistics in earth 

and environmental sciences [21-24]. Seven decades after Krige and Matheron’s foundational work, recent works show 

that OK remains reliable for creating high-resolution geotechnical and environmental maps in complex terrain [25-28]. 

The OK method was applied to interpolate silt content variability across Kundasang. The advantage of OK is its 
ability to model spatial correlation between borehole sampling points and estimate values where samples were not 
available [29, 30], which is useful in heterogenous terrain like Kundasang [14]. Unlike deterministic interpolation 
methods such as Inverse Distance Weighting (IDW), OK not only predicts unknown values, but also estimates prediction 

error, which produces higher quality subsurface variability maps [31, 32].  

OK models spatial autocorrelation explicitly through the semivariogram to achieve Best Linear Unbiased Prediction 
(BLUP), whereas deterministic methods simply apply arbitrary distance-weighting formulas [22, 33]. Three factors 
make OK valuable for subsurface soil characterization. Soil properties show scale-dependent spatial patterns that reflect 
depositional and weathering history, which need to be measured from the data. Next, OK calculates prediction variance 

(kriging variance) at every location, which allows spatial uncertainty to be quantified for risk-informed slope stability 
decisions. Lastly, OK predictions match actual borehole measurements at sample locations and have realistic transitions 
in soil properties between boreholes [31]. These characteristics make OK suitable for mapping subsurface geotechnical 
heterogeneity in geohazard-prone areas where prediction reliability must be quantified. 

The predicted value, Z(s) at an unsampled location s, can be expressed as: 

𝑍(𝑠) = 𝜇 + 𝜀(𝑠)  (1) 

where μ is an unknown constant mean of the regionalized variable across the study area, and ε(s) is random error term 

representing local spatial variability (assumed to have zero mean, spatially uncorrelated). 

From Equation 1, the population mean is assumed to be as a true but unknown constant, estimated from the overall 
trend of the observed data [33, 34]. This concept is illustrated in Figure 6, which shows the example of an OK prediction 
surface generated using the Geostatistical Analyst extension in ArcGIS 10.3. To determine spatial characteristics, four 
theoretical semivariogram models, namely the Spherical, Exponential, Circular and Gaussian models were evaluated 
(Figure 7) [35, 36].  

 

Figure 6. Example of an Ordinary Kriging (OK) prediction surface generated using ArcGIS 10.3 [35] 

 

Figure 7. Candidate semivariogram models used for Ordinary Kriging prediction with ArcGIS 10.3 [35] 
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Each model was fitted to the experimental semivariogram of silt content, and the optimal model for each depth 

interval was selected based on the lowest Root Mean Square Error (RMSE). These semivariograms were then applied 

in the OK interpolation to generate depth-specific silt distribution maps. Isotropic semivariogram models were used for 

this analysis, assuming uniform spatial correlation in all directions. While directional variability (anisotropy) was not 

formally tested, this assumption is considered reasonable given: (1) the irregular topography and complex geological 

structure of Kundasang, which would make directional trends difficult to model with the existing borehole spacing; 

Isotropic semivariogram models were used for this analysis, assuming uniform spatial correlation in all directions. While 

directional variability (anisotropy) was not formally tested, we acknowledge this as a methodological limitation.  

The visible NNE-SSW trending geological contact between Trusmadi and Crocker Formations (Figure 2) suggests 

potential structural anisotropy may exist. However, formal anisotropy assessment was not conducted due to: (1) the 

existing borehole distribution lacking systematic directional sampling required for robust directional semivariogram 

estimation (minimum 30–50 data pairs per direction bin recommended) [37], (2) computational constraints of the 

standard ArcGIS Geostatistical Analyst toolset used in this study, and (3) the current study being an exploratory regional-

scale characterization establishing baseline methodology. As such, future studies with systematically designed sampling 

grids oriented relative to geological structures should investigate potential anisotropic effects to improve prediction 

accuracy in structurally complex terrain.  

 

Figure 8. Research methodology flowchart 

As mentioned previously, there were no data transformations that were applied to the silt data prior to geostatistical 

analysis. Silt percentage data typically shows relatively symmetric distributions within the natural range of soil 

compositions, especially when compared to highly skewed variables such as contaminant concentrations or mineral 

grades. Even though formal normality testing (for instance, the Shapiro-Wilk test) was not conducted, the assumption 

of approximate normality of the OK method is considered adequate for this study. Furthermore, the RMSE-based model 

selection procedure used in this study selects models that produce accurate predictions (regardless of the data 

distribution), preventing any issues regarding data distribution. The outputs of the geotechnical and geostatistical 

analyses are presented in the Results section, starting with soil characterization (Section 4.1), followed by the 

semivariogram evaluation (Section 4.2) and the depth-specific silt mapping results (Section 4.3). Figure 8 shows the 

research methodology flowchart showing the workflow from data collection to the silt distribution mapping. 

4. Results and Discussion  

4.1. Soil Characterization  

Characterization of the subsurface soils is important because their physical and mechanical properties directly control 

slope stability in Kundasang. Knowing the relative proportions of sand, silt, and clay, along with shear strength 

parameters from borehole data, gives the context to interpret the silt content maps and understand what they mean for 

slope stability. 

Figure 9 shows how sand, silt, and clay are distributed across the borehole samples, broken into four depth intervals 

down to 10 m. Gravel was not included because reporting was inconsistent across boreholes, and it makes up only a 

small fraction compared to sand, silt, and clay. After removing gravel, the remaining soil fractions were normalized so 

that they total 100% at each depth. 
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Figure 9. Normalized sand, silt and clay distribution across four depth intervals in Kundasang borehole dataset 

Figure 9 makes clear that sand and silt dominate the soil at all depths, with clay playing a minor role. In these sand-

silt mixtures, silt contributes to lower cohesion and higher permeability than clay would, while sand provides the friction 

angle. When rainfall continues for hours or days, water infiltrates these sand-silt soils and saturates the silt particles, 

triggering shear strength loss from excess pore pressure that eventually causes rainfall-induced slope failures [7, 38].  

Table 2 lists key geotechnical parameters from consolidated isotropically undrained (CIU) triaxial tests: cohesion 

(c), friction angle (ϕ), and Atterberg Limits. Cohesion values are low, ranging from 0 to 13 kPa, which classifies these 

as “very soft” soils under BS 5930 [39]. Friction angles fall between 21° and 35°, consistent with the high granular 

content. Liquid Limits vary from 23 to 51% while Plasticity Index values range 10% to 29%. Both indicate low to 

intermediate plasticity. These low cohesion values paired with moderate friction angles reflect the soil distribution trend 

shown in Figure 9, sand and silt consist most of the soil. This type of soil composition is prone to strength loss under 

saturation [40, 41], in line with documented reports of rainfall-induced slope failures in Kundasang [13, 42]. 

Table 2. Descriptive statistics of shear strength parameters and Atterberg Limits and borehole soils in Kundasang 

Range Cohesion, c [kPa] Angle of Internal Friction, ϕ [⁰ ] Liquid Limit [%] Plasticity Index [%] 

Minimum 0 21.61 23 10 

Median 5.08 29.46 33 17 

Maximum 13.19 35.31 51 29 

Mean 5.53 29.41 34.25 17.60 

Therefore, the Kundasang subsurface soil is dominated by sand–silt matrices with low to intermediate plasticity 

clays, due to a heterogeneous soil profile derived from the Trusmadi and Crocker formations. The soil distribution shown 

in Figure 9, and shear strength parameters presented in Table 2 highlights the importance of mapping silt variability. In 

particular, silt-rich zones are vulnerable to rainfall-induced shear strength loss which ultimately leads to slope failures. 

The findings in this section provide a comprehensive basis for the semivariogram modeling, and depth-specific silt 

distribution mapping presented in the following sections. 

4.2. Semivariogram Selection and Performance  

This section evaluates the performance of candidate semivariogram models to identify the most optimal model for 

Ordinary Kriging (OK) interpolation at each depth interval. The selection of a suitable semivariogram model is critical, 

as it influences the accuracy of the OK predictions. The most suitable model minimizes estimation errors and therefore 

improves the reliability of the interpolated maps [31].  

Table 3 presents the RMSE values obtained from the fitted semivariogram models across the four depth intervals. 

No single model was consistently optimal across all depths, illustrating the heterogeneity of the subsurface conditions. 

The fitted semivariograms represent the spatial structure of the accumulated borehole data, representing the “data cloud” 

from which the optimal model for each depth was selected. In doing so, this allows the zones with higher silt content 

relative to the surrounding areas to be emphasized. This highlights areas where silt concentrations exceed neighboring 

zones. The fitted semivariogram models for 0 to 10 m depth appear in Figure 10. 
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Table 3. RMSE values for the tested semivariogram models across four depth intervals 

Semivariogram Model 0 – 2.5 [m] 2.5 – 5.0 [m] 5.0 – 7.5 [m] 7.5 – 10 [m] 

Spherical 8.8624 10.3022 5.7722 11.9208 

Exponential 8.5935 10.3318 5.8788 11.9208 

Circular 8.6688 10.2856 5.7309 11.9208 

Gaussian 9.6413 10.3450 5.3323 11.9208 

 

Figure 10 does not show one model dominating the entire soil profile. The pattern actually shifts with depth. In the 

uppermost layer (0–2.5 m), the exponential model produced the lowest RMSE, which is not surprising because near-

surface soils usually change gradually rather than abruptly. Once we go slightly deeper, roughly 2.5–5.0 m, the circular 

model begins to fit better. The behavior there shows a steady rise in silt percentage at short to medium distances. At 

5.0–7.5 m, the Gaussian model gives the best fit, and its curve rises much more sharply at mid-range distances, which 

often points to pockets of material or clustered deposits [33]. Below 7.5 m, all the semivariogram models gave almost 

identical RMSE values. The curve is basically flat, meaning there is no strong spatial structure to capture at that depth 

[22, 43].  

 

Figure 10. Fitted semivariogram models with the lowest RMSE values for each depth interval: exponential (0-2.5m), 

circular (2.5-5.0m), gaussian (5.0-7.5m), and flat (7.5-10m) 

The exponential model near the surface (0–2.5 m) reflects the weathered topsoil, which tends to be fairly uniform. 

The circular model in the next interval suggests gradual layering from sediment deposition over time. The Gaussian 

model at 5.0–7.5 m hints at irregular changes, probably related to discontinuous weathering in the Trusmadi Formation. 

After 7.5 m, the flat pattern could mean two things: either the boreholes are spaced too far apart to pick up subtle 

variation, or the soil is becoming more uniform as it approaches the less-weathered bedrock. From an engineering point 

of view, this is useful because shallow slope failures, which normally occur above 7.5 m, can be mapped and modelled 

with much more confidence than deeper ones.  

Using a separate semivariogram model for each depth was therefore justified. When these best-fit models were 

applied in ordinary kriging, the output was a series of depth-based maps rather than one generalized map. These maps 

make it easier to identify silt-rich and silt-poor areas, which is important when analyzing rainfall-triggered slope 

movements in Kundasang. Section 4.3 presents the detailed map results and the interpretation that follows.  

4.3. Depth-Specific Silt Distribution Maps 

The aim of this section is to present the depth-specific silt distribution maps generated using Ordinary Kriging 

interpolation, based on the optimal semivariogram models selected in the previous section. These maps show the vertical 

and lateral variability of silt content across the study area, which allows the identification of zones where high silt 

proportions are of a concern to the slope stability, especially under heavy rainfall conditions. 
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The generated depth-specific silt distribution maps (Figure 11-a to 11-d) indicate distinct vertical and lateral 

variability of the silt content within the 0–10 m soil profile. In general, the silt content ranged between 24–34%, with 

lower silt percentages (< 25%) accounting for 60% of the mapped area, and higher silt percentages (> 30%) are 

concentrated in the remaining 40%. The western and northern sectors show the largest clustering of high-silt zones, 

while the southern and central regions exhibit lower silt proportions. However, at the deepest interval (7.5–10 m), the 

semivariogram results produced a flat structure, which resulted in scattered and irregular silt distribution as seen in 

Figure 11-d, which demonstrates the absence of a clear spatial trend at this depth. 

 

Figure 11. Depth-specific silt distribution maps generated using OK for four depth intervals 

The concentration of high-silt zones in the western and northern sectors of Kundasang reflects the geological 

characteristics of the Trusmadi Formation, which consists of intensely weathered phyllite and slate that produce silt-

sized particles through mechanical and chemical weathering. Conversely, lower silt content in the southern and central 

sectors correlates with the Crocker Formation, which largely consists of sandstone and shale that weather into coarser 

sand-dominated soils. These spatial patterns represent systematic outcomes of parent material weathering processes 

specific to each formation. 

Therefore, these spatial patterns showcase the role of silt variability in predicting the slope response to rainfall events. 

Because silt-rich zones are typically attributed to higher permeability and lower cohesion compared to clay, the identified 

high-silt zones are more susceptible to rapid saturation, pore pressure build up and eventual loss of shear strength during 

intense or prolonged rainfall [5, 44]. This condition elevates the risk of rainfall-induced slope instability in these areas. 

In order to examine this relationship, the depth-specific silt distribution maps generated in this section are compared 

with the soil movement susceptibility map of Kundasang. The following section presents this comparison in detail, and 

evaluates the spatial correlation between high-silt zones and zones classified as highly susceptible to failure during 

intense rainfall events.  

4.4. Relationship Between Silt Distribution and Soil Movement Maps  

Comparing silt distribution with soil movement susceptibility is essential to evaluate the correlation between 

subsurface variability with slope instability under rainfall conditions. A comparison between the depth-specific silt 

distribution maps (Figure 11) and the soil movement susceptibility map shown in Figure 12 below exhibits a strong 

spatial association between silt-rich zones and areas classified as highly to very highly susceptible to soil movement. In 

most depth intervals, the zones with more than 30% silt fell within the areas classified as highly susceptible to soil 

movement. This pattern is visible throughout much of the profile. However, the 2.5 – 5.0 m interval does not follow it 

as closely, and the spatial match is weaker there. The situation changes again at 5.0 – 7.5 m. At this depth, pockets of 

high silt content overlap directly with the zones mapped as very highly susceptible, and this agreement appears 

consistently across the section. It is unlikely to be a random occurrence; rather, it indicates that variation in silt content 

exert a measurable control on slope response at depth. 

Lower silt content does not guarantee stability. During intense rainfall, silt absorbs and holds water, which 

accelerates saturation. Once the soil reaches this state, shear strength can fall quite rapidly, and movement may initiate 

even without a high initial silt proportion [45]. Published works further supports this mechanism, with study results 

showing that slopes with minor gradients 5–10 subjected to rainfall with 60 mm/hr intensity are prone to detachment 

and transport [7, 46].  
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Figure 12. Soil movement susceptibility map of Kundasang showing zones from low to very high risk 

The identification of silt-rich zones within an area highly prone to soil movement is therefore a key finding of this 

study. It provides an early indication of locations that are most at risk of rainfall-induced slope failures. Validation is 

provided by the documented progressive ground movements at SMK Kundasang (Figure 13), located in the northeastern 

part of the study area, where zones with high susceptibility to soil movement are directly correlated to the presence of 

low shear strength soil deposits [11, 12, 15]. 

As such, there is a strong agreement observed between the silt distribution maps, soil movement susceptibility map, 

with the recorded soil movement and slope failures in the study area. This highlights the reliability of the geostatistical 

analyses applied in this study, and therefore demonstrating the value of high-resolution, depth-specific silt mapping to 

improve the understanding of rainfall-driven landslide mechanisms. In addition, the silt maps also support proactive risk 

mitigation in the geohazard-prone highland environment such as Kundasang. 

 

Figure 13. Soil movement affecting SMK Kundasang and the direction of progressive ground deformation 

4.5. Comparison with Previous Landslide Susceptibility Studies 

The silt patterns identified in this study generally match the geological interpretation of Roslee et al. [14]. The main 

difference is that the new maps incorporate depth information, so the changes in silt content with depth can be examined 

together with their lateral distribution across Kundasang. Surface geology does not show this behavior, because it only 

represents the formation boundaries. Roslee’s work mapped the extent of the Trusmadi and Crocker Formations. After 

applying Ordinary Kriging to the borehole data, the subsurface results indicated that both formations contain internal 

variability. In other words, the formations do not behave as uniform units when examined below ground level. This 

contrast was visible because the interpolated maps produced a more detailed picture than surface mapping alone.  

In the western and northern parts of the study area, where the Trusmadi Formation is more common, several locations 

recorded silt contents greater than 30 percent. Together, these pockets cover nearly 40 percent of that sector. They also 

coincide with areas mapped as Trusmadi phyllite and slate, suggesting that silt concentration is strongly influenced by 

local lithology. Field logging supported this interpretation, since highly weathered phyllite in several locations produced 

very fine material.  
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 The results show that formation boundaries do not automatically represent uniform ground conditions. The seventy 

boreholes used in this study captured changes in silt content with depth, even within a single mapped unit. Two-

dimensional maps cannot show this behavior. For slope assessment, this distinction matters: surface-based susceptibility 

models infer likely failure from terrain characteristics, but the subsurface mapping identifies weak, silt-rich layers 

directly. When both are considered together, hazard evaluations become more reliable, particularly in slopes where the 

underlying material controls how the ground behaves. 

The predictive value of the silt distribution maps is supported by documented slope failures in Kundasang. Several 

historical geohazard events along the Tamparuli-Ranau route [17, 20] were accompanied by site investigations, and the 

post-failure observations reported silt-rich soils in the failed sections, which aligns with the interpolated results. Earlier 

studies were able to outline broad high-risk zones using statistical correlations between failures and terrain controls, but 

the current approach provides a direct geotechnical explanation. These slopes fail because they contain layers dominated 

by silt, which has low cohesion, moderate permeability and rapid loss of shear strength when subjected to heavy rainfall. 

With this information, mitigation becomes more targeted. Subsurface drainage, for instance, can be placed specifically 

within high-silt pockets where the loss of strength is most critical, resulting in more efficient and cost-effective slope 

protection strategies. 

5. Conclusion  

This work provides the first subsurface maps of silt distribution in Kundasang, Sabah with depth information 

resolved in 2.5 m intervals. Ordinary Kriging was applied to data from seventy boreholes, each logged to 10 m depth, 

in order to examine how silt content changes both vertically and across the landscape. Four semivariogram models were 

tested during the interpolation, and the optimal model for each depth layer was selected using RMSE values as the 

performance measure. The interpolated results show that several zones contain more than 30 percent silt, and these zones 

together cover roughly 40 percent of the study area. Many of these zones lie in the western and northern sectors, between 

0 and 7.5 m depth, which matches the locations where slope failures have been reported. The agreement between the 

depth maps and the failure records, including the movement at SMK Kundasang, supports the interpretation that weak, 

fine-grained layers contribute to the instability of slopes in this region.  

There are several practical implications. The maps help identify subsurface materials that may lose strength rapidly 

during intense rainfall, and this information is valuable for stability analysis where the likely failure plane lies within 

the upper 10 m of soil. The maps can also assist land-use planning by drawing attention to locations where mitigation 

or construction controls might be required. Some limitations should be acknowledged. The borehole data were collected 

from 2000 to 2001, and changes in land use or extreme rainfall could have altered subsurface conditions since that time. 

In the deepest interval, from 7.5 to 10 m, the semivariogram structure was almost flat, so additional sampling would be 

needed to confirm the behavior of that layer. Future research could incorporate rainfall thresholds, slope gradients, 

groundwater response and vegetation cover, so that a more comprehensive predictive model can be developed. When 

combined with real-time monitoring, such a model would improve early warnings for rainfall-triggered failures in 

Kundasang. 
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