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Abstract

The integration of Building Information Modeling (BIM) and Digital Twin (DT) systems has reshaped construction project
delivery, but their application remains concentrated in large, resource-intensive developments. Small-scale projects, which
dominate the built environment in many regions, often lack access to advanced digital platforms due to financial
constraints, insufficient infrastructure, and limited technical capacity. Existing Common Data Environment (CDE)
frameworks are typically monolithic and costly, making them unsuitable for the flexible and affordable deployment needed
in these contexts. A persistent barrier is semantic fragmentation: without interoperable data exchange across BIM, Internet
of Things (IoT) devices, and Geographic Information Systems (GIS), project information remains siloed and underutilized.
This study introduces a modular, semantic-enabled CDE architecture designed specifically for small-scale projects. The
framework incorporates lightweight ontologies, microservices, and knowledge graphs to deliver scalable and semantically
coherent integration of BIM—IoT—GIS datasets. To validate its applicability, the research applies the model to a three-
storey educational building, demonstrating how real-time DT functionality can be achieved with minimal infrastructure
demands. The case study highlights improvements in data exchange, operational monitoring, and sustainability analysis,
showing how the architecture supports predictive maintenance and decision-making. By synthesizing insights from
literature and practical demonstration, the paper proposes a blueprint for democratizing DT adoption, enabling affordable,
adaptable, and interoperable solutions for small-scale construction projects.

Keywords: Digital Twin (DT); Building Information Modeling (BIM); Common Data Environment (CDE); Semantic Interoperability;
Small-Scale Construction Projects.

1. Introduction

The integration of Building Information Modeling (BIM) and Digital Twin (DT) technologies is reshaping the
delivery of construction projects by enabling data-driven decision-making, continuous real-time monitoring, and
advanced simulation capabilities (see Figure 1). In large-scale developments, such as smart cities, transport hubs, and
industrial complexes, these technologies are typically supported by robust Common Data Environment (CDE) platforms
that consolidate heterogeneous datasets throughout the project lifecycle [1-3]. However, the benefits of such digital
ecosystems have yet to be fully realized in small-scale construction projects, including residential buildings, community
facilities, and small industrial assets, which often remain at the periphery of the digital transformation agenda [4, 5].
This imbalance underscores a persistent digital divide within the construction industry, where smaller projects risk being
excluded from the adoption of advanced BIM-DT practices.

* Corresponding author: nhatnm@hau.edu.vn

d http://dx.doi.org/10.28991/CEJ-2025-011-12-015
© 2025 by the authors. Licensee C.E.], Tehran, Iran. This article is an open access article distributed under the terms and
EY conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

5183


http://www.civilejournal.org/
http://creativecommons.org/
https://orcid.org/0000-0003-1282-5192
https://orcid.org/0000-0003-3249-2444
https://creativecommons.org/licenses/by/4.0/

Civil Engineering Journal Vol. 11, No. 12, December, 2025

loT ' Real-time @ Simulation

Physical Entity Digital Entity
4 |l| ) 4 )
Data
Connection
Database
Knowledge gaph

Context graph k )

Dashboards

Visualization
Figure 1. Illustrative representation of digital twin integration with physical assets and data flows [6-9]

More specifically, small-scale projects face numerous barriers to implementing BIM-DT solutions. Limited budgets,
inadequate ICT infrastructure, and a shortage of skilled technical personnel hinder the deployment of sophisticated CDE
platforms and real-time DT applications [10-12]. These challenges are particularly acute in developing countries, where
weak institutional frameworks, high software licensing costs, and limited digital literacy further impede innovation [13].
Even modest attempts to adopt BIM or DT in such low-resource settings are often undermined by fragmented workflows
and the absence of integration with Internet of Things (IoT) sensors or Geographic Information System (GIS) data,
components essential for real-time, context-aware decision-making on site [5].

Beyond resource constraints, technological and data interoperability issues pose additional challenges. Existing CDE
architectures could be monolithic and tightly coupled, lacking the flexibility, scalability, and cost efficiency required for
smaller or short-term projects [3, 14]. Moreover, the absence of semantic interoperability means that data generated
from BIM models, IoT devices, and GIS platforms can remain siloed, preventing seamless data exchange [6, 12]. This
fragmentation limits the formation of a comprehensive digital representation of assets and constrains opportunities for
downstream applications such as predictive maintenance, energy optimization, and sustainability assessment [15, 16].
While large-scale projects typically employ mature ontologies and standardized schemas to ensure semantic consistency
and automated reasoning across datasets, small-scale projects seldom have access to such frameworks, leading to
redundant data handling and inconsistent information management [17, 18].

To address these gaps, this study proposes a modular, semantically enabled CDE architecture specifically tailored
for small-scale projects. The proposed framework utilizes lightweight ontologies to integrally combine BIM data with
real-time IoT sensor streams and GIS information, enabling a unified digital twin representation without the need for
heavy infrastructure. It supports real-time monitoring and control of project operations with minimal cost and technical
overhead. The remainder of this paper is structured as follows: Section 2 reviews the related literature to clearly identify
the research gaps; Section 3 presents the proposed framework; Section 4 describes a case study demonstrating its
implementation; and Section 5 discusses the results and Conclusion part will conclude with key findings, limitation and
future research directions.

2. Related Studies and State-of-the-Art Developments
2.1. Common Data Environment and BIM—Digital Twin Integration

Building Information Modeling (BIM) and Digital Twin (DT) are increasingly viewed as transformative for the
design, delivery, and operation of built assets. Their integration, however, depends on effective data governance and
information management strategies. The Common Data Environment has emerged as a central concept to address this
requirement. As formalized in ISO 19650, a CDE establishes a collaborative workspace where project data is stored,
versioned, and exchanged, ensuring that all stakeholders have access to an authoritative source of information. Its origins
lie in responses to fragmented information flows and the absence of shared protocols, which earlier studies identified as
drivers of inefficiencies and miscommunication in construction projects [19].
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Despite the benefits of standardized coordination, traditional BIM-based CDEs are often limited by proprietary
systems that restrict interoperability. Al-Sadoon et al. (2025) [20] highlight that existing frameworks are inadequate for
complete BIM-DT integration because they tend to create siloed environments rather than fostering seamless
integration. To overcome these constraints, researchers have proposed enhanced CDEs underpinned by semantic
technologies. Steiner (2025) [21], for instance, presents a model where data sources, management components, and end
users are systematically connected, while Stanton (2025) [22] emphasizes the value of real-time linkages between live
sensor data and BIM models. Such designs position the CDE as the backbone of digital twin ecosystems, facilitating
continuous data flows and feedback loops.

Beyond technology, governance considerations are vital. Questions of ownership, access rights, and data ethics are
increasingly recognized as critical to sustainable CDE adoption. Ibrahim (2026) [23] warns that without transparent
rules, conflicts over digital twin data use may arise. Parallel to these scholarly concerns, the European Commission has
advanced the idea of a continent-wide “data space” to promote interoperability and stimulate innovation (European
Commission, 2020a). Overall, a well-designed CDE provides the collaborative infrastructure necessary for integrating
BIM models, IoT streams, and geospatial datasets. Yet, persistent obstacles such as absent global standards and
inconsistent data schemas continue to limit true interoperability [20]. Current research agendas therefore focus on
embedding semantic web principles and open data frameworks into the CDE concept, extending its capability to meet
the demands of next-generation digital twins.

2.2. Digital Twins in Small-Scale Construction

Digital twins promise advantages not only for megaprojects but also for small-scale construction. Real-time
monitoring, simulation, and predictive analytics can help SMEs improve decision-making, reduce rework, and manage
costs more effectively. Case evidence demonstrates that integrating BIM models with live operational data can
streamline maintenance processes and enhance performance monitoring, even for relatively simple assets. Wagqar et al.
(2023) [24] and Wang et al. (2024) [25] similarly argue that DT applications, if adapted to smaller projects, can
accelerate delivery and raise overall quality.

Nonetheless, widespread adoption in SME contexts remains limited. The financial burden of implementing BIM and
DT is consistently ranked as the most pressing barrier. High software costs, specialized hardware, and training
requirements make these technologies less affordable for smaller contractors. European Commission (2025) [26]
documents echo this finding, noting that upskilling expenditures add to the affordability gap. Compounding the issue is
the shortage of digitally proficient staff.

Researchers classify these barriers into technical, organizational, and behavioral categories. Technical limitations
include inadequate digital literacy and scarce IT infrastructure, such as limited access to cloud services or unreliable
internet connections on small construction sites [5]. Organizational challenges stem from weak management support
and unclear returns on investment, while cultural resistance to abandoning established practices further slows adoption
[27]. In addition, many commercial BIM/DT tools are designed for large, complex projects and are ill-suited for modest
undertakings. Wagqar et al. (2023) [24] observe that existing modules rarely address the needs of small projects, creating
a demand for lightweight, modular solutions that can be adapted to scale.

Despite these constraints, there is growing recognition that SMEs cannot ignore digital transformation. Governments
and industry associations are beginning to address this imbalance. The European Commission has identified
digitalization gaps among construction SMEs and has recommended targeted measures to bridge them [28]. Similarly,
Alsakka et al. (2024) [8] argue that integrating DTs into small-scale or offsite construction is essential for
competitiveness in the era of Construction 4.0. The literature suggests that effective responses will require a combination
of financial incentives, development of cost-efficient, modular DT platforms, and structured capacity-building programs.
Such measures would allow SMEs to access benefits already realized in large-scale BIM—DT implementations.

2.3. Semantic Web and Ontologies in the AECO Sector

Achieving interoperability across BIM, DT, IoT, and GIS domains has proven difficult through traditional data
models alone. To overcome this, the Architecture, Engineering, Construction, and Operations (AECO) sector has
increasingly adopted semantic web technologies. These approaches employ ontologies to formalize concepts and
relationships, thereby enabling machine-readable integration of heterogeneous datasets. Ontologies such as the Building
Topology Ontology (BOT), Brick Schema, and IfcOWL illustrate this movement (see Figure 2). BOT provides a
lightweight vocabulary for describing building spaces, Brick offers granular semantics for HVAC and sensor networks,
and IfcOWL enables IFC-based models to be expressed in RDF for semantic querying [17, 27, 29]. Research shows that
these ontologies support cross-domain reasoning and allow BIM data to be enriched with sensor and geospatial inputs,
creating robust semantic digital twins [30]. This integration allows advanced queries and automated compliance
checking. For example, a manager could identify all building components associated with sensors reporting anomalies,
or verify code compliance against rule-based ontological models [24].
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Figure 2. Integration of Semantic Technologies and CDE for Digital Twin Development

However, challenges remain. Developing and mapping ontologies is complex and resource-intensive, requiring both
domain expertise and consensus on standards [31]. Performance limitations, particularly with large graph databases, and
the limited familiarity of practitioners with semantic technologies also inhibit adoption. Privacy and security concerns
emerge when linking sensitive building data with operational datasets. Despite these obstacles, initiatives such as the
W3C Linked Building Data group and EU-funded programs like BIM2TWIN are advancing shared semantic
frameworks, indicating a long-term trend toward ontology-driven CDEs and digital twins.

2.4. Research Projects and Remaining Gaps

Several European projects have pioneered efforts to integrate BIM and DT at scale. COGITO focused on Al-
enhanced DT platforms, BIM2TWIN promoted ontology-driven decision support, and ASHVIN integrated sensors for
real-time control [28, 32, 33]. These initiatives have expanded understanding of federated architectures, data
sovereignty, and simulation-based analytics. Nevertheless, significant gaps remain. Most existing platforms have been
designed for large, resource-rich contexts, leaving questions of scalability to SMEs unresolved [21]. Smaller contractors
often lack the infrastructure, both technical and organizational, to adopt heavy cloud-based or sensor-intensive systems.
Moshood et al. (2024) [30] emphasize the need for incremental, modular solutions that can be phased into practice.
Equally pressing is the lack of universally adopted data standards. The absence of common ontologies and schemas
perpetuates data silos, undermining efforts to merge BIM, IoT, and GIS [20].

Data reliability is another critical issue. Without robust validation and updating processes, CDEs risk hosting
outdated or inconsistent information. The European Commission’s Digital Building Logbook initiative highlights the
importance of lifecycle documentation, yet its practical application in smaller projects is still underdeveloped [33].
Finally, economic feasibility remains a decisive barrier: adoption will lag until clear cost—benefit evidence is available
[4, 27].

Across the reviewed literature, a consistent gap emerges: while semantic-based and real-time integrated Digital Twin
frameworks are evolving, their complexity and cost remain prohibitive for small-scale applications. There is a lack of
modular, low-cost, ontology-enabled CDE systems that can support real-time operations in such contexts. This
underscores the need for “lightweight semantic CDE” solutions designed to address the unique constraints and
opportunities in smaller built assets.

3. Methodological Framework and Research Approach

This study employs a conceptual modeling approach based on secondary data, including peer-reviewed articles,
technical reports, and open-source ontologies, to develop a lightweight semantic-enabled CDE for small-scale
construction projects integrating BIM and Digital Twin (DT) technologies.

The process comprises five stages. First, existing CDE architectures were analyzed to identify that centralized and
federated models dominate large-scale projects, offering robust data exchange but at high cost and complexity, and
cloud-based CDEs provide flexibility but still face interoperability challenges when integrating loT, GIS, and BIM data.
After CDE architectures were analyzed, essential data layers for DT in small buildings were identified: (i) 3D geometry
and spatial relationships (IFC/BOT), (ii) environmental sensor data, (iii) geospatial references, and (iv) temporal
operation data for analytics. The semantic layer was then designed using BOT, Brick Schema, and IfcOWL. BOT models
spatial hierarchies, Brick supports sensor-system integration, and IfcOWL aligns IFC-based BIM data. These are
modeled in RDF/OWL with SPARQL endpoints for querying.
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Based on analysis, a modular data pipeline was designed, comprising (1) acquisition via IoT/BIM tools, (2) semantic
mapping and data fusion, and (3) real-time visualization. Modularity was applied to ensure adaptability in low-resource
contexts [34]. Finally, a case study of a small educational facility with limited budget and infrastructure tests
deployment, latency, and ontology usability, demonstrating the feasibility of real-time semantic interoperability.
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Figure 3. Research flowchart and keyword search implemented in this study for framework development

4. Proposed Semantic-Enabled CDE Architecture

4.1. Overview of System Architecture
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Figure 4. Proposed Architecture for Semantic-Enabled CDE for Digital Twin Applications in Small-Scale Construction
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e BIM Layer (Design Data): The BIM Layer contains static design data, including 3D geometry and metadata from
BIM models (e.g., IFC, Revit). It serves as the authoritative source for building elements, spatial hierarchy, and a
single source of truth. Standards like IFC can be transformed into semantic formats (ifcOWL, BOT) for integration.
Initiatives such as Linked Building Data provide ontologies to represent spaces and elements. Architectural,
structural, and MEP data are prepared for linkage with real-time inputs. Large models may be simplified for
performance; for example, a 500 MB Revit file was reduced to 20 MB by retaining only essential spatial and
monitoring information, improving runtime efficiency. This layer ensures accurate virtual representation and
facilitates seamless integration with higher layers in the semantic-enabled CDE.

e BIM Layer (Design Data): The BIM Layer contains static design data, including 3D geometry and metadata from
BIM models (e.g., IFC, Revit). It serves as the authoritative source for building elements, spatial hierarchy, and a
single source of truth. Standards like IFC can be transformed into semantic formats (ifcOWL, BOT) for integration.
Initiatives such as Linked Building Data provide ontologies to represent spaces and elements. Architectural,
structural, and MEP data are prepared for linkage with real-time inputs. Large models may be simplified for
performance; for example, a 500 MB Revit file was reduced to 20 MB by retaining only essential spatial and
monitoring information, improving runtime efficiency. This layer ensures accurate virtual representation and
facilitates seamless integration with higher layers in the semantic-enabled CDE.

e The 1oT/GIS Layer: This layer captures dynamic real-world data streams and spatial context. It integrates [oT
sensors (e.g., temperature, humidity, light) with GIS-based location data (coordinates, floor plans, maps). Sensors
enable real-time monitoring, reducing manual data collection, and connect via networks (Wi-Fi, BLE) through
middleware or gateways. Geospatial inputs situate readings within physical space, allowing sensor data to be
visualized on maps or 3D BIM models. This integration removes data silos, enhancing decision-making. For
example, environmental or wearable sensors can stream real-time conditions or equipment status, which, when
combined with BIM and displayed on a GIS interface, reveal resource utilization patterns. In the proposed
architecture, this layer performs all physical data acquisition, both sensor telemetry and spatial positioning,
aligning with the “data acquisition” stage of digital twin frameworks.

¢ Semantic Integration Layer (Knowledge Graph): The Semantic Integration Layer unifies BIM, IoT, and GIS
data in a knowledge graph managed by an RDF triple store or graph database, enabling semantic queries across
domains. Ontologies define the schema: the Building Topology Ontology (BOT) models spatial hierarchies (sites,
buildings, storeys, rooms), while the Brick schema defines sensors, equipment, and their links to spaces for sensor
observations. Mapping BIM elements and IoT readings to these ontology classes creates a common data model
where, for example, a temperature sensor is located in a specific room. Standards ensure consistent meaning and
interoperability across heterogeneous data. Knowledge graphs are well suited for digital twins, flexibly integrating
multi-domain datasets and supporting context-rich queries. In this architecture, a triple store holds BIM geometry,
IoT metadata, and geospatial context, connected via microservices. This layer mediates between static BIM design
data and real-time telemetry, linking them through unique identifiers and semantic relationships. Functioning as
the “data/model integration” stage in digital twin frameworks, it semantically maps disparate sources into a
cohesive, queryable structure that supports advanced analytics, automated reasoning, and cross-domain decision-
making in small-scale construction projects.

e Data Management Layer (Processing and Storage): The Data Management Layer ingests, processes, and
synchronizes data between the physical environment and the semantic layer. It incorporates databases, pipelines,
and middleware to handle real-time updates from diverse sources. IoT sensor data is typically collected via
platforms or message brokers, then streamed through tools for preprocessing before integration. Lightweight
protocols enable secure data transfer to the CDE. Functions include cleaning, normalization, and historical storage,
often using NoSQL or time-series databases for structured and semi-structured data. Middleware ensures efficient
routing, while transformation services convert raw values into semantic triples aligned with the knowledge graph.
Synchronization mechanisms update both live sensor data and periodic BIM or external data changes, ensuring
semantic coherence. By capturing readings (e.g., temperature every minute), standardizing units, and flagging
anomalies before injecting them into the knowledge graph, this layer ensures minimal latency and consistent
integration. Ultimately, it serves as the operational backbone linking physical devices with the semantic-enabled
CDE, enabling timely, accurate, and context-rich digital twin updates for small-scale construction projects.

e Visualization Layer: The Visualization Layer comprises user-facing applications that present integrated CDE
information through web dashboards, mobile apps, or 3D BIM viewers. These tools combine static building models
with live sensor data for intuitive understanding. Prior research emphasizes offering multiple interfaces — from 2D
charts to immersive 3D environments — to meet diverse stakeholder needs. In our architecture, a web dashboard
provides real-time graphs, trend analyses, and alerts (e.g., temperature history or threshold exceedance
notifications). A 3D model viewer, built on platforms or game engines, enables virtual navigation of the building
and spatial visualization of sensor readings (e.g., rooms color-coded by temperature). Back-end analytics feed
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processed results to the frontend: abnormal conditions can trigger alerts and highlight affected areas. This layer,
akin to the “service” or “interaction” layer in other frameworks, ensures that facility managers, owners, and
construction teams can monitor and manage assets effectively. Because the CDE is semantic-enabled, end-user
applications can query the knowledge graph for tailored visualizations or reports. By merging analytical
dashboards with spatial context, the Visualization Layer closes the loop from data acquisition to actionable
insights, enhancing situational awareness and decision-making in small-scale construction projects.

4.2. Semantic Mapping Process

A cornerstone of the semantic-enabled CDE is the mapping of BIM and IoT data to a shared ontology framework,
enabling integration at the data level. This involves translating entities from BIM and IoT domains into RDF triples that
instantiate concepts from ontologies like BOT (for building topology) and Brick (for building sensors and systems). By
doing so, both static building elements and dynamic sensor readings coexist in the same semantic graph, linked by
meaningful relationships (see Figure 5).

BIM Domain (IFC Model) loT Domain (Sensors)

bgf;gi:g brick: Temperature_Sensor|
. y sosa:Observation
bot:Space

Semantic Graph
Store
(RDF Triples)

Y
SPARQL Endpoint / Knowledge Graph

v

Applications / Dashboard
Heatmaps
KPls
Alerts

Figure 5. Semantic Mapping Process for Data Integration and Interoperability

Ontology Selection and Alignment: The W3C Linked Building Data ontologies are used for building structure, and
the Brick schema for IoT devices and observations. BOT provides classes and properties to represent the hierarchy of a
building and relationships like bot:hasSpace. Brick defines a taxonomy of building systems and sensors and their
relationships, leveraging for sensor observations. BIM data is aligned with BOT, IoT data with Brick/SSN, and links
between them established-often. Once mapped, triples are stored in a graph store for uniform querying.

Mapping BIM to Ontologies: BIM models (often in IFC) contain building elements and spaces. Data can be
converted to RDF via ifcOWL or, more lightly, BOT and related ontologies. IFC Spatial Structure Elements become
bot:Building, bot:Storey, bot:Space, with relationships preserved. Building elements can be mapped to the Building
Element Ontology or Product ontology. Export can be automated or via API queries, preserving key identifiers like
GUIDs for linking with IoT data.

Mapping IoT Data to Ontologies: Each IoT sensor is represented as a Brick class instance, e.g.,
brick:Temperature_Sensor. Measurements are modeled as sosa:Observation linked to the sensor. Sensors are linked to
BIM context via brick:hasLocation or similar. Metadata or naming conventions in BIM and IoT systems can aid this
mapping.

Data Import and Automation: Mapping can be automated through adapters or microservices. For BIM, an IFC-
to-RDF converter reads files and generates triples. For IoT, a service subscribes to sensor data (e.g., via MQTT) and
updates triples for observations. In some implementations, BIM IfcSensor entities with GUIDs are registered in IoT
middleware with the same GUID, ensuring one-to-one correspondence. Queries to the knowledge graph can then treat
BIM and IoT data as one dataset. Consistency in units and data types is maintained using RDF data types and Brick’s
unit definitions.

Integration Benefits: The semantic mapping links BIM—BOT (spaces, elements) and loT—Brick (sensors, points),
creating BOT—Brick relationships. This allows unified SPARQL queries, e.g., “List all rooms on Floor 1 with a
temperature above 25°C, showing readings and sensor IDs.” Such queries leverage both BIM (room/floor context) and
IoT (live data) in one step.
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4.3. Data Pipelines

With the architecture and mappings in place, the system operates through a data pipeline that moves information
from raw source to actionable visualization in a continuous loop. The pipeline can be described in four main stages: (1)
Data Collection, (2) Data Processing/Normalization, (3) Semantic Mapping & Integration, (4) Data Query &
Visualization. This sequence ensures that data from the physical environment is captured, transformed into a unified
semantic model, and then utilized by applications in real time. Each stage and the enabling technologies are described
in Figure 6.

Data Preprocessing Query &
Collection & Normalization Visualization

MQTT, REST, Node-RED, REST API,
WebSockets, Spark/Flink, ‘ SPARQL,
BACnet, Zigbee, ETL, Dashboards,
Modbus unit conversion 3D BIM viewers

Figure 6. Real-time data pipeline for semantic-enabled CDE

Data Collection (Ingestion Stage): In the first stage, heterogeneous data from multiple sources are collected and
streamed into the CDE, including IoT sensor measurements, external feeds, and manual inputs. IoT devices in the
building publish telemetry at regular intervals via gateways or brokers using protocols or building automation standards.
In our setup, an MQTT broker aggregates streams from building sensors, with topics structured by location (e.g.,
buildingl/floorl/room101/temperature). GIS data may also be integrated, either as a one-time import of building
coordinates or as continuous tracking of moving assets. All incoming data are timestamped and forwarded to the
processing layer. Middleware and edge devices can perform minor preprocessing before sending data to the cloud via
MQTT or REST APIs. For high-throughput environments, platforms like Apache Kafka can buffer and distribute
streams. The key requirements at this stage are secure, reliable transmission and minimal latency. This collection stage
establishes the real-time acquisition pipeline, ensuring live sensor and contextual data flow continuously into the CDE
to support timely processing, integration, and visualization within the digital twin environment.

Data Processing & Normalization: Once collected, data is preprocessed and normalized before integration. Raw
sensor readings may be noisy, incomplete, or inconsistent, so the system filters, cleans, and transforms them. Steps
include removing outliers, filling missing values, converting units to a common standard, and aligning timestamps for
synchronization. Large BIM models may also be lightweighted by trimming to essential elements for faster queries.
Processing can be handled by stream processors or ETL pipelines. Tools manage heavier analytics in batch or micro-
batch mode, while Node-RED or custom scripts handle on-the-fly transformations. For example, sensor data might be
averaged to one-minute intervals, smoothed to reduce noise, or validated before storage. Normalization also structures
data according to the ontology schema, preparing identifiers and metadata for RDF triple insertion. A temperature
reading such as “room=101, value=25.3, time=10:00" would be tagged with the corresponding sensor URI, typed as an
xsd:float, and annotated with units (°C). Derived metrics or anomaly flags can also be computed at this stage. The result
is a stream of clean, standardized sensor data and a filtered BIM dataset, both conforming to expected formats and ready
for semantic ingestion into the knowledge graph.

Semantic Mapping & Integration (Transformation Stage): In this stage, processed data is transformed into RDF
triples and inserted into the knowledge graph. If the BIM model is not yet loaded, it is imported into the triple store to
establish building entities and relationships. Each new sensor observation is then semantically mapped according to the
ontology alignment described in Section 4.2. The sensor is linked to its location with a statement. This process is
typically managed by an IoT data adapter microservice that listens to a message broker and performs SPARQL Updates
or API calls to insert triples.

In case of high-volume scenarios (hundreds of sensors), the system can batch readings into single transactions or
apply streaming graph updates for efficiency. This maintains near real-time synchronization of the knowledge graph
with live sensor data contextualized within BIM.

Defining this pipeline explicitly ensures consistency and scalability. New data sources or external systems can be
integrated without disrupting the model’s structure. Once data is in the graph, optional reasoning or analytics may be
applied, such as inferring higher-level states, validating rules, or triggering alerts, but these are separate from the core
integration pipeline.
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By continuously merging live sensor streams with BIM context in RDF, the semantic integration stage keeps the
digital twin’s knowledge graph current, enabling accurate, context-rich queries and supporting informed decision-
making across the building’s lifecycle.

Data Query & Visualization (Delivery Stage): The final pipeline stage delivers actionable information to end-
users and applications. With the CDE’s knowledge graph populated with fused BIM and IoT data, access is provided
via two main methods: API calls and direct queries.

Advanced users or analytics services can query the triple store directly (SPARQL for RDF stores, Cypher for
property graphs) for complex joins or integrated data analysis. For instance, a SPARQL query could return the latest
temperature for each room on Floor 1, ordered by value. Demonstrations showed retrieval of linked BIM, IoT, and
process data in a single semantic query.

Once retrieved, data is visualized. The dashboard refreshes charts and status indicators in real time, either via
subscriptions or polling the API. A 3D BIM viewer, such as Autodesk Forge, can overlay live sensor data on model
elements, updating colors or tooltips as readings change. The system can trigger alerts when thresholds are exceeded,
using rule engines or data analysis, and display notifications for abnormal patterns. Predictive analytics, such as
forecasting a temperature rise within the next hour, can also be integrated into the dashboard.

The pipeline is cyclical: user actions generate new data that re-enters the pipeline. Historical data is logged for
analysis, with old triples archived or time-series data compressed to maintain performance. Time-series databases work
alongside the triple store to support both historical and real-time queries. This integrated delivery layer ensures that
stakeholders, from facility managers to automated control systems, can access timely, contextualized insights, while
maintaining a flexible architecture for future tools and data sources.

A timely, normalized, and context-rich flow of data from sensors to stakeholders is delivered through the proposed
semantic-enabled CDE pipeline. Automated collection is first performed, after which cleaning and organization are
carried out using stream processing and ETL tools. The data is then semantically integrated into a knowledge graph
through RDF and ontology mapping, before being disseminated via APIs and dashboards using REST or SPARQL
queries. Real-time monitoring, predictive analytics, automated control, and facility optimization are enabled by key
technologies such as MQTT, REST, SPARQL, and RDF. By having each stage from collection to display explicitly
defined, the CDE is maintained as a live, authoritative hub, capable of supporting scalable and iterative data management
as new sources are introduced.

5. Applied Case Study: Demonstrating the Proposed Framework

A three-story school building was selected as a representative case to demonstrate the deployment of the proposed
Digital Twin (DT) framework. The building consists of standard classrooms and corridors, typical of educational
environments where operational management and environmental monitoring are critical. Although only a small set of
IoT devices, measuring temperature and humidity, were installed in selected classrooms, these sensors successfully
transmitted data via Bluetooth Low Energy (BLE) to a local gateway, which subsequently relayed information to a
cloud-based database. This setup ensured a continuous, albeit spatially constrained, real-time data stream reflecting the
indoor environmental dynamics of the building.

To address the limited spatial coverage of physical sensors, additional data were integrated from simulations and
secondary sources. Historical weather records from a local database, occupancy schedules, and internal heat-gain
profiles based on national building standards were employed to generate synthetic data for unsensed areas. This fusion
of real and simulated data produced a hybrid dataset, enhancing the completeness and reliability of the DT
representation. Such hybridization follows established practices in early-stage DT research, where sparse empirical data
are supplemented with modeled information to emulate dense instrumentation [30, 35]. The calibrated dataset provided
a more holistic reflection of the building’s performance, supporting both diagnostic and predictive analytics.

The DT platform was developed as a multi-layer system comprising physical, virtual, and application layers. The
physical layer collected field data through uniquely identified IoT sensors linked to spatial coordinates within the
building. The virtual layer, modeled in Autodesk Revit, represented the BIM environment reduced from approximately
500 MB to 20 MB by retaining only essential geometric and attribute data necessary for monitoring. Each spatial entity
was assigned a consistent identifier, enabling real-time association with its corresponding sensor or simulation data.
This configuration allowed users to click on a room in the BIM interface and instantly visualize real-time readings,
historical trends, or anomalies through a web-based dashboard. The Semantic Mapping Process and Data Pipelines,
explicitly defined within the framework, ensured that raw sensor streams were automatically aligned with ontology
terms and delivered through structured, interoperable channels. This enabled smooth data exchange, real-time
synchronization, and integration with predictive models (see Figures 7 and 8).
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Figure 8. Simplified layout of the second-floor rooms

The overall system adhered to a classical DT paradigm, maintaining a live connection between physical assets, data
pipelines, and virtual representations. The DT server hosted analytics and simulation modules, while the dashboard
provided intuitive visualization and user interaction (Figure 9). Communication among system components employed
standard web protocols, ensuring modularity and cross-platform interoperability. This design achieved near-real-time
synchronization, a critical feature for effective DT implementation [11, 36].

Given the sparse sensor deployment, simulated and secondary data streams were indispensable for achieving full
coverage. Real sensor readings served as calibration references to fine-tune simulated results, ensuring data fidelity
across unsensed zones. A simplified building energy model was developed to simulate thermal comfort under typical
occupancy and climatic conditions, supplemented with benchmark data for indoor air quality and HVAC operation in
educational facilities. Consequently, the DT achieved the functionality of a “virtually instrumented” system, where
simulated inputs reinforced the limited sensor network. Previous studies corroborate the feasibility and scientific rigor
of this hybridized data strategy for early-stage DT applications [7, 8, 37].

The implemented DT facilitated continuous environmental monitoring and operational insight. Real-time data
streaming every few minutes allowed facility managers to visualize temperature and humidity conditions across all
classrooms. Deviations were immediately identifiable, with one overheating classroom traced to a blocked ventilation
duct, demonstrating the DT’s capacity for diagnostic analysis. Predictive analytics further extended system functionality.
A Long Short-Term Memory (LSTM) neural network trained on the hybrid dataset achieved a normalized root-mean-
square error (NRMSE) of 3—-5% for short-term temperature and humidity forecasts, matching or exceeding performance
reported in comparable DT-based forecasting studies. Moreover, the predictive module enabled intelligent anomaly
detection: when measured values diverged significantly from predicted trends, automatic alerts were triggered. For
instance, one classroom predicted to remain at 24 °C recorded an actual temperature of 27 °C, leading to a prompt
inspection that revealed a heating system malfunction. The quantitative results are presented for the rooms identified by
the codes illustrated in Figure 10, whereas Figure 11 depicts the weekly load profile heatmap, showing variations in
power demand (kW) across hours of the day.
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Figure 9. Demonstration of Digital Twin Dashboard for Real-Time Indoor Environment Monitoring
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Figure 11. Weekly Load Profile Heatmap (kW) by Hour of Day

Overall, the case study validates that the proposed semantic-enabled CDE and DT framework can operate in low-
infrastructure environments. By combining limited sensor inputs with simulated data, the system achieved live
synchronization, intuitive visualization, and predictive intelligence, offering a scalable and affordable pathway for DT
adoption in small-scale construction projects.

6. Analysis and Discussion of Research Results
6.1. Advantages of the Proposed Model

The proposed semantic-enabled Common Data Environment (CDE) architecture demonstrates several advantages
that directly address the limitations identified in previous studies on small-scale Building Information Modeling (BIM)
and Digital Twin (DT) applications.

First, its modular system design simplifies deployment, operation, and maintenance by dividing the system into
loosely coupled services and data repositories. This architecture allows individual components to be updated or replaced
independently, avoiding costly full-system reconfigurations. Such a plug-in approach aligns with the modular
development principles highlighted by Schlenger et al. (2025) [29] and Shehata et al. (2025) [27], who found that
modular Digital Twin systems enhance flexibility and reduce lifecycle costs. Compared to traditional monolithic CDEs,
the proposed framework enables incremental scaling, allowing small projects to begin with essential functions and
progressively integrate advanced capabilities as resources permit. This not only improves maintainability but also
minimizes the risk of cascading failures by isolating technical issues within individual modules.

A second major strength lies in the semantic data structuring and ontology-based integration. By employing Resource
Description Framework (RDF) graphs and domain ontologies, the framework provides explicit, machine-readable
definitions of entities and relationships, ensuring interoperability across platforms and project phases. Earlier research
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emphasized that ontology-driven models enhance the consistency and reusability of construction data [38], while
supporting cross-domain reasoning for operational decision-making [39]. The present results corroborate these findings:
the semantic CDE effectively unifies heterogeneous data types, such as BIM models, [oT sensor streams, and tabular
datasets, allowing seamless integration under limited budgets. Compared with previous CDE implementations, which
often relied on proprietary data formats, the proposed approach achieves greater transparency and portability, extending
data value beyond a single project lifecycle.

Finally, the cost-effectiveness of the proposed solution marks a practical advancement over earlier DT prototypes
that required significant software investment and vendor-specific infrastructure [5, 40]. By utilizing open-source tools
and open data standards, the proposed CDE removes common barriers related to licensing, training, and cloud
infrastructure costs. This outcome aligns with the experience of prior low-cost DT initiatives, such as university campus
monitoring systems that successfully achieved BIM—IoT integration using open frameworks. The present study
reinforces that open, modular architectures can deliver reliable performance while remaining financially accessible to
small organizations and community projects.

6.2. Remaining Challenges

Despite its demonstrated potential, several challenges persist. A primary barrier concerns the limited availability of
ontology-literate professionals in the Architecture, Engineering, and Construction (AEC) sector. As Kosse et al. (2025)
[41] note, semantic technologies such as RDF, OWL, and SPARQL remain underutilized due to steep learning curves
and a lack of domain-specific training. Small firms, often operating with minimal staff and constrained budgets [4],
rarely possess the expertise required for developing and maintaining ontological structures. Without accessible tools and
user-friendly interfaces, the benefits of semantic modeling may remain confined to research-oriented settings. The
findings therefore suggest that developing simplified ontology editors and embedding training modules within BIM
software would significantly lower the adoption threshold.

Another limitation involves real-time data pipeline reliability. As reported by Yan et al. (2025b) [40], synchronizing
heterogeneous sensor inputs with semantic BIM representations remains technically demanding, particularly under
constrained bandwidth or low-cost hardware conditions. The current implementation encountered similar issues:
mismatches in data granularity and streaming frequency occasionally produced latency and temporary inconsistencies.
These findings are consistent with Lei et al. (2023) [36], who emphasized the need for resilient middleware to manage
asynchronous data flows. Future iterations of the proposed framework should incorporate advanced buffering,
validation, and temporal alignment mechanisms to maintain integrity within the knowledge graph during high-frequency
updates.

Besides, data security and access control continue to pose critical concerns. As highlighted by Lindholm et al. (2015)
[10], CDEs may store sensitive architectural and operational information that, if compromised, could endanger both
safety and privacy. The present results confirm the necessity of implementing multi-layered protection, including role-
based authorization, encrypted transmission, and blockchain-backed audit trails. Strengthening these safeguards would
enhance stakeholder confidence, particularly for cloud-hosted or multi-party DT systems.

Intermittent connectivity is also another possible challenge. The proposed framework is optimized for low-resource
environments and can tolerate intermittent connectivity through localized data handling and synchronization
mechanisms. In regions where internet access is unstable, the CDE can operate in a hybrid configuration: critical
components run on a local server or edge device to maintain real-time monitoring and data logging even during network
outages. The system temporarily stores sensor readings locally, via an MQTT broker or gateway, and synchronizes them
with the cloud repository once connectivity is restored, using a store-and-forward strategy to ensure eventual
consistency. This design allows on-site users to access the CDE and sustain automated processes offline, while unique
timestamps and ID tracking prevent data loss or duplication during reconnection. Consequently, the framework supports
continuous digital-twin operations in developing regions where reliable connectivity cannot be guaranteed.

Finally, federating multiple small-project CDE into a shared regional or municipal digital ecosystem would introduce
several critical challenges. The foremost concern is achieving data standardization and semantic interoperability, as
projects often rely on distinct ontologies, schemas, and metadata conventions. Without harmonized standards,
integration may result in inconsistent semantics and fragmented data silos. Equally important are governance and access
control, requiring clear policies on data ownership, authorization, and privacy management. Technically, a federated
CDE implies a distributed architecture where executing cross-domain queries and maintaining synchronization among
heterogeneous knowledge graphs is complex and resource intensive. Scalability and reliability further constrain such
systems, given the exponential growth in data volume and user activity at regional scales. Additionally, stakeholder
coordination remains difficult since small projects are typically managed by separate organizations; achieving
compliance with a unified semantic and governance framework demands strong institutional leadership and long-term
collaboration.
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6.3. Application Potential

The architecture’s combination of modularity, semantic integration, and affordability suits various community-scale
projects needing multi-stakeholder collaboration.

¢ Social housing projects: Housing organizations can integrate BIM models with operational data to improve
efficiency and resident comfort. Repetitive units and standardized components make these ideal for data reuse. A
semantic CDE could link asset lifecycles, maintenance logs, and energy use across portfolios, supporting
preventative maintenance and sustainability goals. Case studies show early BIM adoption in public housing
reduces waste and improves coordination. Semantic integration can also connect housing data to municipal GIS
or energy systems for broader smart city integration.

e Small public facilities: Assets like pumping stations, substations, or heating plants, often unmanned and
maintained by small teams, can be monitored remotely via the CDE. Integrating IoT feeds with BIM models
enables live equipment tracking and predictive maintenance. Microservice-based knowledge graph systems have
been applied successfully to varied infrastructure [39], proving feasibility. A semantic model ensures data is
context-aware and aggregate-ready, allowing cities to network multiple small facilities’ twins for optimized
operations.

¢ Educational buildings: Schools and universities can use the CDE to integrate BIM with occupancy, air quality,
temperature, and energy sensors. This supports comfort optimization and proactive maintenance. Open-source
tools keep costs low, and semantic modelling captures relationships valuable for campus management. CDE use
in academic buildings also improves coordination during renovations through up-to-date, shared records.

e Community centres and civic buildings: Facilities like libraries, clinics, and recreation centres often face
irregular usage patterns. A semantic-enabled DT can correlate occupancy, energy, and HVAC data to optimize
operations. BIM-enabled retrofits have shown energy and daylighting improvements in similar contexts [16]. The
low-cost, modular design makes deployment feasible even without full-time technical staff, and well-structured
data can be shared publicly to engage communities in sustainability initiatives.

¢ Non-building assets: The semantic architecture of the proposed framework can be extended beyond buildings to
encompass broader infrastructure assets such as bridges, pipelines, and other civil structures. This generalization
requires integrating domain-specific ontologies. For instance, the Building Topology Ontology (BOT) could be
expanded or substituted with infrastructure-oriented models capable of representing components like decks, piers,
abutments, or flow systems and network elements such as pipes and valves. The broader architecture, covering
data acquisition, IoT integration, and real-time synchronization, remains applicable. Extending the ontology layer
ensures that asset-specific entities and relationships are rigorously defined, enabling consistent, interoperable data
exchange across diverse infrastructure domains.

¢ Cloud—edge computing framework: Integrating the proposed CDE into a cloud—edge computing framework can
markedly enhance real-time synchronization and system responsiveness. In this hybrid configuration, edge devices
situated near IoT sensors handle preprocessing, filtering, and semantic structuring of data, while the cloud hosts
centralized repositories and executes computationally intensive analytics. Edge gateways may operate lightweight
triple stores that convert raw sensor streams into standardized RDF triples before asynchronously transmitting
updates to the cloud knowledge graph. This distributed setup combines the low-latency advantages of local
processing with the scalability and consistency of cloud infrastructure. It also maintains operational continuity
under unstable network conditions, as edge nodes cache data during disconnections and synchronize once
connectivity is restored. Overall, the cloud—edge integration improves throughput, reliability, and decision-making
efficiency across all project stakeholders.

¢ Blockchain-based system: Integrating a blockchain-based provenance layer can enhance the semantic Common
Data Environment (CDE) by providing a distributed, tamper-resistant ledger for recording all data transactions.
While the semantic model ensures interoperability and structured data linkage, the blockchain layer secures every
modification with immutable timestamps and verifiable origins. This is particularly valuable in decentralized or
multi-stakeholder environments, where numerous contributors upload sensor data, BIM models, or project
documents. By hashing each record and storing it on the blockchain, the system establishes a transparent and
auditable history of data integrity. Smart contracts can further automate governance processes, such as on-chain
approvals for design modifications, ensuring rule compliance. Although blockchain integration introduces
additional costs and complexity, its selective application to critical datasets significantly strengthens trust,
accountability, and data reliability across the digital twin ecosystem.
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7. Conclusion

This study proposed a semantic-enabled Common Data Environment (CDE) architecture specifically developed to
support real-time Digital Twin (DT) deployment in small-scale construction projects. By integrating modular system
design with an ontology-driven semantic layer, the framework achieves seamless interoperability across heterogeneous
datasets spanning design, construction, and operational stages. The proposed system unifies static Building Information
Modeling (BIM) data with dynamic Internet of Things (IoT) sensor streams, forming a continuous feedback loop that
enables real-time monitoring and data-informed decision-making. The Semantic Mapping Process and Data Pipelines
are clearly defined within the framework to ensure structured data flow, automated transformation, and consistent
semantic alignment among different information sources. The architecture’s loosely coupled design, standardized
information containers, and use of open data standards ensure scalability, maintainability, and cost efficiency, making
it highly suitable for resource-constrained environments. The findings from a case study demonstrate that small-scale
projects can achieve advanced DT functionalities through modularity and semantic interoperability without relying on
complex or expensive infrastructures.

Future research should focus on three major directions. First, automating the semantic mapping and data integration
mechanisms will minimize manual intervention and expedite deployment. Second, enhancing cybersecurity through
encryption, role-based access control, and blockchain-based data validation will strengthen data integrity and
stakeholder confidence. Third, extending the application of the proposed framework to other domains, such as civil
infrastructure, facility management, or heritage conservation, will further validate its flexibility and generalizability. By
pursuing these directions, the semantic-enabled CDE provides a robust foundation for advancing Digital Twin adoption
and promoting a more connected, intelligent, and sustainable built environment.
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