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Abstract

This study investigates how variations in constituent materials affect the fresh properties of cement-based pastes using a
statistically driven experimental approach. A Central Composite Design (CCD) was implemented to examine the influence
of three key input parameters: water-to-cement ratio (w/c), superplasticizer-to-powder ratio (Sp/p), and water-to-powder
ratio (w/p). Fifteen mix compositions were produced and tested using the mini-slump test and Marsh funnel flow time,
both immediately after mixing and after 60 minutes. Response Surface Methodology (RSM) was applied to develop
predictive models for each property. The results showed that the water-to-powder ratio was the most influential factor on
workability, followed by the superplasticizer-to-powder ratio. The statistical models successfully captured main,
interaction, and quadratic effects, enabling accurate prediction of flow and time measurements. These models were further
used to optimize mix compositions according to targeted fresh-state performance. Compared with conventional one-
variable-at-a-time approaches, the CCD method substantially reduces the number of tests required while providing deeper
analytical insights. The proposed methodology improves the understanding of complex interactions among mix parameters
and supports the efficient design of cement-based materials for performance-critical applications.
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1. Introduction

The evaluation of fresh-state properties of cement-based pastes is a critical step in ensuring proper workability,
pumpability, and structural build-up of modern cementitious materials. Fresh properties such as flowability, yield stress,
viscosity, and setting behavior directly influence casting quality, dimensional stability, and ultimately hardened
performance. This is particularly relevant for advanced applications such as self-compacting concrete (SCC), ultra-high-
performance concrete (UHPC), 3D-printed concretes, and other innovative cementitious systems [1-3]. Even minor
changes in binder composition, water-to-cement ratio (w/c), or superplasticizer dosage can significantly alter rheological
responses, underlining the need for systematic evaluation [4-6].

Two main lines of research have been developed. The first focuses on the role of constituent materials in modifying
fresh properties. Studies show that mineral additions, filler type, and chemical admixtures can strongly affect slump
flow, viscosity, and setting [7-9]. Recent contributions also highlight the impact of supplementary cementitious
materials and sustainable binders [10, 11]. The second line of research is the use of advanced experimental design
strategies to optimize mixes while reducing testing effort. Approaches such as factorial design, Taguchi arrays, Box—
Behnken design, response surface methodology (RSM), and hybrid methods integrating artificial intelligence have been
increasingly applied [12-15].
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Despite progress, significant knowledge gaps remain. Most optimization-oriented studies emphasize hardened
properties such as compressive strength and durability while devoting limited attention to early-age rheology [16-18].
Some works applying RSM or CCD to SCC or UHPC focused primarily on strength, neglecting fresh-state interactions
[19-21]. When rheological behavior is considered, many investigations rely on one-variable-at-a-time methods, which
are resource-intensive and unable to capture nonlinear effects [22, 23]. Even recent machine learning models, while
promising in prediction, are often based on limited datasets that restrict validation [24, 25].

Recent publications confirm these shortcomings. Studies on low-carbon cement pastes reported reduced flowability
with ashes but used only single-factor analysis [26]. Other works showed that polymer admixtures significantly modify
viscosity and yield stress but lacked multi-parameter optimization [27]. Investigations of structural build-up highlighted
microstructural mechanisms but did not extend to predictive modelling [28]. In sustainable concretes with shea nutshell
ash or groundnut shell ash, RSM and Box—Behnken optimization were applied, but the focus was largely on strength
and durability [29, 30]. Richards et al. [31] demonstrated the rheological behavior of fresh cement suspensions,
confirming the complexity of paste as a non-Brownian system. Studies in 2024 and 2025 further applied CCD and RSM
to optimize recycled aggregate concretes, alkali-activated systems, and ternary blends, with positive results but limited
emphasis on fresh-state rheology [32—36].

Building on this literature review, it becomes clear that important gaps remain in the current state of knowledge.
First, although recent research has increasingly recognized the importance of rheology, most optimization studies still
concentrate on hardened properties such as compressive strength, shrinkage, or durability, with comparatively little
attention devoted to early-age behavior. Second, when fresh-state properties are considered, the majority of
investigations fail to capture the inherently nonlinear nature of these systems. Interactions among key parameters such
as w/c, w/p, and Sp/p are often simplified or examined in isolation, which limits the capacity to develop comprehensive
predictive models. Third, many experimental programs continue to rely on single-factor or trial-and-error strategies.
While straightforward, these approaches are inefficient, require large numbers of tests, and are incapable of representing
the multi-parameter interactions that govern the performance of cementitious pastes.

The present study addresses these shortcomings by applying a Central Composite Design (CCD), a robust RSM
variant, to systematically study the influence of three key parameters: water-to-cement ratio (w/c), water-to-powder ratio
(w/p), and superplasticizer-to-powder ratio (Sp/p). Unlike most prior works focusing mainly on compressive strength,
this research emphasizes fresh-state flow measured by mini-slump and Marsh funnel tests. CCD allows modelling of
linear, quadratic, and interaction effects, generating predictive equations with fewer experiments [37-39].

The novelty of this work lies in combining CCD with practical rheological testing to build reliable predictive models.
By identifying both primary and interaction effects, the methodology enables simulation and optimization of paste
behavior, overcoming the limitations of conventional one-variable approaches.

This paper is Part Il of a broader program. Part | applied a single-variable strategy, which provided insights into
isolated effects but required many tests and did not capture nonlinearities. In contrast, Part Il employs CCD to achieve
deeper understanding with fewer experiments while enabling optimization. Together, these complementary approaches
demonstrate the advantages of CCD for the systematic investigation of cement paste rheology [40-43].

2. Central Composite Design
2.1. Principles and Framework of RSM

Response Surface Methodology (RSM) is a powerful statistical tool used to model and analyze problems in which a
response of interest is influenced by several input variables, with the objective of optimizing this response. In the context
of materials science, RSM enables the prediction of material properties based on experimental factors—such as mix
composition or processing conditions—and thus guides the formulation of optimal mixtures before physical testing. A
factor in RSM refers to an independent variable that is deliberately controlled in the experimental setup, while the
response refers to the measured outcome, such as flowability or viscosity.

One of the key strengths of RSM lies in its structured approach to experimentation. It employs carefully sequenced
Design of Experiments (DOE) strategies to collect data efficiently and fit mathematical models, usually polynomial
equations, to the observed responses. This approach allows for the identification not only of the main effects of
individual variables but also of interaction effects and quadratic (nonlinear) relationships that are often present in
complex systems such as cement-based materials [37—-40]. RSM is particularly advantageous when the objective is to
enhance the “signal” of a treatment effect or to explore multidimensional parameter spaces. By applying regression
analysis and analysis of variance (ANOVA), it becomes possible to derive predictive models that simulate the influence
of multiple factors simultaneously. These capabilities make RSM an ideal framework for optimization, sensitivity
analysis, or process robustness assessment [41-43].

A significant advantage of RSM is its ability to reduce the number of experimental trials required to obtain
statistically valid conclusions, without compromising reliability. This is especially beneficial in material development,
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where each test may be time-consuming or resource-intensive. Moreover, RSM offers high flexibility by allowing
researchers to consolidate several phases of experimentation into a single, coherent design, streamlining the research
process [35, 44].

Several well-established RSM variants exist, most derived from factorial principles. These include: (i) full factorial
designs, which explore all possible factor combinations; (ii) fractional factorial designs, which use a subset of
combinations to reduce trials; (iii) Central Composite Designs (CCD), which extend factorial designs with axial (star)
and center points to capture curvature; (iv) Box—Behnken designs, efficient for fitting second-order models with fewer
runs than CCDs; (v) Koshal designs, designed to minimize the number of runs while maintaining model quality; (vi)
Plackett—Burman designs, focused on screening large numbers of variables; and (vii) Taguchi orthogonal arrays,
emphasizing robustness and variability control [42—45].

In this research, a CCD was selected as one of the most reliable RSM variants for fitting second-order models. CCD
balances model accuracy and experimental efficiency, particularly in studies involving three or more variables, as it
enables the modelling of curvature and the estimation of interactions. Figure 1 compares layouts of different RSM
designs—full factorial, CCD, Box—Behnken, and Koshal—for three variables, illustrating CCD’s advantage in capturing
nonlinear behavior essential for predictive modelling.
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Figure 1. Experimental tests in three variables for: a) Full factorial design, b) central composite design, ¢) box-behnken
design and d) Koshal design

2.2. CCD in Cementitious Materials and Methodology of the Present Study

The CCD is an adaptation of the factorial design, expanded with axial and center points. This structure allows for
estimation of curvature and improves the modelling of first- and second-order terms. It also incorporates desirable
statistical properties such as orthogonal blocks, which allow block effects to be estimated independently, minimizing
variation in regression coefficients, and rotatability, which ensures constant prediction variance at points equidistant
from the design center [17, 18]. Figure 2 shows a three-factor CCD with rotatability.
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Figure 2. Three factor central composition design with rotatability

For a CCD with three factors, there are 15 trials defined by coded levels (—1, 0, +1, and axial). These are translated
into real values for each factor, and the observations for each response can be fitted using a second-order polynomial:

where X1, Xz and X3 are the factors (i.e. the independent variables); bg is the regression coefficient at the center point;
b1, b2 and bz are linear coefficients; b1y, b1z and by are second order coefficients; and bii, b2, and bss are quadratic
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coefficients. All the coefficients are obtained with statistics with the quality of the response (the fit of polynomial model
equation) expressed by the coefficient of determination, R2.

The experimental design and statistical analyses were performed using Design-Expert® software (Stat-Ease Inc.,
Minneapolis, MN, USA). Different software versions were used during the study. Figure 3 presents the methodological
workflow, linking factor selection, mix preparation, testing, modelling, and optimization.

1. Parameter Definition 2. Design Mixtures 3. Sample Preparation
Choose key variables Create 15 experimental mix Prepare cement paste mixtures
(w/c, Sp/p, w/p ratios) compositions using CCD according to mix composition designed
4. Testing Phase 5. Data Collection 6. Statistical Analysis
Conduct mini-slump and Marsh funnel Record flow diameter and time Apply response surface methodology
tests (0 and 60 minutes) measurements
7. Model Development 8. Optimization
Create predictive equations for workability Identify optimal mix proportions

Figure 3. Flowchart of the methodology

2.3. Comparative Assessment and Relevance

Compared with other DOE strategies, CCD strikes an effective balance between statistical robustness and
experimental feasibility. Full factorial designs quickly become impractical with more factors, while fractional factorials
cannot detect curvature. Box—Behnken avoids extreme factor levels, which may be critical in rheological studies, and
Taguchi methods emphasize robustness but lack direct quadratic modelling [43, 44]. CCD thus emerges as a rigorous
and efficient option.

The theoretical strengths of CCD lie in its capacity to achieve rotatability and orthogonality. These properties ensure
reliable predictions across the factor space and minimize confounding effects, which is particularly relevant when
studying the combined effects of water-to-cement ratio, water-to-powder ratio, and superplasticizer-to-powder ratio in
cementitious systems. Rheological parameters such as yield stress and viscosity arise from complex particle interactions
and hydration kinetics, and CCD provides a statistical framework to model these phenomena as structured nonlinear
effects.

Recent studies confirm CCD’s effectiveness: Yu et al. [46] optimized UHPC with nano-silica; Rojo-Lépez et al. [47]
applied CCD to SCC blends; Sobuz et al. [48] integrated RSM with ML for SCC; Xu et al. [27] studied alkali-activated
pastes; and Hayek et al. [21] modeled structural build-up. These examples reinforce CCD’s suitability for advanced
cementitious materials.

For the present work, CCD provides a principled approach to explore the combined influence of the three parameters
under study. Unlike the one-variable-at-a-time method applied in Part I, CCD captures linear, quadratic, and interaction
effects simultaneously, generating predictive models with reduced experimental effort. More importantly, CCD
translates raw experimental scatter into meaningful insights into mechanisms governing fresh properties.

In summary, CCD was selected because it (i) comprehensively models linear, quadratic, and interaction effects, (ii)
reduces experimental trials compared with factorial methods while preserving rigor, and (iii) has proven applicability in
recent research. By embedding statistical robustness into experimental design, CCD bridges theoretical modelling with
practical optimization, making it the most suitable DOE framework for this study.

3. Experimental Program
3.1. Materials and Mix Compositions

The 15 cement-based pastes were prepared using two powders: (i) commercial cement CEM | 42.5R (EN 197-1)
containing 90.2% clinker, 5.2% gypsum, and 4.5% limestone filler, and (ii) limestone filler. Their specific gravities were
3.11 and 2.70 g/cm3, respectively. A third-generation superplasticizer with 40% solid content and a specific gravity of
1.08 g/cm? was used. All mixtures were prepared with distilled water. The 15 mix compositions were arranged by
varying the input parameters: water-to-cement ratio (w/c), superplasticizer-to-powder ratio (Sp/p), and water-to-powder
ratio (w/p). All mixtures were prepared in a single batch with a total volume of 1.40 L.
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The compositions of the 15 mixtures were defined based on a central composite design with three input variables
(A, B, and C) corresponding to the parameters w/c, Sp/p, and w/p, respectively. The mix with coded values A = w/c =
0, B=Sp/p=0,and C = w/p =0 (i.e., the central composition) had actual values of w/c = 0.2886, Sp/p = 0.80%, and
w/p = 0.5333. Relative to the central composition, the maximum variations of the input parameters were 6.3%, 25.0%,
and 10.0% for w/c, Sp/p, and w/p, respectively. Regarding the constituent materials relative to the central composition,
the maximum changes were: cement 6.7%, limestone filler 18.9%, superplasticizer 25.0%, and water 6.5%. No
repetitions were performed, including for the central composition. Table 1 presents the data corresponding to each
mixture of the central composite design.

Table 1. Mixtures of the central composite design

Mix order Coded Values Actual Values Mass for batch [g]
std run wic Sp/p w/p wic Sp/p w/p cem Filler Sp water
1 14 -1 -1 -1 0.2796 0.0070 0.5066 1690.3 1046.7 19.159 461.15
2 15 1 -1 -1 0.2977 0.0070 0.5066 1587.9 1136.0 19.067 461.21
3 13 -1 1 -1 0.2796 0.0090 0.5066 1690.3 1046.7 24.634 457.87
4 12 1 1 -1 0.2977 0.0090 0.5066 1587.9 1136.0 24.515 457.94
5 10 -1 -1 1 0.2796 0.0070 0.5600 1804.4 861.3 18.660 493.35
6 11 1 -1 1 0.2977 0.0070 0.5600 1695.0 956.5 18.561 493.41
7 9 -1 1 1 0.2796 0.0090 0.5600 1804.4 861.3 23.991 490.15
8 8 1 1 1 0.2977 0.0090 0.5600 1695.0 956.5 23.864 490.23
9 2 -1.6818 0 0 0.2706 0.0080 0.5333 1806.6 901.6 21.666 475.88
10 3 1.6818 0 0 0.3067 0.0080 0.5333 1594.1 1086.8 21.447 476.01
11 4 0 -1.6818 0 0.2886 0.0060 0.5333 1693.7 1000.0 16.162 479.18
12 5 0 1.6818 0 0.2886 0.0100 0.5333 1693.7 1000.0 26.937 47271
13 7 0 0 -1.6818 0.2886 0.0080 0.4800 1579.3 1188.9 22.145 442.55
14 6 0 0 1.6818 0.2886 0.0080 0.5866 1800.5 823.8 20.994 507.09
15 1 0 0 0 0.2886 0.0080 0.5333 1693.7 1000.0 21.550 475.95

3.2. Mixing and Testing

Batches were prepared using a mixer typically employed for standard paste tests according to European Norm 196
[49]. However, the mixing procedure was adjusted as follows: (i) the cement, limestone filler, superplasticizer, and water
were weighed separately in plastic containers; (ii) cement and limestone filler were placed in the mixing container, and
approximately 80% of the water was added; (iii) mixing was performed for 60 seconds at low speed; (iv) mixing was
stopped while the remaining water and superplasticizer were added on top of the paste; (v) mixing resumed for 60
seconds at low speed; (vi) mixing was stopped for 30 seconds; (vii) mixing continued for 120 seconds at low speed;
(viii) mixing was stopped for 15 seconds; and (ix) mixing finished with 30 seconds at high speed.

Immediately after mixing, workability was assessed using the flow and Marsh funnel tests. The flow test was
conducted twice, while the Marsh funnel test was performed once. For each individual flow test, the flow diameter was
measured in two orthogonal directions. Therefore, in this paper, the flow test result is the average of four readings
(D0’1a, D0’1b, DO’2a, D0’2b), whereas the Marsh funnel test result corresponds to a single reading (t0). These
workability tests were repeated 60 minutes after the start of mixing, with the readings D60’ 1a, D60’ 1b, D60°2a, D60°2b,
and t60 taken at that time.

As described in Part I, a downscaled Abrams cone geometry was used for the mini-slump test [7, 8], with dimensions
of 57 mm height, 19 mm top diameter, and 38 mm bottom diameter. The Marsh funnel (EN 445 [50]) was adapted for
cement-based pastes by pouring 1000 ml of paste into the setup and measuring the flow time for 500 ml.

3.3. Experimental Results Recorded

Table 2 presents the recorded and calculated results of the flow test and the Marsh funnel test. Note that the DO value
is the average of the readings D0’1a, DO’1b, DO’2a, and D0’2b, while the D60 value is the average of the readings
D60’1a, D60’ 1b, D60°2a, and D60°2b. The t0 and t60 values are obtained directly from the readings.
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Table 2. Results from the flow test [cm] and the Marsh funnel test [s]

Mix order Immediately after mixing 60 minutes after mixing
std run D0’1a D0’1b DO02a DO0’2b DO t0 D60’1a  D60’1b  D60°2a  D60°2b D60 60
1 14 19.8 19.6 20.0 204 1995 8250 19.2 19.3 19.1 19.1 19.18  140.12
2 15 20.1 20.0 20.5 205 20.28 80.06 18.9 19.0 19.5 19.3 19.18  138.69
3 13 20.2 20.1 20.2 205 2025 7850 18.8 18.9 19.9 19.8 19.35  107.75
4 12 19.6 19.7 20.2 20.2 19.93  76.09 20.0 20.0 19.0 18.8 19.45  100.03
5 10 17.5 18.0 185 185  18.13 67.50 18.6 18.6 18.5 18.0 18.43 112.72
6 11 20.1 20.2 19.3 18.9 19.63  63.03 19.9 19.8 19.0 20.0 19.68 90.44
7 9 215 21.0 21.4 21.5 21.35 61.56 21.5 21.0 21.0 21.5 21.25 87.28
8 8 21.9 21.9 22.3 215 2190 59.34 20.3 20.9 21.0 209 20.78  75.78
9 2 20.5 205 19.1 198 1998 68.46 20.3 20.3 20.2 20.0 20.20  109.87
10 3 21.6 21.6 20.5 210 2118 57.82 20.6 205 20.3 20.3 2043  85.78
11 4 19.6 19.6 19.5 19.4 1953 7834 17.0 17.2 16.6 16.6 16.85 215.80
12 5 211 21.1 19.3 19.9 2035 67.37 20.6 20.7 19.3 19.1 19.93 86.56
13 7 18.1 18.6 19.3 19.2 18.80  87.97 18.3 18.5 18.5 18.4 18.43  144.03
14 6 22.0 21.8 224 21.5 2193 53.03 220 22.0 22.0 21.5 21.88 74.34
15 1 20.6 20.4 20.1 20.1 20.30 70.97 19.8 20.1 20.1 20.0 20.00 105.25
Minimum 18.13  53.03 16.85 74.34
Maximum 2193  87.97 21.88  215.80
Average 20.23  70.17 19.67 111.62
Std. Deviation 1.01 9.82 1.19 35.26
Coef. Variation 50% 14.0% 6.1%  31.6%

4. Analyses of Results, Response Models and Discussion
4.1. Previous Analysis of the Results Recorded

Analysis of the results was supported by the Design-Expert® software (Stat-Ease, Inc.) and its User’s Guide [51].
Since the DOE was developed based on a central composite design, the software offers several options. Among these,
it allows the inclusion of constituent materials as response variables. Although the constituent materials are entirely
calculated based on the input variables, introducing their values enables additional analyses, such as examining
correlations with other variables.

Before proceeding to response modeling, quick observations were made from the overall results presented in Table
2. The flow time in the Marsh funnel showed greater variation than the flow diameter, both immediately after mixing
and 60 minutes later. In fact, the output values for DO and D60 are noticeably closer to the average compared to t0 and
t60. Furthermore, greater changes were observed between t0 and t60 than between D0 and D60, indicating that the flow
time in the Marsh funnel is more affected by the test duration than the flow diameter.

Prior to applying response models, the software allows a preliminary analysis of all variables (both input and
response) to detect correlations. These correlations can be presented in a correlation matrix (Figure 4) or graphically for
specific variable pairs (Figures 5 and 6). Analyzing Figure 4 reveals that the strongest correlation is between w/p and
t0, indicating that this response variable is mainly influenced by w/p. For DO, t60, and D60, Sp/p shows the highest
correlations, although significant correlations with w/p are also observed. The wi/c is the input variable with the lowest
correlation to the workability variables. Indeed, when comparing with material contents, Figure 4 shows that the
correlation between cement content and workability variables is generally stronger than that of w/c. Correlations are
also found among response variables; for example, t60 has a high correlation with all other workability variables (t0,
D0, and D60). Conversely, low correlations exist between some variables, such as between w/c and D60 (Figure 5) and
between Sp/p and t0 (Figure 6).
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4.2. Application and Analyses of Response Models

As previously explained, the great advantage of running the DOE according to a central composite design, is the

possibility to apply response models. Here, in this sub-section response models are applied and its applicability is
discussed.

4.2.1. Response Variable t0

When evaluating the response variable t0, which corresponds to the initial flow time immediately after mixing, the
statistical software first suggested a quadratic model as the most suitable representation of the experimental data (Figure
7). This recommendation was based on multiple statistical criteria. Among the tested alternatives, the quadratic model
was the only one that fulfilled the requirement of significance, as evidenced by a p-value below 0.05. In addition, it
presented the highest Adjusted R? and Predicted R? values, indicating both explanatory power and good predictive

ability. These indicators provided confidence that the quadratic model would adequately capture the complexity of the
system.

Fit Summary = + Model Summary Statistics = 3., Sequential Model Sum of Squares [Typel] =
Model Summary Statistics Sequential Model Sum of Squares [Type |
Warning: The Cubic model is aliased. @ y q q [ ¥p 1
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Fit Summa Dev. R R Squares Square
ry Linear| 345 09094 08848 08095 27525 Mean vs Total| 73856,03 1/ 73856,03
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Select the highest order polynomial where the additional terms are
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Figure 7. Preliminary information given by the software for modelling the t0

Once the quadratic model was selected, an Analysis of Variance (ANOVA) was performed (Figure 8). The ANOVA
output confirmed the global significance of the model and allowed the partitioning of variance among individual terms.
The most striking result was that the water-to-powder ratio (w/p) emerged as the dominant factor influencing t0. Its
contribution was considerably higher than the other two variables, accounting for the majority of the variability in the
response. Nevertheless, the water-to-cement ratio (w/c) and the superplasticizer-to-powder ratio (Sp/p) also exhibited
statistically significant effects. Their influence was estimated to be approximately one quarter of the effect of w/p,
highlighting that although secondary, these parameters cannot be disregarded. Moreover, the quadratic term (w/p)? was
statistically relevant, reinforcing the nonlinear nature of the relationship. The magnitude of its contribution was
comparable to that of w/c and Sp/p, further justifying the adoption of a second-order model.

A Analysis of Variance = & Fit Statistics =+ Model Comparison Statistics

ANOVA for Quadratic model Fit Statistics
Response 1: 10
Std. Dev. 196 R* 0,9867
Source Ssq”u”;zs df s";j:f“ﬂ Fvalue | p-value Mean 70,17 Adjusted R 0629
CV. % 2,79 Predicted R’ 0,8643
Model 142505 9 15844 4136  0,0004 significant Adeq Precision | 212122
A-wjc 6732 1 6732 1757  0,0086
B-Sp/p o771 1 9771 2551  0,0039
Cw/o 114821 1| 114021 209,97 < 0,0001 The. Predi:t:d R* of 0,8643 is in reasonable agreement with the
2B 06408 1 06498 01696 06075 Adjusted R® of 0,9629; i.e. the difference is less than 0.2.
AC 04232| 1| 04232] 01105 07531 Adeq Precision measures the signal to noise ratio. A ratio
BC 03445 1| 03445 00899 07764 greater than 4 is desirable. Your ratio of 21,212 indicates an
A 5108 1 51,08 1333 00147 adequate signal. This model can be used to navigate the design
B* 08788 1| 08788 02294 06522 space.
c 1,04 1 1,04 02727 0,6239
Residual 1916 5 3,83
Cor Total 144510 14 [ Coefficients = Coded Equation = = Actual Equation

Factor coding is Coded.

Final Equation in Terms of Coded Factors
Sum of squares is Type Ill - Partial

The Model F-value of 41,36 implies the model is significant. =
There is only a 0,04% chance that an F-value this large could

+72,49
oceur due to naise. 205 *A
P-values less than 0,0500 indicate model terms are significant. 247 "B
In this case A, B, C, A® are significant model terms. Values 848 *C
greater than 0.1000 indicate the model terms are nat significant. +0,2850 * AB
If there are many insignificant model terms (not counting those -0,2300 * AC
required to support hierarchy), model reduction may improve -0,2075 *BC
your madel. 215 *A*
+0,2817 * B
-0,3071 *C

The equation in terms of coded factors can be used to make
predictions about the response for given levels of each factor.
By default, the high levels of the factors are coded as +1 and
the low levels are coded as -1. The coded equation is useful for
identifying the relative impact of the factors by comparing the
factor coefficients.

Figure 8. Analysis of variance and statistics data and comments for the quadratic model applied to the t0
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The adequacy of the model was subsequently verified through residual diagnostics. Figures 9-a to 9-d provides a
comprehensive set of statistical checks. The normal probability plot of residuals showed that the residuals closely
followed the straight reference line, confirming that the assumption of normality was satisfied. The predicted versus
actual values aligned along the 45° line, indicating strong agreement between experimental and predicted values. The
distribution of externally studentized residuals against predicted values demonstrated a random pattern around zero with
no visible systematic trends. Finally, Cook’s Distance revealed that all data points fell within acceptable thresholds,
suggesting that no single observation exerted undue influence on the regression. Taken together, these analyses
demonstrated that the quadratic model satisfied the key assumptions of regression analysis.
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Figure 9. Analysis of the quadratic model applied to the t0: a) normal plot of residuals, b) plotted results of Predicted vs.
Actual values, c) the Externally Studentized Residuals distribution vs. predicted, and d) the Cook’s Distance

The fitted response surfaces are illustrated in Figure 10. The main effects plot (Figure 10-a) shows the
predominant role of w/p, which strongly affects t0. In practical terms, increasing w/p reduces t0, accelerating the
initial flow, although beyond certain limits it may compromise stability. The three-dimensional surface plot (Figure
10b) provides an intuitive visualization of how the combined variation of w/c and Sp/p modifies the response, while
the cubic representation (Figure 10c) emphasizes the curvature introduced by the quadratic term (w/p)2. The
interaction plot (Figure 10d) further illustrates that cross-effects between the studied variables are minor compared
to the main effects, as already indicated by the ANOVA results, since the interaction terms were not statistically
significant (p > 0.05).

Overall, the analysis of t0 demonstrates that a quadratic model is not only statistically appropriate but also practically
informative. It captures the overwhelming effect of w/p, while also accounting for the relevant but secondary influences
of w/c and Sp/p. Furthermore, the inclusion of the quadratic term provides additional accuracy by reproducing the
nonlinear trends inherent to cement-based systems. This level of detail is crucial for predictive modeling, as it allows
researchers and practitioners to anticipate the consequences of modifying mix proportions. By integrating both statistical
rigor and engineering interpretation, the model for t0 establishes a basis for optimization and for guiding the formulation
of pastes with tailored fresh-state performance.
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Figure 10. Plotted results of the t0: a) Primary effect of the input parameters, b) 3D model visualization, c) Cubic
visualization of predicted values, and d) Interaction effect of the w/c and S/p

4.2.2. Response Variable DO

A similar procedure was applied to the response variable DO. However, for DO, as it is observed in Figure 11 the
software suggested a two-factor interaction model. And, with the information of Figure 12 from the ANOVA, one
concludes that the two-factor interaction model has a p-value lower that 0.05 (a necessary condition for a significant
model). The Adeq Precision is acceptable; however, the Adjusted R? and Predicted R? values are not close. That means,
although the software adjusts and provides a model, one shall keep in mind that the provided model may have low
precision.

"~ FitSummary = # Model Summary Statistics = ¥ Sequential Model Sum of Squares [Typel] =
Model Summary Statistics Sequential Model Sum of Squares el
Warning: The Cubic model is aliased. @ vy q q [Typ 1
‘ ‘ Source ‘ Sty ‘ R? AdjuitEd Predlfted ; PRESS‘ ‘ ‘ ‘ Source ‘ Sum of ‘ df‘ Mean F-value | p-value
Fit Summa I | Dev. R R | | | Squares | — | Square |
ry L‘ Linear| 08574 04752 03321 00144 1518 | | MeanvsTotal 613879 1/ 613879
Response 2: DO ‘ 2FI 0,6510 0,7800 0,6149 0,0336 14,89 Suggested 8 Linear vs Mean 732 3 2,44 3,32 0,0606
L Quadratic' 0,7703 0,8074 04608 -0,7483 26,93 . 2F1 vs Linear 470 3 1,57 3,69 0,0619 Suggested
. Sequential | Lack of Fit | Adjusted | Predicted | ‘7 Cubic| 0,2239| 0,9967  0,9544 0,1652| 12,86 Aliased | Quadratic vs 2FI  0,4232| 30,1411 0,2378 0,8667
OUTCe | o value | pvalue | R? R® Cubic vs Quadratic 2,92 4| 07291 14,54/ 0,939  Aliased
[ tinear] 00606 03321 00144 Focus on the model maximizing the Adjusted R® and the Predicted — Residuali 005011, 1), 00501
. 2F 0,0619 06149 0,0336 Suggested R L Total| 615420 15 410,28
| Quadratic 0,8667 04608  -0,7483
Cubic 0,1939 09544  0,1652 Aliased Select the highest order polynomial where the additional terms are

significant and the model is not aliased.

Figure 11. Preliminary information given by the software for modelling the DO
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A Analysis of Variance + Fit Statistics = < Model Comparison Statistics
Fit Statistics
ANOVA for 2FI model
Response 2: DO Std. Dev. 0,6510 R? 0,7800
SImal M Mean 20,23 Adjusted R 06140
Source S:S;ruas df SqS::e Fvalue | p-value CV. % 3,22 Predicted R* 0,0336
1202 6 2,00 473 0,0238 significant Adeq Precision | 7,5193
A-w/c 124 1 1,24 2,92/ 01258
B-Sp/p 315 1| 3,15 744 0,0260 The Predicted R® of 0,0336 is not as close to the Adjusted R*
C-w/p 293 1 2,93 692 0,0301 of 0,6142 as one might normally expect; i.e. the difference is
1B 03200 1| 03200 07552 04102 more than 0.2. This may indicate a large block effect or a
S T 8 * possible problem with your model and/or data. Things to
AC 05253 1| 0,5253 124 02979 consider are model reduction, response transformation,
BC 385 1 385 8,08 00167 outliers, etc. All empirical models should be tested by doing
Residual 339 8 04237 confirmation runs.
Cor Total 1541 14
Adeq Precision measures the signal to noise ratio. A ratio
Factor coding is Coded. greater than 4 is desirable. Your ratio of 7,512 indicates an
Sum of squares is Type IIl - Partial adequate signal. This model can be used to navigate the design

space.

The Model F-value of 4,73 implies the model is significant. = — .
There is only a 2,39% chance that an F-value this large could B Cosfficients = Coded Equation = = Actual Equation
occur due to noise.

P-values less than 0,0500 indicate model terms are significant. Final Equatlon in Terms of Coded Factors
In this case B, C, BC are significant model terms. Values greater

than 0.1000 indicate the model terms are not significant. If there

are many insignificant model terms (not counting those Do =
required to support hierarchy), model reduction may improve

+20,23
your model.

+0,2781 * A
+0,4438 *B
+0,4281| * C
-0,2000) * AB
+0,2562| * AC
+0,6937| * BC

The equation in terms of coded factors can be used to make
predictions about the response for given levels of each factor.
By default, the high levels of the factors are coded as +1 and
the low levels are coded as -1. The coded equation is useful for
identifying the relative impact of the factors by comparing the
factor coefficients.

Figure 12. Analysis of variance and statistics data and comments for the linear model with interaction effects applied to DO

According to the model, it is observed that the w/c ratio has a low impact on DO, with the Sp/p, the w/p and the
interaction effect of these two variables controlling the response.

4.2.3. Response Variable t60

For the response variable t60, some adjustments to the response model were required. First, it was
recommended apply a transform variable t607 = 1/+/t60 (see Figure 13). Second, then when the results were
analyzed it was suggested that the value obtained for the mix order run#4 = 215.80 s should be an outlier, therefore
should be excluded from the model. Therefore, an ANOVA with the new transformed variable was done without

the value of the mix run#4 (the value was excluded from the analysis — the software placed a note in the ANOVA
report — see Figure 14).
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Figure 13. Transform variable is recommended for the t60

55



Civil Engineering Journal Vol. 12, No. 01, January, 2026

A Analysis of Variance = + Fit Statistics. =+ Model Comparison Statistics

ANOVA for Linear model Fit Statistics

Response 3: t60
Transform: Inverse Sqrt

Std. Dev. 0,0027 R* 0,9523
Constant: 0 " 2
Mean 0,0996 Adjusted R’ 0,9379
CV. % 2,68 Predicted R 0,0003
Source S & df LD F-value | p-value isi
Squares Square P Adeq Precision | 22,6103
Model 00014 3 0,0005 66,50 < 0.0001 significant
A-w/fc 00001 1 0,0001 2024 00011 The Predicted R® of 0,9003 is in reasonable agreement with the
B-Sp/p 0,0004) 1 0,0004| 51,03 < 0.0001 Adjusted R® of 0,9379; i.e. the difference is less than 0.2
C-w/p 00009 1 0,000 12822 < 0.0001 Adeq Precisi th % tio. A rati
Residual 0,0001] 10| 7119E-06 eq Precision measures the signal to noise ratio. A ratio

greater than 4 is desirable. Your ratio of 22,610 indicates an
adequate signal. This model can be used to navigate the design
space.

Cor Total | 0,0015 13

These rows were ignared for this analysis:

4

Factor cading is Coded.
Sum of squares is Type IIl - Partial
[3 Coefficients = Coded Equation = = Actual Equation

The Model F-value of 66,50 implies the model is significant. There

is only a 0,01% chance that an F-value this large could occur due to Final Equation in Terms of Coded Factors
noise.
P-values less than 0,0500 indicate model terms are significant. In Sortsn) | =

this case A, B, C are significant model terms. Values greater than

0.1000 indicate the model terms are not significant. If there are +0.0988

many insignificant model terms (not counting those required to +0,0030 * A

support hierarchy), model reduction may improve your model. +0,0056 *B
+0,0076 * C

The equation in terms of coded factors can be used to make
predictions about the response for given levels of each factor.
By default, the high levels of the factors are coded as +1 and
the low levels are coded as -1. The coded equation is useful for
identifying the relative impact of the factors by comparing the
factor coefficients.

Figure 14. Analysis of variance and statistics data and comments for the linear model applied to the t60 with the transform
variable being the Inverse Sqrt

With these two differences, a linear model for the response variable t60 was determined. From the model and the
ANOVA analyses, it can be observed that the linear model is significant and that all input parameters are significant,
with the w/p ratio showing the greatest influence. Furthermore, the model demonstrates a good fit, as the Adeq Precision
is markedly higher than 4, and the R?, Adjusted R?, and Predicted R? values are not only close to each other but also
high. The software automatically provides graphs to assist in analyzing the ANOVA results. However, this information
can also be presented in tabular form. Table 3 reports this information (note that run #4 is missing because it was
excluded).

Table 3. Report of the ANOVA for the t60

Run Actual  Predicted Internally Studentized Externally Studentized Cook's Influence on Fitted Standard

Residual Leverage

Order Value Value Residuals Residuals Distance ~ Value DFFITS Order
1 0.0975 0.0988 -0.0013 0.073 -0.524 -0.504 0.005 -0.142 15
2 0.0954 0.0928 0.0026 0.323 1.178 1.204 0.166 0.832 9
3 0.1080 0.1048 0.0031 0.323 1.435 1.527 0.246 1.055 10
5 0.1075 0.1100 -0.0025 0.366 -1.164 -1.188 0.196 -0.902 12
6 0.1160 0.1139 0.0021 0.323 0.936 0.930 0.105 0.643 14
7 0.0833 0.0837 -0.0004 0.323 -0.177 -0.168 0.004 -0.116 13
8 0.1149 0.1149 -0.0001 0.259 -0.030 -0.028 0.000 -0.017 8
9 0.1070 0.1089 -0.0019 0.259 -0.828 -0.814 0.060 -0.481 7
10 0.0942 0.0978 -0.0036 0.308 -1.628 -1.801 0.295 -1.202 5
11 0.1052 0.1038 0.0013 0.308 0.607 0.587 0.041 0.392 6
12 0.1000 0.0998 0.0001 0.259 0.065 0.062 0.000 0.036 4
13 0.0963 0.0938 0.0025 0.259 1.090 1.101 0.104 0.651 3
14 0.0845 0.0827 0.0018 0.308 0.804 0.788 0.072 0.526 1
15 0.0849 0.0887 -0.0038 0.308 -1.705 -1.920 0.323 -1.281 2

In Figure 15 one can observe the primary effects of each input parameter in t60. As previously mentioned, no
interaction effects are detected in the model. Although being a linear model, the effects are mostly in agreement with
the main effects of t0, with the w/p parameter playing the main role.
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Figure 15. Primary effect of the input parameters for t60

4.3. Response Variable D60

Finally, the response variable D60 was modeled. The initial analysis suggested a Quadratic Model; however, it was
observed that the Adjusted R2 and the Predicted R2 were neither high nor close to each other (see Figure 16). Therefore,
a model reduction to a linear model was selected to identify the main effects. The linear model was found to be
significant, with a p-value of 0.0119 (which is lower than 0.05), and the Sp/p and w/p parameters were significant terms
in the model (see Figure 17). Nevertheless, an analysis of Figure 17 shows that the Adjusted R? and Predicted R2 values
remain not only low but also not close to each other. This may be due to a block effect with high dispersion, as no
outliers were identified. Overall, the model indicates that the coefficients of the significant parameters have similar
weights, which is consistent with the findings for the response variable DO (although for DO, a strong interaction effect
between Sp/p and w/p was also observed).

Fit Summary = +

Warning: The Cubic model is aliased. (7)

Fit Summary

Response 4: DE0

Sequential | Lack of Fit| Adjusted | Predicted
Source

Meodel Summary Statistics

Model Summary Statistics

Std

Source | PO | R AdJ;itEd Preifmd PRESS

Linear 0,86128 06164 05118  0,2306 16,39

2Fl| 02855 0,7055 04846 0,331 1846
Quadratic 0,5652 0,9250 0,7900  0,3529 13,78 Suggested
Cubic| 0,002 0,9995 09934 08791 257  Aliased

Focus on the model maximizing the Adjusted R* and the Predicted
R

3 Sequential Model Sum of Squares [Type ]

Sequential Model Sum of Squares [Type 1]

Source St of df Mean F-value | p-value
Squares Square
Mean vs Total 5800,68 1) 5800,68
Linear vs Mean 13,13 3 438 5309 00119
2Fl vs Linear: 1,90 3 06322 08062 05249
Quadratic vs 2FI 468 3 1,56 4,88 0,0603 Suggested
Cubic vs Quadratic 159 4 03968 39,55 0,1186 Aliased
Residual 00100 1 00100
Total 582198 15 386,13

Select the highest order polynomial where the additional terms are
significant and the model is not aliased.

Figure 16. Preliminary information given by the software for modelling the D60

p-value | p-value R R
00119 05118 02306
2FI 0,5249 04846 01331
Quadratic 0,0603 0,7900|  0,3529 Suggested
Cubic: 0,1186 0,9934 0,87¢1 Aliased
A Analysis of Variance =

ANOVA for Linear model

Response 4: D60

Source | UM O | 4| Mean | el pvalue
squares| ' | square
Model 1313 3 438 589 00119 significant
Aowfe 0,097 1 0,1097 01477, 0,7080
B-Sp/p 692 1 692 932 00110
c-w/p 60 1 603 821 00154
Residual 817 11 07427
Cor Total 21,30 14

Factor coding is Coded.
Sum of squares is Type Il - Partial

The Model F-value of 5,39 implies the model is significant
There i only & 1,13% chance that an F-value this large could
oceur due to noise.

P-values less than 0,0500 indicate model terms are significant.
In this case B, C are significant moclel terms. Values greater
than 0.1000 indicate the model terms are not significant. If there
are many insignificant modlel terms (not counting those
required to suppart hierarchy), model reduction may improve
your model.

& Fit Statistics

= % Model Comparison Statistics

Fit Statistics
Std. Dev. | 0,8618 R 06164
Mean 19,67 Adjusted R 05118
CV.% 438 Predicted R* 0,2306
Adeq Precision | 6,1022

The Predicted R® of 0,2306 is not as close to the Adjusted R*
of 0,5118 as one might normally expect; i.e. the difference is
more than 0.2, This may indicate a large block effect or a
possible problem with your modlel and/or data. Things to
consider are model reduction, response transformation,
outliers, etc. All empirical models sheuld be tested by doing
confirmation runs

Adeq Precision measures the signal to noise ratio. A ratio
greater than 4 is desirable. Your ratio of 6,102 indicates an
adequate signal. This modlel can be used to navigate the design
space.

B Coefficients = Coded Equation = = Actual Equation

Final Equation in Terms of Coded Factors

+19,67
+0,0828
+0,6578
+0,6172

A
*B
*c

The equation in terms of coded factors can be used to make
predictions about the response for given levels of each factor.
By default, the high levels of the factors are coded as +1 and
the low levels are codled as 1. The coded equation is useful for
identifying the relative impact of the factors by comparing the
factor coefficients.

Figure 17. Analysis of Variance and statistics data and comments for the quadratic model applied to the D60
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4.4. Summary of the Response Models

The software provides a summary of all the models created, which is presented in Table 4. As previously noted,
similarities are observed between the models for t0 and t60, as well as between those for DO and D60. The significant
terms and the magnitude of their corresponding coefficients are similar. This was an expected finding since t0 and t60,
as well as DO and D60, represent the same properties measured at different ages, respectively.

Table 4. Summary of the significant terms of the response models

Intercept A B C AB AC BC A? B2 Cc?
t0 72.4867 -2.05125 -2.47125 -8.475 0.285 -0.23 -0.2075 2.14708 0.281667 -0.307083
p-values 0.0086 0.0039 <0.0001 0.6975 0.7531 0.7764 0.0147 0.6522 0.6239
DO 20.23 0.278125 0.44375 0.428125 -0.2 0.25625 0.69375
p-values 0.1258 0.0260 0.0301 0.4102 0.2979 0.0167

1A1t60 0.0988192 0.00300114 0.0055691 0.00755337

p-values 0.0011 <0.0001 <0.0001
D60 19.665 0.0882125 0.657812 0.617187
p-values 0.7080 0.0110 0.0154

p-value shading: p<0.05; 0.05<p<0.1; p>0.1.

From the experimental results and modelling, several trends are observed. For slump flow, the increase in the
Sp/p ratio enhances particle dispersion through electrostatic and steric effects, which reduces yield stress and
promotes higher flowability. However, the excessive increase in the w/c ratio leads to segregation tendencies,
reflecting the trade-off between fluidity and stability, a phenomenon widely reported in recent studies on SCC and
printable concretes [21, 48]. For Marsh funnel time, the results demonstrate that viscosity is controlled not only by
the absolute water content but also by the balance between powder concentration and dispersant efficiency. This
explains the nonlinear trend where moderate w/c ratios decrease viscosity, but higher values increase flow time due
to dilution and flocculation effects. Such interactions confirm the necessity of using CCD rather than simpler DOE
methods.

The predictive models link the residual patterns to the adequacy of the quadratic form. The ability of the models to
reproduce nonlinear behaviors supports their theoretical robustness. Moreover, the optimized region identified in this
study is consistent with prior observations in UHPC and SCC optimization research [46, 47], which validates the broader
applicability of our approach. Beyond the statistical fit, these results have practical implications: they provide mix
designers with a reliable tool to anticipate the rheological response of pastes before scaling up to mortar or concrete.
This reduces experimental workload and supports more sustainable practices by minimizing material waste during trial-
and-error testing.

4.5. Prediction of Results Based on Response Models

One of the great advantages of conducting DOE is the ability to develop response models and subsequently predict
results. Once the response models are established, it becomes possible to predict values of t0, DO, t60, and D60 for any
mix composition with input parameters close to the tested range. Figure 18 illustrates this prediction in the software,
showing predicted results of t0 = 75.9 s, DO = 20.0 cm, t60 = 107.3 s, and D60 = 19.7 cm for a composition with input
parameters w/c = 0.285, Sp/p = 0.85, and w/p = 0.52. The software also provides confidence intervals with 90%
confidence.

4.6. Mix Composition Optimization Based on Response Models

Even more interesting—and perhaps the greatest advantage of using DOE compared to the trial-and-error
methodology—is the ability to find an optimized mix composition through response models. The user can specify which
variables should be maximized or minimized, set upper and lower limits, define target values, and assign relative
importance or weights to determine the overall ‘Desirability.” Figure 19 shows an example of the optimization process,
with the software providing the optimized solution. Additionally, Figures 20 and 21 present graphical explanations of
the process and illustrate how ‘Desirability’ is determined.
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Factors

Factor | Mame | Level | Low Level | High Level | 5td. Dev. | Coding

A wfc 0,2850 0,2796 0,2977  0,0000 Actual
B Sp/p | 0,8500 0,7000 0,9000  0,0000 Actual
C wip 0,5200 0,5066 0,5589 0,0000 Actual
Factors Sheet *
Factor Walue Low High

A |w/fc 0,285

B |Sp/p 0,85

C|w/p 0,52

Cancel Help

Q Point Prediction =

Point Prediction

Two-sided Confidence = 90% Population = 99%

e | e ] v st | scven |0 e 0% ] o7 o 0% v
th 758936 75,8936 1,95731 148251 72,9062 78,8809 64,8216 86,9636

DO 20,0454| 20,0454 0,650955 0,230857 19,6159 20,4745 17,184 22,8068

60+ 107,343 107,098 5,92467 /A 103,889 110,971 86,2343 136,562

Dao 19,653 19,653 0,86178| 0,283187 19,1444 20,1616 16,1436 23,1564

Cement 168831 1688,31 3,53466 1,16151 1686,23 16904 1673,95 1702,68

Filler 1026,95 1026,95 3,880006 1,273502 1024,66 1025,24 011,18 1042,72
Superplasticizer, 23,0692 23,0692 00319214 0,01048%6 23,0503 23,088 22,9394 23,1589
Watert 467,02 457,02 00172947 MN/A 467,009 467,031 466,944 467,096
Untitled 20,1237 20,1237 0711564, 0,252461 19,6542 20,5932 16,9959 23,2515
Untitled 2 19,9671 19,9671 0,807936 0,286633 19,4341 20,5001 16,4157 23,5186
Untitled 3 18,7272 18,7272 0,793975  0,260906 19,2586 20,1958 16,4994 22,955
Untitled 4 19,9784 19,9784 0448408 0,339635 19,204 20,6628 17,4419 22,5145

* For transformed responses the predicted mean and median may differ on the original scale.®
+ Standard error (SE) not calculated on original scale. @

Figure 18. Response prediction for the mix composition with w/c=0.285, Sp/p=0.85 and w/p=0.52

" Constraints =
Constraints
Lower | Upper | Lower | Upper
Name Bl Limit Limit | Weight | Weight Importance
Aow/c minimize | 0,27962 0,29766 1 1 E
B:Sp/p minimize 07 0,9 1 1 3
Cowf/p minimize | 0,50662 0,559948 1 1 3
t0 istarget = 60, 5303 87,97 1 1 3
Do maximize 18,125 21,925 1 1 3
60 istarget = 0,111803) 14403 74,34 1 1 4
D&0 none 16,85 21,875 1 1 3
Cement minimize | 1579,27  1806,63 1 1 5
Filler none | 823,814 118885 1 1 3
Superplasticizer minimize | 16,1622 26,937 1 1 2
Water minimize | 442,555 507,091 1 1 3
Untitled none 17,75 218 1 1 3
Untitled 2 none 185 21,95 1 1 3
Untitled 3 none 17,1 22 1 1 3
Untitled 4 none 16,6 21,75 1 1 3
= Solutions = 9, Starting Points

Solutions

1 Solutions found
Number| w/c | Sp/p | w/p t0 Do 60 D60 | Cement Filler | Superplasticizer | Water | Untitled | Untitled 2 | Untitled 3 | Untitled 4 | Desirability
l:l 0,292 0,766| 0,528 74,110 20,139 107,608 19,344 1665,221 1034,428 20,685 473,188 20,153 20,125 19,425 19,817 0,527 Selected

Figure 19. Constraints and solutions of the optimized composition
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Figure 20. Explanation of the ‘Desirability’ of the solution: a) for each constraint individually, and b) comparison between constraints
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5. Evaluation of the central composite design approach

Similarly to Part | of this research, this section reflects on the methodology applied and compares it with more
conventional approaches. In this study, the DOE was based on a Central Composite Design (CCD), in which input
parameters were varied simultaneously to assess their combined influence on the fresh properties of cement-based
pastes. The following summarizes the main advantages and disadvantages of this approach compared with the trial-and-
error method used in Part I.

Advantages of the central composite design approach:
o Complex systems with multiple interacting factors can be investigated with a reduced number of experiments;
¢ Response models provide a scientifically grounded understanding of parameter effects;

e The models capture not only primary effects but also two-factor interactions and quadratic (or higher-order)
effects;

o Software tools assist users by generating graphs and statistical analyses;
o The models enable prediction of results for compositions not directly tested;
¢ Optimized mix designs can be obtained systematically.

Disadvantages of the central composite design approach:

o The number of input parameters must be limited and well defined, and the models are most reliable within these
boundaries;

o Preliminary trial-and-error tests are often required to establish feasible parameter ranges before outlining the
DOE;

o Intermediate results are often not interpretable until the full design is completed;

Without dedicated software, CCD is difficult to implement effectively;

The interpretation of model outputs can be challenging for non-specialists;
¢ Developing and analyzing the response models is essential for extracting meaningful conclusions.

The traditional approach uses a combination of scientific intuition and design of experiments (DOE) methods to
choose which candidates to test. In both cases, resource-intensive experiments are needed to validate results. While the
present study demonstrates the clear benefits of CCD over traditional trial-and-error strategies in terms of efficiency and
predictive capability, it is important to note that these approaches should not be viewed as mutually exclusive. In
practice, hybrid strategies are increasingly adopted, where empirical knowledge and preliminary trial-and-error tests
provide a practical starting point, while CCD or other DOE methodologies refine the process by capturing nonlinear and
interaction effects. This combination enables practitioners to benefit from the intuitive simplicity of conventional
methods while exploiting the statistical rigor of CCD. As such, CCD should be regarded as a complementary and
enhancing tool rather than a strict replacement, strengthening both the reliability of mix design and the transferability of
laboratory findings to real-world applications.

6. Conclusions

Fresh properties of cement-based pastes were characterized using different experimental approaches. This paper
relates to the research in which the DOE was planned based on a central composite design. From this paper and the
overall research work, the following conclusions are drawn:

e The water-to-powder ratio has the strongest effect on the overall workability of the pastes — the higher the water-
to-powder ratio, the higher the workability. This effect is especially observed in the Marsh funnel test when carried
out immediately after mixing, where the influence of the water-to-powder ratio on changes in flow time is greater
than the combined influence of the superplasticizer-to-powder ratio and the water-to-powder ratio.

e The superplasticizer-to-powder ratio has the second highest effect on the overall workability of the pastes — the
higher the superplasticizer-to-powder ratio, the higher the workability. The effect of the superplasticizer-to-powder
ratio is much more pronounced in the mini-cone slump test than in the Marsh funnel test.

e The response models show that the influence of the input parameters on workability measured immediately after
mixing cannot be explained solely by linear correlations. Interaction effects and second-order effects are detected
in the response models. The interaction effects of the input parameters account for about 50% of the effects on
changes in the flow diameter. The interaction and second-order effects on changes in flow time in the Marsh funnel
test accounts for about 20%.
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e A DOE based on a central composite design approach is suitable for in-depth research where advanced statistical
analysis and modeling are required. However, specialized software is necessary to assist the user when applying a
DOE based on a central composite design.

e When the purpose is simply to recognize principal trends or clarify uncertainties over a wide range of a single
input variable, basic approaches are more appropriate (e.g., trial-and-error experiments or varying the input
variable by increments).

Sometimes, a combination of different approaches might be the best solution: using basic methods to understand
primary effects and then defining a central composite design DOE for more detailed analysis.
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