

Civil Engineering Journal

(E-ISSN: 2476-3055; ISSN: 2676-6957)

Vol. 11, No. 05, May, 2025

The ITB^{*} Unit Hydrograph Method: A Novel Approach to User-Defined Unit Hydrograph Development (Part II)

Advanced Applications with Adjustable Unit Duration and Calibration Capabilities

Dantje K. Natakusumah^{1, 2}[†], Waluyo Hatmoko³, Dhemi Harlan¹, Eka O. Nugroho^{1, 2}, Arno A. Kuntoro^{1, 4}, Mohammad Farid^{1, 4}, Fitra Adinata⁵, Jovian Javas⁴

¹Water Resources Engineering Research Group, Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung, Bandung, 40132, Indonesia. ²Fluid Mechanics and Hydrodynamics Laboratory, Center for Industrial Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia.

³ Universitas Jenderal Achmad Yani, Jalan Terusan Jenderal Sudirman, Cimahi, 40513, Indonesia.

⁴ Water Resources Development Center, Institute of Technology Bandung, Indonesia Institut Teknologi Bandung, Bandung, 40132, Indonesia. ⁵ PT. Sapta Adhi Pratama, Jalan. Dago Giri H-13, Bandung, West Java, 40132, Indonesia.

Received 21 August 2024; Revised 06 April 2025; Accepted 11 April 2025; Published 01 May 2025

Abstract

This paper is the second part of a comprehensive two-part series on the ITB Unit Hydrograph (ITB-UH) Method, titled The ITB Unit Hydrograph Method: A Novel Approach to User-Defined Unit Hydrograph Development. Building on the foundational concepts introduced in Part I, this paper delves into advanced applications of the ITB-UH Method, emphasizing its adaptability, calibration capabilities, and real-world utility. The ITB-UH Method introduces novel derivations for the Peak Rate Factor (Kp) and Peak Discharge (Qp), along with a time-step normalization approach that enables flexible adjustments to unit rainfall durations and a systematic calibration process. These innovations significantly enhance the method's versatility and accuracy in modeling flood discharge across diverse hydrological conditions. The practical applicability of the ITB-UH Method is demonstrated through real-world flood discharge calculations in the Pinamula River, located in Buol District, Central Sulawesi Province. Three illustrative examples highlight the method's versatility: (1) analyzing flood hydrographs at a 1-hour time step to showcase its practical applicability for flood management; (2) recalculating flood hydrographs with a finer 0.5-hour time step to demonstrate its adaptability to varying temporal resolutions; and (3) refining model parameters to improve alignment with observed flood hydrographs, underscoring the method's capacity for calibration and optimization. To evaluate the method's performance, robust metrics such as the Nash-Sutcliffe Efficiency (NSE), Percentage Bias (PBIAS), and Index of Agreement (IA) are employed. These metrics confirm the ITB-UH Method's accuracy and reliability, with results consistently aligning closely with observed data. Collectively, the findings underscore the ITB-UH Method's suitability across diverse hydrological settings and its potential to enhance both the verification of existing SUH methods and the development of user-defined hydrographs. By enabling more accurate and effective flood management, the ITB-UH method represents a significant advancement in hydrological modeling, with broad implications for water resource management and infrastructure planning worldwide.

Keywords: ITB UH Method; Peak Rate Factor (Kp); Peak Discharge (Qp); Time Step Normalization (Tn); Calibration Method; Flood.

+ Corresponding author: dkn@itb.ac.id

doi) http://dx.doi.org/10.28991/CEJ-2025-011-05-015

© 2025 by the authors. Licensee C.E.J, Tehran, Iran. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

^{*} The abbreviation "ITB" stands for Institut Teknologi Bandung, a government-funded university in Indonesia.

1. Introduction

This study continues the exploration of the evolution and significance of the ITB Unit Hydrograph (ITB-UH) Method, as previously presented in Part I. The ITB-UH Method was first introduced by Natakusumah at a national seminar in Bandung, Indonesia, in 2009 [1]. It subsequently underwent various improvements, was published in a national journal [2], and was presented at an international seminar in 2013 [3]. The method was further refined in 2014 with the integration of exact and numerical techniques for Kp calculations [4], standardization efforts were emphasized in 2021 [5], verification, and development of simple user-defined unit hydrographs in 2025 [6].

The ITB-UH Method introduces an innovative approach to deriving key variables, notably the Peak Rate Factor (Kp) and Peak Discharge (Qp), using exact and numerical integration techniques. It also employs space transformations commonly used in finite element analysis—to simplify the integration of complex hydrograph shapes. These features enable the generation of user-defined synthetic and natural unit hydrographs that accurately reflect the unique hydrological characteristics of different watersheds, enhancing their versatility in flood modeling and water resource management.

This study highlights innovations that improve the ITB-UH Method's applicability to real-world flood discharge calculations, demonstrated through three examples in the Pinamula River, Central Sulawesi. First, the method analyzes flood hydrographs at a 1-hour time step, showcasing its practical utility. Second, it recalculates hydrographs at a finer 0.5-hour resolution, demonstrating adaptability to varying temporal scales. Third, it refines model parameters to better align with observed data, emphasizing its calibration capabilities.

The method's performance is evaluated using robust metrics such as the Nash–Sutcliffe Efficiency (NSE), Percentage Bias (PBIAS), and Index of Agreement (IA), confirming its accuracy and reliability across diverse hydrological settings. These results underscore the ITB-UH Method's suitability for verifying existing SUH methods and developing user-defined hydrographs, enabling more accurate flood management worldwide.

By addressing challenges ranging from practical flood management to detailed hydrological analysis, the ITB-UH Method demonstrates its adaptability and effectiveness in improving flood risk assessments and water resource planning.

2. Generation of the ITB Synthetic Unit Hydrographs

The ITB method for generating Synthetic Unit Hydrographs is founded on a combination of theoretical principles and practical applications, aiming to accurately model flood discharges. Its success hinges on careful consideration of three key elements:

- *The Equation Defining the Synthetic Unit Hydrograph Curve*: This equation governs the shape of the SUH, determining its rise, peak, and recession limbs.
- *The Time Parameter*: The time parameter, typically represented by the unit rainfall duration (Tr), controls the duration of the hydrograph.
- *The Peak Variables*: The peak variable, often represented by the peak discharge (Qp) or the peak rate factor (Kp), determines the maximum flow rate of the hydrograph.

2.1. The Equation Defining the Synthetic Unit Hydrograph Curve

The Equation for ITB-1b and ITB-2b Synthetic Unit Hydrograph Curve uses the dimensionless time t = T/Tp on the horizontal axis and the dimensionless discharge q = Q/Qp on the vertical axis. The range of q = Q/Qp extends from 0 to 1, while t = T/Tp ranges from 0 to ∞ or limited to an upper limit b = 20. The latest form of the ITB-1b and ITB-2b Synthetic Unit Hydrograph Curve equation is as follows [4].

• The ITB-1b Synthetic Unit Hydrograph curve is represented by one equation $(0 \le t < \infty)$:

$$q(t) = \{t \times \exp(1 - t)\}^{\alpha C p} \quad \alpha = 3.7$$
(1)

• The ITB-2b Synthetic Unit Hydrograph curve is represented by two equations:

○ Rising limb ($0 \le t < 1$):

$$q(t) = t^{\alpha} \qquad \alpha = 2.4 \tag{2-a}$$

○ Falling limb $(1 \le t < ∞)$:

$$q(t) = \exp\{(1-t) \times \beta \times C_{p}\} \qquad \beta = 0.80$$
(2-b)

In the ITB-1b SUH, the parameter α is set at 3.7. For the ITB-2b SUH, the parameters are designated as $\alpha = 2.4$ and $\beta = 0.80$. The calibration process, which includes instructions on adjusting α and β , will be elaborated in Section 3 (Parameter Calibration).

Figure 1-a illustrates the dimensionless ITB-1b and ITB-2b Synthetic Unit Hydrographs, applicable to any catchment area. For specific applications, such as the Ciliwung River at Katulampa Weir, the time axis (t) and discharge axis are scaled by peak time (Tp) and peak discharge (Qp), respectively, transforming the dimensionless hydrograph into a site-specific dimensional ITB-1b and ITB-2b SUH, as depicted in Figure 1-b. For other locations, the detailed shapes of the dimensional ITB-1b and ITB-2b unit hydrographs will differ, but their general shapes will remain similar.

Note: Earlier versions of the ITB method are often referred to as ITB-1/ITB-1a and ITB-2/ITB-2a in the literature. This study utilizes the revised ITB-1b and ITB-2b equations, which offer improved integrability compared to their predecessors. Unlike ITB-1a, which requires numerical methods for integration, the revised ITB-1b and ITB-2b equations can be integrated both numerically and exactly.

Figure 1. Shape of Dimensionless and Dimensional ITB-1b and ITB-2b Synthetic Unit Hydrograph

2.2. Time Parameters

The ITB method utilizes several key time parameters to model the flow of water through a catchment and estimate flood hydrographs. These parameters are determined by both physical characteristics of the catchment and can be adjusted for calibration.

• Time Lag (T_L): Represents the time taken for runoff to reach the catchment outlet. Two formulas are used depending on the chosen variant:

ITB-1b:
$$T_L = Ct \times 0.81225 \times L^{0.6}$$
 (3)

ITB-2b:
$$T_{L} = Ct \times (0.0394 \times L + 0.201 \times L^{0.5})$$
 (4)

where T_L is Time lag (hours), Ct is Adjustable time coefficient (explained in Section 3 (Parameter Calibration)), and L is River length (km).

• Time to Peak (Tp): Represents the time at which peak discharge occurs. Time to Peak for both variants is calculated as:

$$Tp = T_L + 0.50 \times Tr$$
⁽⁵⁾

where Tr is Unit rainfall duration (hours).

• **Time Base (Tb):** Represents the length of the hydrograph recession. The length of the hydrograph recession, theoretically infinite for large catchments but practically estimated as

$$Tb = 20 \times Tp \tag{6}$$

2.3. Peak Variables

The ITB method uses the peak rate factor (Kp) to calculate the peak discharge (Qp) resulting from a rainfall distribution with a specified unit duration. This rainfall is assumed to be uniformly distributed across a catchment of defined size.

• **Peak Rate Factor (Kp):** The Peak Rate Factor (Kp) in Synthetic Unit Hydrographs (SUHs) serves as a dimensionless scaling factor that relates the peak discharge (Qp) of the hydrograph to the unit rainfall (R) and the area under the dimensionless Synthetic Unit Hydrograph curve (ASUH). In simpler terms, it tells how efficiently a catchment converts rainfall into peak flow.

$$Kp = \frac{1}{3.6 \times A_{SUH}} \qquad (dimensionless) \tag{7}$$

where Kp is Peak Rate Factor (dimensionless), and A_{SUH} = Area of dimensionless Synthetic Unit Hydrograph curve

It's worth noting that the discovery of the general formula for Peak Rate Factor (Kp) is a significant finding. This discovery clearly illustrates the relationship between the shape of the unit hydrograph curve and Kp.

• **Peak Discharge (Qp):** The Peak Discharge (Qp) in a Synthetic Unit Hydrograph represents the maximum flow rate experienced during the runoff period of the hydrograph. It signifies the most significant volume of water flowing out of the catchment at any given moment after a unit rainfall event.

$$Qp = Kp \times \frac{R \times A_{CA}}{Tp} \quad (m^3/s)$$
(8)

where Qp = Peak discharge of the unit hydrograph (m³/s), R is Unit rainfall (1 mm), Tp is peak time (hour), and ACA = Catchment area (km²).

• Remarks:

The development of Equations 7 and 8 for the ITB Synthetic Unit Hydrograph marks a significant advancement in unit hydrograph analysis.

• *Applicability*: Equations 7 and 8, developed for the ITB Synthetic Unit Hydrograph, are applicable to all synthetic unit hydrograph methods based on equations or tables. This allows for standardized calculations across all analytical equation-based or tabular based synthetic unit hydrographs. The universality of these equations eliminates the need for separate calculations for various unit hydrograph types, promoting consistency and simplifying the process.

- *Asun Calculation*: The area under the dimensionless Synthetic Unit Hydrograph curve (A_{SUH}) is essential for determining peak discharge through the Peak Rate Factor (Kp) and Peak Discharge (Qp) formulas. This area represents the overall runoff volume from unit rainfall excess and ensures mass conservation (i.e., total runoff equals total rainfall minus losses). This area can be calculated exactly using Equation 10, Equation 11 or numerically, using Equation 12.
- *Kp is Significant:* The discovery of the general formula for the Peak Rate Factor (Kp) is a significant finding. This formula explicitly demonstrates the direct relationship between the shape of the unit hydrograph curve and its peak discharge. By simply calculating the area under the dimensionless unit hydrograph curve, it becomes possible to verify the accuracy of Kp values for other similar types of unit hydrographs, facilitating a more rigorous evaluation of their performance.

2.4. Exact Integration of Peak Rate Factor (Kp)

This paper presents the exact integration of the dimensionless Synthetic Unit Hydrograph (SUH) curves, specifically for ITB-1b and ITB-2b. This integration method enables accurate determination of the area under the curves for these ITB-1b and ITB-2b SUHs. The method is carried out as follows:

2.4.1. Exact Integration of ITB-1b Synthetic Unit Hydrograph Equation

The ITB-1b SUH curve is represented by a single dimensionless from Equation 1 $(q(t) = \{t \times exp(1-t)\}^{\alpha Cp}), 0 \le t < \infty)$. Equation 1 is derived from the model introduced by Nash [7] and is based on linear reservoir theory, which assumes the water storage in a river catchment can be modeled as a series of linear reservoirs. The author adopts this equation for the ITB-1b SUH and has successfully found its exact integral. The exact area of the dimensionless SUH resulting from the integration of Equation 1 has been determined.

For example, if $m = \propto \times Cp$, the exact value of the integration can be found using symbolic integration software (older version) as follows:

$$A_{SUH} = \int_0^\infty \{t \times \exp(1-t)\}^m dt = \frac{e^m \times \Gamma(m+1,0)}{m^{m+1}}$$
(9)

2.4.2. Exact Integration of ITB-2b Synthetic Unit Hydrograph Equation

The equation curves of the ITB-2b Synthetic Unit Hydrograph are proposed by the author, which is expressed in Equation 2. The exact integration of this equation can be performed manually, and the exact value of the integration is known. For instance, if m equals α , n equals $\beta \times C_p$, and the upper limit of integration is b, then the exact value of the integration of these equations is as follows:

$$A_{SUH} = \int_0^b q(t) dt = \int_0^1 t^m dt + \int_1^b \exp\{1 - t\} \times n dt = \frac{1}{m+1} + \frac{1}{n} - \frac{\exp(-(b-1) \times n)}{n}$$
(10)

If $b = \infty$, then the exact value of the integration in Equations 2-a and 2-b above is given by:

$$A_{SUH} = \frac{1}{m+1} + \frac{1}{n}$$
(11)

2.5. Numerical Integration of The Synthetic Unit Hydrograph Curve

When the equation of the unit hydrograph curve is known but exact integration is not feasible, numerical integration becomes the method of choice. The trapezoidal rule is commonly employed for numerical integration of the unit hydrograph curve, as depicted in Figure 2.

Figure 2. Numerical integration of the hydrograph curve using the trapezoidal method

In this approach, the curvilinear curve is approximated by multiple straight-line segments, forming a piecewise linear approximation. The numerical integration of the unit hydrograph curve, illustrated in Figure 2, is performed using the trapezoidal rule, expressed by the equation:

$$A_{SUH} = \frac{1}{2} \sum_{i=1}^{N} (T_{i+1} - T_i) \times (Q_{i+1} + Q_i)$$
(12-a)

If the intervals are made equal $\Delta T = (T_{i+1} - T_i)$ and the peak of the Synthetic Unit Hydrograph curve, Qp, is not included in the calculation because the value of Tp is not always a multiple of ΔT , then:

$$A_{SUH} = \Delta T \sum_{i=1}^{N} Q_i$$
(12-b)

In the context of the Synthetic unit hydrograph curve, it's important to note that the values of Q_0 and Q_N are both equal to zero.

3. Parameter Calibration

In the ITB Synthetic Unit Hydrograph method, two calibration stages are involved. The first is the initial calibration conducted by Natakusumah et al. [2], which aims to establish the fundamental parameters of the method. The second stage of calibration is performed by users, allowing adjustment of these parameters to better suit the specific conditions of the watershed being analyzed. This two-stage calibration process enhances the flexibility and adaptability of the ITB method across various hydrological contexts.

3.1. The Initial Calibration

The parameters α and β values for the ITB-1b and ITB-2b Synthetic Unit Hydrographs initially cover an Infinite range, with most values likely exceeding physical plausibility. Therefore, an initial calibration step is crucial to ensure parameters fall within a realistic range. Unlike some methods, which relies on extensive field data and intricate non-linear equations to determine key parameters for its unit hydrograph.

In contrast, the ITB method, being an equation-based SUH, streamlines calibration. It defines its curve using one or two equations, significantly reducing the need for extensive hydrograph observations. Only one or two field observations are necessary to establish initial parameters. This approach simplifies and expedites the calibration process for the ITB Synthetic Unit Hydrograph.

The initial calibration for finding the initial parameters for the ITB-1b and the ITB-2b Synthetic Unit Hydrograph is as follows:

- The ITB-1b Synthetic Unit Hydrograph is a Synthetic Unit Hydrograph method used to estimate flood hydrographs in ungauged watersheds. During initial calibration, the focus was on matching the peak discharge of the ITB-1b Synthetic Unit Hydrograph with that of the SCS Curvilinear SUH, a well-established method. This matching was achieved by adjusting the α parameter, which controls the shape of the ITB-1b SUH.
- Similarly, for the initial calibration of the ITB-2b Synthetic Unit Hydrograph, the values of parameters α and β were experimented to match the dimensioned (dimensionalized) peak discharge of ITB-2b Synthetic Unit Hydrograph with that of the Nakayasu Synthetic Unit Hydrograph, a commonly used Synthetic Unit Hydrograph Method in Japan, Southeast Asian nations and in Indonesia.
- Based on these initial calibration results, the parameter value for the ITB-1b Synthetic Unit Hydrograph was set at $\alpha = 3.7$, while for the ITB-2b Synthetic Unit Hydrograph, the parameter values were determined as $\alpha = 2.4$ and $\beta = 0.80$.

3.2. Calibration Performed by Users

Upon completing the flood hydrograph calculation, it's important for the user to compare the results, if available. Differences between the calculated and observed hydrographs may necessitate calibration to align the results more closely. This calibration process includes adjusting the time to peak (Tp) by altering Ct and modifying the peak discharge (Qp) by changing Cp, as depicted in Figure 3.

Figure 3. Time and peak discharge calibration by changing values of Ct and Cp

When the observed data is available, the calibration procedure for peak time and peak discharge is conducted as follows:

- If the peak time (Tp) of the measured and calculated hydrograph is not similar, the Ct coefficient in Equation (3) and/or Equation (4) is adjusted to equalize the peak time. A Ct value less than 1.0 reduces the peak time, while a Ct value greater than 1.0 increases it.
- 2) If the peak discharge (Qp) of both hydrographs is not similar, the Cp coefficient in Equation (1) and Equation (2) is adjusted. A Cp value less than 1.0 reduces the peak discharge, whereas a Cp value greater than 1.0 increases it.

3.3. Statistical Performance Metrics

When comparing observed and calculated curves, several common statistical metrics are used to assess model fit and accuracy. This paper will focus on three statistical performance metrics: [8-11].

• Nash-Sutcliffe Efficiency (NSE): Assesses the predictive skill of a model relative to the mean of the observed data, with values closer to 1 indicating better performance:

NSE =
$$1 - \frac{\sum_{i=1}^{n} (Q_{obs}(i) - Q_{sim}(i))^{2}}{\sum_{i=1}^{n} (Q_{obs}(i) - \overline{Q_{obs}})^{2}}$$
 (13)

• **Percentage Bias (PBIAS):** Expresses the bias as a percentage of the observed data, providing a normalized measure of bias.

$$PBIAS = 100 \times \frac{\sum_{i=1}^{n} (Q_{obs}(i) - Q_{sim}(i))}{\sum_{i=1}^{n} Q_{obs}(i)}$$
(14)

• Index of Agreement (IA): A normalized measure ranging from 0 to 1, where 1 means perfect agreement between predicted and observed values.

$$PBIAS = 100 \times \frac{\sum_{i=1}^{n} (Q_{obs}(i) - Q_{sim}(i))}{\sum_{i=1}^{n} Q_{obs}(i)}$$
(15)

Each formula uses Q_{obs} is Observed discharge, Q_{sim} is Simulated discharge, $\overline{Q_{obs}}$ is mean of the observed discharge, and n is Number of computed and observed values.

4. The Practical Application of the ITB SUH Method

This section showcases the practical application of the ITB SUH method. To demonstrate the fundamental concepts and innovative features introduced in Section 1 (Generation of ITB Synthetic Unit Hydrograph), real-world flood discharge calculations are performed for the Pinamula River, situated in Buol District, Central Sulawesi Province, on the Island of Sulawesi (see Figure 4).

Figure 4. Pinamula River located in Buol District, Central Sulawesi Province (Indonesia), as adapted from Tunas (2017) [12]

The following examples highlight the versatility and practical applications of the ITB Method in flood analysis by simulating various scenarios. The focus is on demonstrating its adaptability and precision in different contexts. For this case study, the Pinamula River, located in Buol District, Central Sulawesi Province, serves as the reference watershed:

- **Standard Application:** Analysis of Flood Hydrographs at the Pinamula River with a 1-Hour Time Step. This scenario showcases the application of the ITB method for analyzing existing flood hydrographs at the Pinamula River using a standard time step of 1 hour.
- Adapting to Different Time Steps: Recalculating Flood Hydrographs at the Pinamula River with a 0.5-Hour Time Step. This example highlights the method's flexibility by recalculating flood hydrographs for the Pinamula River using a finer time step of 0.5 hours, enhancing temporal resolution.
- **Fine-Tuning for Accuracy:** Calibration of Flood Hydrographs with Measured Data. This example illustrates the ITB method's capability to improve accuracy by calibrating model parameters to align calculated flood hydrographs with measured data. Calibration utilizes rainfall and flood discharge records from the Pinamula catchment.

4.1. Analysis of Flood Hydrographs for Pinamula River with Tr = 1.0 hour

This example demonstrates the use of the ITB method for calculating the flood hydrograph of the Pinamula River, located in the District of Buol, Province of Central Sulawesi, on the Island of Sulawesi. The Pinamula River drains an area of 49.35 square kilometers (km²) and stretches for a length of 15.636 kilometers (km), with a river slope (S) of 34.22 meters per kilometer (m/km). Despite its smaller size, managing flood risks for the Pinamula River poses significant hydrological challenges, impacting local infrastructure and communities in Sulawesi. The rainfall and discharge data for this catchment are sourced from Tunas (2017) [12].

Assuming a runoff coefficient (C) of 0.60, Table 1 presents the calculated values for total rainfall, infiltration, and effective rainfall for a unit rainfall duration (Tr) of 1 hour. This essentially means the table shows how much rainfall becomes runoff (effective rainfall) considering the infiltration characteristics of the watershed.

Hour	R (mm)	Infil (mm)	Reff (mm)
0.00	0.000	0.000	0.000
1.00	10.896	4.358	6.537
2.00	16.207	6.483	9.724
3.00	88.890	35.556	53.334
4.00	23.104	9.242	13.863
5.00	12.903	5.161	7.742
6.00	9.524	3.810	5.714
7.00	0.000	0.000	0.000

Table 1. Total rainfall, infiltration, and effective rainfall for Tr = 1 hour

4.1.1. Creating Tables of ITB-1b and ITB-2b Synthetic Unit Hydrograph

The calculation steps, which involve numerous lines of computation, figures, and tables, are best conveyed visually through a figure rather than a table. These steps are meticulously outlined in Table A1 for the ITB-1b SUH and Table A2 for the ITB-2b SUH; both tables are located in the Appendix I. Despite the detailed and extensive calculations, all the steps are performed only once using Excel. Once the Excel file containing these steps is created, there is no need to repeat the entire process.

To provide a clear framework for these calculations, the workflow is divided into five sequential parts, each focusing on key components that form the basis of the Synthetic Unit Hydrograph.

Part I details the collection of essential input data for hydrological analysis. This includes the characteristics of the watershed and rainfall, such as the name of the river, station data, watershed area (A), the length of the main river (L), unit rainfall height (R), and the duration of unit rainfall (Tr). These variables are integral to calculating the Time Lag in hydrological modeling.

Part II involves defining the Time coefficient (Ct), calculating the Time Lag (tP), Time to Peak (TP), and Base Time (TB). The equations used are highly dependent on the Synthetic Unit Hydrograph being utilized.

Part III calculates Tn (Normalized Unit Rainfall Duration), Cp (Peak Coefficient), Alpha and Beta (which shape the Synthetic Unit Hydrograph), ASUH (the Synthetic Unit Hydrograph area), Kp (Peak Rate Factor), and Qp (Peak Discharge).

Referring to Table A1 for the ITB-1b SUH and Table A2 for the ITB-2b SUH; the detailed steps of the calculations in Part III are outlined as follows:

• Normalized Unit Rainfall Duration

The ITB Method enables flexible time step adjustments through rainfall unit duration normalization by time to peak (Tn = Tr/Tp) as explained in Section 2.2 (Time Parameters), ensuring accuracy without the need for extensive recalculations, a feature not commonly found in other methods.

• ITB-1b

$$Tn = \frac{Tr}{Tp} = \frac{1}{4.72894} = 0.21146$$
• ITB-2b

$$Tn = \frac{Tr}{Tp} = \frac{1}{2.25779} = 0.44291$$

• Coefficient of Peak (Cp)

Before calibration, the Peak Discharge Coefficient (Cp) was initially set at 1.0 for both the ITB-1b and ITB-2b Synthetic Unit Hydrographs.

• Coefficient of α and β, for both ITB-1b and ITB-2b

The α and β coefficients for both the ITB-1b and ITB-2b Synthetic Unit Hydrographs are provided. The default values are as follows: for ITB-1b, $\alpha = 3.70$, and for ITB-2b, $\alpha = 2.4$, $\beta = 0.8$.

• Area of ITB-1b Dimensionless Synthetic Unit Hydrograph

• Exact Area of ITB-1b Synthetic Unit Hydrograph

If $m = \propto \times Cp$, the formula is:

 $A_{SUH} = \frac{e^m \times \Gamma(m+1,0)}{m^{m+1}}$

For $\alpha = 3.7$ and Cp = 1.0, m = 3.7, and the values of Gamma function $\Gamma(m+1,0)$ is computed using Excel function:

 $\Gamma(m+1,0) = \text{EXP}(\text{GAMMALN}(m+1)) * (1 - \text{GAMMADIST}(0,m+1,1,\text{TRUE})) = 15.4314116$

Consequently,

 $A_{SUH} = \frac{e^{3.7} \times \Gamma(3.7+1.0)}{3.7^{3.7+1}} = 1.3327452$

o Numerical Area of ITB-1b Synthetic Unit Hydrograph

 $A_{SUH} = Tn \times (Sum of Column 3 of Part V, in Table A. 1) = 1.3327838$

Area of ITB-2b Dimensionless Synthetic Unit Hydrograph

• Exact Area of ITB-1b Synthetic Unit Hydrograph

For $\alpha = 1.6$, $\beta = 0.8$, and Cp = 1.0, the formula for exact integration of ITB-2b Synthetic Unit Hydrograph is

$$A_{SUH} = \frac{1}{m+1} + \frac{1}{n} - \frac{\exp(-(b-1)*n)}{n}$$

With n = 0.80 and upper integration limit b = 20, thus

$$A_{SUH} = \frac{1}{1.6+1} + \frac{1}{0.8} - \frac{\exp(-(20-1)*0.8)}{0.8} = 1.5441176$$

• Numerical Area of ITB-2b Synthetic Unit Hydrograph

 $A_{SUH} = Tn \times (Sum of Column 3 of Part V, in Table A. 2) = 1.5520706$

• Peak Rate Factor (Kp)

The ITB method rigorously adheres to the Mass Conservation Principle by comparing numerical and exact Peak Rate Factors, a feature not commonly found in other methods.

• The Kp value for ITB-1b Synthetic Unit Hydrograph

$$Kp = \frac{1}{3.6} \times A_{SUH} = \frac{1}{3.6} \times 1.3327452 = 0.2084252 \text{ (Exact)}$$
$$Kp = \frac{1}{3.6} \times A_{SUH} = \frac{1}{3.6} \times 1.3327838 = 0.2084192 \text{ (Numerical)}$$

The difference from exact and numerical value is around 0.0097%

• The Kp value for ITB-2b Synthetic Unit Hydrograph

$$Kp = \frac{1}{3.6} \times A_{SUH} = \frac{1}{3.6} \times 1.5441176 = 0.1798942 \text{ (Exact)}$$
$$Kp = \frac{1}{3.6} \times A_{SUH} = \frac{1}{3.6} \times 1.5520706 = 0.1789724 \text{ (Numerical)}$$

The difference from exact and numerical value is around 0.591%

The difference in Kp between the exact and numerical values of ITB-2b is more significant than that of ITB-1b due to a larger neglected portion around the peak of the hydrograph. This substantial difference will be illustrated in the subsequent section in Figure 5.

• Peak Discharge (Qp)

The ITB method rigorously adheres to the Mass Conservation Principle by comparing numerical and exact Peak Discharge values, a feature not commonly found in other methods.

• The Qp value for ITB-1b Synthetic Unit Hydrograph

$$Qp = \frac{K_{P} \times R \times A_{CA}}{T_{P}} = \frac{0.208425 \times 1.0 \times 49.350}{4.72894} = 2.17507 \text{ (Exact)}$$
$$Qp = \frac{K_{P} \times R \times A_{CA}}{T_{P}} = \frac{0.208419 \times 1.0 \times 49.350}{4.72894} = 2.17486 \text{ (Numerical)}$$

The difference from exact and numerical value is around 0.0097%.

• The Qp value for ITB-2b Synthetic Unit Hydrograph

$$Qp = \frac{Kp \times R \times A_{CA}}{Tp} = \frac{0.1798941 \times 1.0 \times 49.350}{2.25779} = 3.93206 \text{ (Exact)}$$
$$Qp = \frac{Kp \times R \times A_{CA}}{Tp} = \frac{0.17989724 \times 1.0 \times 49.350}{2.25779} = 3.95532 \text{ (Numerical)}$$

The difference from exact and numerical value is around 0.591%.

Part IV, The ITB method applies the Mass Conservation Principle by calculating the volume of excess rainfall of 1 unit (mm) falling in the catchment (V_{CA}) and the volume of the unit hydrograph (V_{SUH}). It then ensures that the ratio, $R = V_{SUH}/V_{CA}$, equals 1.

Part V, to construct ITB-1b and ITB-2b Synthetic Unit Hydrograph, this section offers a detailed calculation of the curve shape, represented by the coordinates of the ITB-1b and ITB-2b dimensionless unit hydrographs in columns (2) and (3), respectively, along with the dimensional unit hydrograph in columns (4) and (5).

• ITB-1b Synthetic Unit Hydrograph

The column operations for the ITB-1b SUH calculation are presented in the lower section of Part V of Table A1, with further details provided in Table 2.

Column Operation	Unit
Column (1) = n = Integer numbers from 0 to as necessary	dimensionless
Column (2) = t = Column (1) * Tn Part III Point a)	dimensionless
Column (3) = q(t) = $(t * EXP(1 - t))^{(\alpha * Cp)}$ (ITB-1b Eq.) dimensionless
Column (4) = T = Column (2) * Tp	hour
Column (5) = Q = Column (3) * Qp (numerical)	m ³ /sec

Fable 2. Column o	operation	of ITB-1b	calculation
-------------------	-----------	-----------	-------------

Note: In Column (5), Qp represents the numerical value of Qp, not the exact value.

• ITB-1b Synthetic Unit Hydrograph

Similarly, the column operations for the ITB-1b SUH calculation are illustrated in the lower section of Part V of Table A2, with further details provided in Table 3.

Column Operation	Unit
Column $(1) = n =$ Integer numbers from 0 to as necessary	dimensionless
Column (2) = t = Column (1) * Tn Part III Point b)	dimensionless
Column (3) = q(t) =MIN(t ^{α} , EXP((1-t)*(β *Cp))) (ITB-2b eq.)	dimensionless
Column (4) = T = Column (2) * Tp	hour
Column (5) = Q = Column (3) * Qp (numerical)	m ³ /sec

Table 3. Column operation of ITB-2b calculation

Note: In Column (5), Qp represents the numerical value of Qp, not the exact value.

4.1.2. Graphing Dimensional Synthetic Unit Hydrograph

The process of generating dimensional and dimensionless coordinates for the ITB-1b and ITB-2b SUHs for Pinamula Catchment is outlined in Table A1 for the ITB-1b SUH and Table A2 for the ITB-2b SUH. The numerical values for the dimensionless coordinates are presented in Columns 2 and 3, while the dimensional coordinates are shown in Columns 4 and 5 of both tables. The resulting dimensional SUH coordinates for the ITB-1b SUH can be found in Table 4, and those for the ITB-2b SUH are provided in Table 5.

The dimensional coordinates provide the basis for plotting the SUHs and are essential for understanding how the unit hydrograph behaves for a specific watershed. Tables 4 and 5 both present the results of the dimensional ITB-1b and ITB-2b SUHs. These tables highlight the time (T) and discharge (Q) values, representing the discharge at various times.

When plotting the dimensional coordinates for the ITB-1b and ITB-2b Synthetic Unit Hydrographs alongside their exact dimensional curves, the results closely resemble those shown in Figure 5. This figure clearly illustrates the peak coordinates (Tp, Qp) for both SUHs, indicating the exact time to peak (Tp) and the peak discharge (Qp). In both ITB-1b and ITB-2b, the time to peak (Tp) is not always an exact multiple of the unit rainfall duration (Tr), leading to an approximation in the convolution process.For ITB-1b, the numerical and exact curves align closely throughout, showing minimal discrepancy. This indicates that the numerical method effectively captures the key characteristics of the ITB-1b SUH. However, more significant divergence becomes evident in the ITB-2b SUH, particularly around the peak, because the numerical approximation method used to compute Qp does not capture the exact value of Qp.

ITB-1b Synthetic Unit Hydrograph					
T (hour)	T (hour)	Q(m ³ /s)			
0.000	0.000000	37.000	0.000000		
1.000	0.128215	38.000	0.000000		
2.000	0.761990	39.000	0.000000		
3.000	1.562025	40.000	0.000000		
4.000	2.070916	41.000	0.000000		
5.000	2.162373	42.000	0.000000		
6.000	1.941343	43.000	0.000000		
7.000	1.570386	44.000	0.000000		
8.000	1.177003	45.000	0.000000		
9.000	0.832229	46.000	0.000000		
10.000	0.562014	47.000	0.000000		
11.000	0.365680	48.000	0.000000		
12.000	0.230738	49.000	0.000000		
13.000	0.141886	50.000	0.000000		
14.000	0.085354	51.000	0.000000		
15.000	0.050384	52.000	0.000000		
16.000	0.029255	53.000	0.000000		
17.000	0.016742	54.000	0.000000		
18.000	0.009459	55.000	0.000000		
19.000	0.005284	56.000	0.000000		
20.000	0.002921	57.000	0.000000		
21.000	0.001600	58.000	0.000000		
22.000	0.000869	59.000	0.000000		
23.000	0.000469	60.000	0.000000		
24.000	0.000251	61.000	0.000000		
25.000	0.000133	62.000	0.000000		
26.000	0.000071	63.000	0.000000		
27.000	0.000037	64.000	0.000000		
28.000	0.000019	65.000	0.000000		
29.000	0.000010	66.000	0.000000		
30.000	0.000005	67.000	0.000000		
31.000	0.000003	68.000	0.000000		
32.000	0.000001	69.000	0.000000		
33.000	0.000001	70.000	0.000000		
34.000	0.000000	71.000	0.000000		
35.000	0.000000	72.000	0.000000		
36.000	0.000000	73.000	0.000000		

Table 4. Dimensional ITB-1b SUH generated numerically

ITB-2b Synthetic Unit Hydrograph					
T (hour)	Q(m ³ /s)	T (hour)	Q(m ³ /s)		
0.000	0.000000	37.000	0.000018		
1.000	0.560197	38.000	0.000013		
2.000	2.956735	39.000	0.000009		
3.000	3.040663	40.000	0.000006		
4.000	2.133464	41.000	0.000004		
5.000	1.496933	42.000	0.000003		
6.000	1.050315	43.000	0.000002		
7.000	0.736947	44.000	0.000001		
8.000	0.517075	45.000	0.000001		
9.000	0.362803	46.000	0.000000		
10.000	0.254558	47.000	0.000000		
11.000	0.178610	48.000	0.000000		
12.000	0.125320	49.000	0.000000		
13.000	0.087930	50.000	0.000000		
14.000	0.061696	51.000	0.000000		
15.000	0.043289	52.000	0.000000		
16.000	0.030373	53.000	0.000000		
17.000	0.021311	54.000	0.000000		
18.000	0.014953	55.000	0.000000		
19.000	0.010492	56.000	0.000000		
20.000	0.007361	57.000	0.000000		
21.000	0.005165	58.000	0.000000		
22.000	0.003624	59.000	0.000000		
23.000	0.002543	60.000	0.000000		
24.000	0.001784	61.000	0.000000		
25.000	0.001252	62.000	0.000000		
26.000	0.000878	63.000	0.000000		
27.000	0.000616	64.000	0.000000		
28.000	0.000432	65.000	0.000000		
29.000	0.000303	66.000	0.000000		
30.000	0.000213	67.000	0.000000		
31.000	0.000149	68.000	0.000000		
32.000	0.000105	69.000	0.000000		
33.000	0.000074	70.000	0.000000		
34.000	0.000052	71.000	0.000000		
35.000	0.000036	72.000	0.000000		
36.000	0.000025	73.000	0.000000		

Table 5. Dimensional ITB-2b SUH generated numerically

Figure 5. The dimensional exact and numerical ITB-1b and ITB-2b SUH for Pinamula River

4.1.3. Hydrograph Convolution of ITB-1b and ITB-2b Dimensional Synthetic Unit Hydrograph

In hydrology, convolution is a fundamental technique for predicting river flow. It involves combining the effective rainfall distribution with the unit hydrograph, which represents a watershed's unique response to a standardized unit of rainfall excess. This process essentially "mixes" the unit hydrograph's response to each portion of rainfall over time, considering how earlier rain influences later runoff. This convolution process accounts for the time lag and attenuation of the rainfall signal as it travels through the watershed, considering factors such as infiltration, soil moisture, and channel routing. The resulting river flow hydrograph depicts the predicted discharge at different times after a rainfall event, providing crucial insights for flood planning, water resources management, and the design of hydraulic structures.

This calculation can even be done using Excel formulas! Convolution involves summing the product of corresponding rainfall and unit hydrograph values for each time interval. The formula itself (shown mathematically) represents the discharge (Q(t)) at a specific time (t) as the sum, across all previous time steps (τ), of the product between the rainfall (R(τ)) at that time step and the unit hydrograph value (U(t- τ)) shifted by the time difference (t- τ). In Excel, performing convolution for hydrology typically involves setting up a spreadsheet to compute the convolution between the effective rainfall data and the unit hydrograph. Detailed procedures for convolution are extensively covered in many hydrology textbooks.

Following the creation of the ITB-1b and ITB-2b Synthetic Unit Hydrographs in Table 4 and Table 5, convolution is performed using a unit rainfall duration (Tr) of 1.0 hour and the total effective rain distribution specified in Table 1 (also with Tr=1.0). Convolution is typically conducted using tables, as exemplified Table A3 for the ITB-1b and Table A4. for ITB-2b SUHs, respectively. Column (9) of these tables calculates the sum of values in each row from Columns (3) to (8). Notably, Column 10, not commonly found in other literature, employs the trapezoidal method to calculate the flood volume between hours I and I+1 using data from Columns (1) and (9). The formula used is:

$$V_{i} = 0.5 \times (T_{i+1} - T_{i}) \times (Q_{i+1} - Q_{i}).$$
(16)

4.1.4. Plotting Convolution Results of Synthetic Unit Hydrograph

The total hydrograph resulting from the convolution of ITB-1b and ITB-2b hydrographs, as shown in Figure 6 is obtained using a numerically calculated peak discharge value, not an exact peak discharge. Column 1 and Column 9 of Table A2 and Table A3 contain the time and discharge of the ITB-1b and ITB-2b total hydrograph, respectively. When both the ITB-1b and ITB-2b total hydrographs are superimposed on a graph, the resulting curve is displayed in Figure 6. From the analysis of both curves, it is apparent that the hydrograph produced by ITB-2b features a greater peak flow and reaches its peak more quickly. On the other hand, the hydrograph from ITB-1b demonstrates a lower peak flow and a more delayed peak time. However, despite these variations, the total volume of the hydrographs from both remains the same.

Figure 6. ITB-1b and ITB-2b Hydrograph for Pinamula River with Tr = 1.0 hour

4.2. Analysis of Flood Hydrographs at Pinamula River with Tr = 0.5 hour

The ITB Method allows for Flexible Time Step Adjustments by introducing unit duration normalization, enabling flexible adjustments to the time step. This capability, embedded in the calculation, is not commonly found in other methods, allowing for adjustments to the time step without requiring significant recalculations.

To assess the impact of altering the normalized unit hydrograph duration (Tn = Tr/Tp), we reduced Tr from 1.0 hour to 0.5 hour. Consequently, when the unit rainfall duration is halved from 1.0 hour to 0.5 hour with a coefficient C = 0.6, the original rainfall distribution shown in Table 1 is transformed into the one presented in Table 6. As a result, the rainfall amount for each half-hour interval becomes half of what it was for a one-hour interval.

Tr=0.5 hour					
Hour	R (mm)	Infil (mm)	Reff (mm)		
0.00	0.000	0.000	0.000		
0.50	5.448	2.179	3.269		
1.00	5.448	2.179	3.269		
1.50	8.104	3.241	4.862		
2.00	8.104	3.241	4.862		
2.50	44.445	17.778	26.667		
3.00	44.445	17.778	26.667		
3.50	11.552	4.621	6.931		
4.00	11.552	4.621	6.931		
4.50	6.451	2.581	3.871		
5.00	6.451	2.581	3.871		
5.50	4.762	1.905	2.857		
6.00	4.762	1.905	2.857		
6.50	0.000	0.000	0.000		

Table 6. Total rainfall, infiltration, and effective rainfall for Tr = 0.5 hour

4.2.1. Creating Tables for the ITB-1b and ITB-2b Synthetic Unit Hydrographs

By utilizing the same Pinamula River characteristics, as detailed in Section 4.1 (Analysis of Flood Hydrographs at Pinamula Catchment with Tr = 1.0 hour), the flood hydrograph for a unit rainfall duration (Tr) of 0.5 hours was determined. This involved a series of complex calculations, including the generation of figures and tables. These calculations are meticulously outlined in Table A5 for the ITB-1b SUH and Table A6 for the ITB-2b SUH, each comprising multiple sections. Given the alterations in Tn values (Tn = Tr/Tp) and the adjustments made to rainfall and infiltration distributions, it was necessary to recompute the ITB-1b and ITB-2b Synthetic Unit Hydrographs. Subsequently, with the updated Tn values set to 0.5, the revised tables are presented in Table A5 and Table A6.

4.2.2. Hydrograph Convolution

Following the finalization of the ITB-1b and ITB-2b Synthetic Unit Hydrographs (in Table A5 and Table A6), the next step involves performing convolution. Convolution is a mathematical operation that essentially combines the ITB-1b/ITB-2b unit hydrographs with the effective rainfall distribution (Table 6) to generate the flood hydrograph for a specific rainfall event. This flood hydrograph represents the discharge of water over time at the outlet of the watershed.

Tables typically carry out convolutions for the ITB method, as demonstrated in Table A7 for the ITB-1b SUH and Table A8. for the ITB-2b SUH., respectively. Column (15) in these tables calculates the sum of each row's values from Columns (3) to (14), representing the flood hydrograph for a unit rainfall event with a duration of Tr = 0.5 hours. A unique feature of the ITB method is the inclusion of a small table in the bottom right corner of Table A7 and Table A8. This table verifies adherence to the mass conservation principle, ensuring that the total volume of water entering the watershed equals the total volume discharged. This minor addition is a feature not commonly found in other methods.

4.2.3. Results Comparison: Time Step Sensitivity

A crucial aspect of the ITB method is its ability to adapt to different time steps for rainfall excess. Comparing the SUH for Pinamula River generated using Tr = 1.0 hour and Tr = 0.5 hour, as shown in Figure 7, is essential for understanding the influence of rainfall duration on flood characteristics. The results clearly demonstrate that a finer time step (Tr = 0.5 hour) leads to significant improvements in the hydrograph shape. This is evident in the smoother profile of the hydrograph, which more accurately reflects the real-world rise and fall of flood discharge. Notably, the use of Tr = 0.5 hour can lead to a slightly higher in peak discharge and a more precise representation of the initial rise in the hydrograph. This highlights the importance of considering rainfall duration with appropriate granularity for effective flood modeling and prediction.

Figure 7. Flood hydrograph of ITB-1b and ITB-2b SUH for Pinamula River with Tr=1.0 and Tr=0.5 hour

4.3. Calibration of Flood Hydrographs at Pinamula Catchment with Measured Data

Calibration is crucial because no two catchments are exactly alike; each has unique physical and hydrological characteristics—such as varying land use, soil types, slopes, and rainfall patterns—that can significantly affect how rainfall translates into runoff. When a model is calibrated, its parameters (for instance, time to peak and peak discharge) are adjusted to match observed data from the specific watershed under study. This process ensures that the simulated hydrograph more closely reflects the real behavior of that catchment.

In the context of SUH, many traditional methods (e.g., certain forms of SCS or Nakayasu) have fixed or limited parameter sets. These methods cannot easily be recalibrated to account for local conditions, which can lead to misaligned peak flows and timings, especially in catchments that deviate from the assumptions on which those methods were originally based. By contrast, the ITB method incorporates inherent calibration features, allowing parameters like time to peak (Tp) and peak discharge (Qp) to be fine-tuned based on measured rainfall and runoff.

4.3.1. Calibration Dataset

The calibration process uses rainfall and flood discharge data provided by Tunas (2017) [12] to fine-tune the ITB method for greater accuracy. Table 7 outlines the relationship between total rainfall (R_{total}), infiltration (Infil), and direct runoff (QDRO), crucial for improving model performance [13]. Key variables include effective rainfall (Reff), total discharge (Q_{total}), base flow (Q_{Base}), and direct runoff (QDRO), all of which play a vital role in calibrating the ITB method. The table helps compare observed rainfall and discharge values, offering insights into the rainfall-runoff relationship that enhance the model's accuracy across varying hydrological conditions.

Hour	R _{total} (mm)	Infiltration (mm)	Reffe (mm)	Q _{total} (m ³ /s)	Q _{Base} (m ³ /s)	QDRO (m ³ /s)
0	4.400	5.310	0.000	0.930	0.930	0.000
1	16.700	5.310	11.390	10.120	1.150	8.970
2	5.300	5.310	0.000	20.080	1.370	18.710
3	5.000	5.310	0.000	24.370	1.600	22.770
4	2.200	5.310	0.000	23.410	1.820	21.590
5				22.590	2.040	20.550
6				18.630	2.260	16.370
7				15.310	2.490	12.820
8				13.280	2.710	10.570
9				9.620	2.930	6.690
10				8.470	3.150	5.320
11				6.420	3.380	3.040
12				5.750	3.600	2.150
13				5.450	3.820	1.630
14				5.440	4.040	1.400
15				5.430	4.270	1.160
16				5.420	4.490	0.930
17				5.410	4.710	0.700
18				5.400	4.930	0.470
19				5.390	5.150	0.240
20				5.380	5.380	0.000

Table 7. Effective Rainfall, Infiltration, and Direct Runoff

Figure 8 visually complements the table, depicting the hydrograph and illustrating the relationship between rainfall and discharge over time. By clearly mapping the rainfall data to observed discharge, the hydrograph highlights key hydrological responses, such as peak flow and the timing of runoff events. Such detail is crucial for fine-tuning the ITB method, as it helps to identify potential discrepancies between simulated and observed data.

Figure 8. Effective rainfall, infiltration, total discharge, and base flow SUH for Pinamula River

4.3.2. UnCalibrated Hydrograph Comparison

This study improves flood discharge calculations for the Pinamula River by integrating effective rainfall data from Table 7 and initial parameter values prior to calibration from Table 8. The initial hydrographs, produced using uncalibrated ITB-1b and ITB-2b SUH variables as shown in Figure 9, exhibit significant discrepancies in peak discharge compared to observed data. These differences are reflected in the suboptimal performance metrics, such as NSE, PBIAS, and IA. Therefore, calibration is essential to improve the accuracy and reliability of flood discharge simulations for this watershed.

Table 8. Initial parameter values before calibration

Figure 9. ITB-1b and ITB-2b hydrographs for Pinamula River before calibration, compared with the observed hydrograph

4.3.3. Calibrated Hydrograph Comparison

An iterative calibration process was applied, beginning with uncalibrated hydrographs (Figure 9). The adjustments primarily targeted the Ct values to refine the timing of the peak discharge: Ct values below 1.0 advanced the peak, while values above 1.0 delayed it. Specifically, the Ct value for ITB-1b was decreased, and for ITB-2b, it was increased, ensuring that the calculated peak times aligned with the observed data. Following this, Cp values were systematically refined to achieve closer matches in peak discharges. Underestimated peaks were corrected by increasing Cp values, while overestimated peaks were addressed by reducing them. Once the peak timing was satisfactorily adjusted, further fine-tuning of Cp values for both ITB-1b and ITB-2b was conducted to ensure a more accurate alignment between the calculated and observed peak discharges, resulting in improved calibration accuracy.

The final calibrated parameters, shown in Table 9, reflect this iterative process, with constants α and β kept unchanged. This allowed the calibration improvements to focus solely on Ct and Cp, ensuring clearer insights into their impact. To assess the accuracy of the calibrated hydrographs, metrics like Nash-Sutcliffe Efficiency (NSE), Index of Agreement (IA), and Percent Bias (PBIAS) were used, providing a solid measure of the model's performance in simulating flood discharges.

Table 9. Final parameter values after calibration							
SUH	α	β	Ct	Ср	NSE	PBIAS	IA
ITB-1b	3.700	-	0.880	1.050	0.8783	2.6984	0.9456
ITB-2b	2.400	0.800	1.500	1.250	0.8364	5.3468	0.9216

Figure 10 displays the hydrographs for Pinamula River generated using the calibrated parameter values from Table 9. Visual inspection reveals a significant improvement in the agreement between the simulated and observed hydrographs. Calibration led to a closer match between the simulated and observed peak discharge. ITB-1b demonstrates beter performance visually in matching the observed data. The performance metrics, such as NSE, PBIAS, and IA, reinforce this observation, indicating that ITB-1b is the more effective model for flood discharge predictions at the Pinamula catchment. Given that ITB-1b visually aligns more closely with the observed values and the metrics confirm this, ITB-1b provides a more accurate representation of the hydrological behavior at Pinamula river.

Figure 10. The ITB-1b and ITB-2b hydrographs for Pinamula River after calibration with observed hydrograph

5. Conclusions

Flooding remains a pressing concern for communities and infrastructure, necessitating robust and accurate methods for flood discharge estimation. In *Part I* of this two-part series, the ITB Unit Hydrograph (ITB-UH) Method is introduced as a direct response to the limitations of traditional SUHs—offering a clearer derivation of peak discharge, flexible time steps, and built-in calibration. This foundation enhances both the theoretical robustness and the practical adaptability of flood modeling, providing crucial benefits for engineers, hydrologists, and decision-makers.

• Practical Applications and Findings

o Pinamula River Case Study

Demonstrations at Pinamula River highlight the method's versatility. Whether using a 1-hour or 0.5-hour rainfall duration, the ITB-UH Method proved adaptable, producing realistic hydrographs comparable to SCS-Curvilinear and Nakayasu.

o Calibration with Observed Data

By adjusting Ct and Cp, the model can be fine-tuned to match observed peak flows and timing. Metrics like NSE, PBIAS, and IA confirm the method's reliability.

o Visual and Statistical Evaluation

In some scenarios, ITB-1b produced higher NSE, whereas ITB-2b more closely mirrored observed hydrograph shapes (especially on the falling limb), indicating that the "best" model might depend on priorities (statistical fit vs. visual alignment).

• Overall Significance of the ITB-UH Method

The ITB-UH Method represents a significant step forward in hydrological modeling by addressing many of the limitations associated with traditional SUH approaches. Its key contributions include:

Improved Accuracy

Precise derivations for Kp and Qp, combined with calibration options, enhance the theoretical basis and reliability of flood predictions.

• Versatility and Flexibility

Flexible time-step normalization allows seamless adjustments to various rainfall resolutions, and custom UDUHs can be developed for diverse catchment conditions.

o Enhanced Understanding of Catchments

Calibration refines local parameters, providing deeper insights into how water moves through a watershed, while explicit mass conservation checks help maintain modeling integrity.

o Advancement in Hydrological Modeling

Robust mathematical derivations and calibration steps establish a new standard for Synthetic Unit Hydrograph development, ensuring consistent, transparent flood analyses across a wide range of contexts.

Collectively, these features position the ITB-UH Method as a powerful and comprehensive tool for flood risk assessment, water resource management, and the design of flood mitigation infrastructure. By overcoming the limitations of older SUH methods—such as limited calibration, rigid time steps, and opaque derivations, the ITB-UH Method ensures both theoretical soundness and practical adaptability in modern hydrological practice.

6. Declarations

6.1. Author Contributions

Conceptualization: D.K.N.; methodology: D.K.N.; software: J.J. and F.A.; validation: W.H., D.H., and E.O.N.; formal analysis: W.H. and D.H.; investigation: E.O.N. and A.A.K.; resources: A.A.K. and M.F.; data curation: M.F. and J.J.; writing—original draft preparation: D.K.N.; writing—review and editing: D.K.N., W.H., and J.J.; visualization: J.J. and F.A.; supervision: A.A.K. and E.O.N.; project administration: M.H. and D.H.; funding acquisition: D.K.N. All authors have read and agreed to the published version of the manuscript.

6.2. Data Availability Statement

The data presented in this study are available on request from the corresponding author.

6.3. Funding and Acknowledgements

This work was supported by PPMI of Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung. The author expresses gratitude to the Research Institute, Bandung Institute of Technology, for the financial support for the research titled "General Procedure for Calculating Synthetic Unit Hydrographs (SUH) for Planned Flood Hydrograph Calculations. Case Study: Development of ITB-1 and ITB-2 Synthetic Unit Hydrographs". This initial support was provided through the ITB Capacity Building Research Program in 2010. Also, thanks to Gde Ariahastha Wicaksana ST, MT, and Bagas Nathaniel ST and Ilmiadin Rasyid ST, MT, for their contributions as co-authors in several previous papers.

6.4. Conflicts of Interest

The authors declare no conflict of interest.

7. References

- [1] Natakusumah, D. K. (2009). General Procedure for Determining Synthetic Unit Hydrograph for Calculating Design Flood Hydrograph. National Seminar on Water Resources Engineering, The Role of Community, Government and Private Sector as Networks, in Flood Hazard Mitigation, 11 August, 2009, Bandung, Indonesia. (In Indonesian).
- [2] Natakusumah, D. K., Hatmoko, W., & Harlan, D. (2011). General Procedure for Calculating Synthetic Unit Hydrographs Using the ITB Method and Several Examples of Its Application. Jurnal Teknik Sipil, 18(3), 251. doi:10.5614/jts.2011.18.3.6. (In Indonesian).
- [3] Natakusumah, D. K., Harlan, D., & Hatmoko, W. (2013). A new synthetic unit hydrograph computation method based on the mass conservation principle. WIT Transactions on Ecology and the Environment, 172, 27–38. doi:10.2495/RBM130031.
- [4] Natakusumah, D. K. (2016). Use of ITB 1 and ITB-2 Synthetic Unit Hydrographs with Peak Discharge Factor (Kp) Calculated Exactly. Potensi: Jurnal Sipil Politeknik, 18(1), 35.
- [5] Natakusumah, D. K., Wicaksana, G. A., & Nathaniel, B. (2021). Towards standardization of design flood calculation using Synthetic Unit Hydrograph methods. 7th International Seminar of HATHI, 30 October, Surabaya, Indonesia. (In Indonesian).
- [6] Natakusumah, D. K., Hatmoko, W., Harlan, D., Nugroho, E. O., Kuntoro, A. A., Farid, M., Adinata, F., & Javas, J. (2025). The ITB Unit Hydrograph Method: A Novel Approach to User-Defined Unit Hydrograph Development (Part I). Civil Engineering Journal, 11(4), 1624–1651. doi:10.28991/cej-2025-011-04-021.
- [7] Nash, J. E. (1957). The form of the instantaneous unit hydrograph. Comptes Rendus et Rapports Assemblee Generale de Toronto, 3, 114-121.
- [8] Ritter, A., & Muñoz-Carpena, R. (2013). Performance evaluation of hydrological models: Statistical significance for reducing subjectivity in goodness-of-fit assessments. Journal of Hydrology, 480, 33-45. doi:10.1016/j.jhydrol.2012.12.004.
- [9] Duc, L., & Sawada, Y. (2023). A signal-processing-based interpretation of the Nash–Sutcliffe efficiency. Hydrology and Earth System Sciences, 27(9), 1827-1839. doi:10.5194/hess-27-1827-2023, 2023.
- [10] Teegavarapu, R. S., Sharma, P. J., & Patel, P. L. (2022). Frequency-based performance measure for hydrologic model evaluation. Journal of Hydrology, 608, 127583. doi:10.1016/j.jhydrol.2022.127583.
- [11] Zhang, Y., Vaze, J., Chiew, F. H., Teng, J., & Li, M. (2014). Predicting hydrological signatures in ungauged catchments using spatial interpolation, index model, and rainfall–runoff modelling. Journal of Hydrology, 517, 936-948. doi:10.1016/j.jhydrol.2014.06.032.
- [12] Tunas, I. G. (2017). Development of Synthetic Unit Hydrograph Model Based on Fractal Characteristics of River Basin Areas. Ph.D. Thesis, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia. (In Indonesian).
- [13] Tunas, I. G., & Lesmana, S. B. (2011). Deviation Analysis of Discharge Prediction Using Mock and NRECA Models. Infrastruktur, 1(1), 55-62.

Appendix I

Table A1. Computation of ITB-1b SUH for Pinamula River for Tr = 1.0 hour

I. Characteristics of Watersh	ed aı	nd Rainfall	
1. River Name	=	Pinamula	
2. Station	=	Pinamula	
3. Watershed Area (A)	=	49.350	Km ²
4. Main River Length (L)	=	15.640	km
5. Rainfall Depth (R)	=	1.000	mm
6. Unit Rainfall Duration (Tr)	=	1.000	Hour
II. Calculation of Time Lag, 1	ime	to Peak, a	nd Time Base
1. Time Coefficient (Ct)	=	1.00000	-
2. Time Lag (TL)			
$TL = Ct^*0.81225^*L^{0.6}$	=	4.22894	Hour
3. Peak Time (TP)			
TP = TL + 0.5 * Tr	=	4.72894	Hour
4. Base Time (TB)			
TB = TP	=	10.00000	Defined
IB	=	47.28942	Hour
III. Computation of ASUH, K	p, an	d Tp	
1. Tn = Tr/Tp	=	0.21146	-
2. Peak Coefficient (Cp)	=	1.00000	-
3. Alpha	=	3.70000	-
4. A _{SUH} (Numerik, Exact,)	=	1.33275	Exact
	=	1.33287	Numerical
5. Kp = $1/(3.6*ASUH)$	=	0.20843	Exact
		0.20840	Numerical
6. $Qp = Kp A_{DAS} R/Tp$	=	2.17507	m3/s (Ext)
	=	2.17486	m3/s (Num)
	=	-0.0097%	Error
IV. Conservation Check			
1. Rain Vol (1000 * R * ADAS)	=	49,350	m3

Normalize Unit Rainfall Duration

ITB-1 Time lag formula

 $A_{SUH} = \frac{e^m \Gamma(m+1,0)}{2}$ mm (Sum of Column (3) in Section V) x (Tr/Tp)

(Sum of Column (5) in Section IV) x (Tr*3600)

1.	Rain Vol (1000 * R * ADAS)	
2.	Hydrograph Volume	

49,350 m3 = 3. Runoff Depth 1.00000 Ok≈1.0 mm =

V. Table for Calculation of SUH ITB-1b:

No	Dimensionless SUH		Dimensio	onal SUH
NU	t=T/Tp	q=Q/Qp	T (hour)	Q=q×Qp
(1)	(2)	(3)	(4)	(5)
0	0.000000	0.000000	0.000	0.000000
1	0.211464	0.058947	1.000	0.128202
2	0.422928	0.350329	2.000	0.761916
3	0.634391	0.718149	3.000	1.561873
4	0.845855	0.952114	4.000	2.070714
5	1.057319	0.994162	5.000	2.162162
6	1.268783	0.892542	6.000	1.941154
7	1.480246	0.721993	7.000	1.570233
8	1.691710	0.541133	8.000	1.176889
9	1.903174	0.382622	9.000	0.832148
10	2.114638	0.258389	10.000	0.561959
11	2.326102	0.168123	11.000	0.365644
12	2.537565	0.106083	12.000	0.230716
13	2.749029	0.065233	13.000	0.141872
14	2.960493	0.039242	14.000	0.085346
15	3.171957	0.023164	15.000	0.050379
16	3.383420	0.013450	16.000	0.029252
117	24.741261	0.000000	117.000	0.000000
118	24.952725	0.000000	118.000	0.000000
119	25.164189	0.000000	119.000	0.000000
120	25.375653	0.000000	120.000	0.000000

Note:

Column (1) = Integer numbers from 0 to as needed
Column (2) = Column (1) * Tn (Section III No. 1)
Column (3) = SUH Curve Shape it is Function(Column (2))

$$q(t) = (t * EXP(1 - t))^{a * t}$$

 $\begin{array}{l} q(t) = (t * EXP(1 - t))^{(a * Cp)} \\ - Column (4) = Column (2) * Tp & (Hour) \\ - Column (5) = Column (5) * Qp & (m3/s) \end{array}$

Use Qp numerical not Exact

IV. Conservation Check 1. Rain Vol (1000 * R * ADAS)

2. Hydrograph Volume

52.706378

53.149289

3. Runoff Depth

119

120

Table A2. Computation of ITB-2b SUH for Pinamula River for Tr=1.0 hour

I. Characteristics of Watersh	I. Characteristics of Watershed and Rainfall							
1. River Name	=	Pinamula						
2. Station	=	Pinamula						
3. Watershed Area (A)	=	49.350	Km ²					
4. Main River Length (L)	=	15.640	mm					
5. Rainfall Depth (R)	=	1.000	mm					
6. Unit Rainfall Duration (Tr)	=	1.000	Hour					
II. Calculation of Time Lag, 1	ſime	to Peak, a	nd Time Base					
1. Time Coefficient (Ct)	=	1.00000						
2. Time Lag (TL)								
$TL = Ct^{*}0.81225^{*}L^{0.6}$	=	1.41112	Hour					
3. Peak Time (TP)								
IP = IL + 0.5 * Ir	=	2.25779	Hour					
4. Base Time (TB)		20.0000	D.C.					
	=	20.00000	Defined					
IB	=	45.15583	Hour					
III. Computation of ASUH, K	p, an	d Tp						
1. Tn = Tr/Tp	=	0.44291	-					
2. Peak Coefficient (Cp)	=	1.00000	-					
3. Alpha	=	2.40000	-					
	=	0.80000	-					
4. A _{SUH} (Numerik, Exact,)	=	1.54412	Exact					
	=	1.53504	Numerik					
5. Kp = 1/(3.6*ASUH)	=	0.17989	Exact					
		0.18096	Numerik					
6. $Qp = Kp A_{DAS} R/Tp$	=	3.93206	m3/s (Ext)					
	=	3.95532	m3/s (Num)					
	=	0.5914%	Error					

· - 1 +	1	$exp(-(b-1)*(n \cdot Cp))$
A _{SUH} m+1	(n · Cp)	(n · Cp)
(Sum of Colum	ın (3) in S	Section V) x (Tr/Tp)

(Sum of Column (5) in Section IV) x (Tr*3600)

V. Table for Calculation of SUH ITB-2b:									
HSS Tak berdimensi		oerdimensi	HSS be	rdimensi	1.2				
NO	t=T/Tp	q=Q/Qp	T (jam)	Q=q×Qp					
(1)	(2)	(3)	(4)	(5)	1.0				
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	0.000000 0.442911 0.885821 1.328732 1.771643 2.214554 2.657464 3.100375 3.543286 3.986197 4.429107 4.872018 5.314929 5.757840 6.200750 6.643661 7.086572	0.000000 0.141631 0.747534 0.768753 0.539391 0.378461 0.265545 0.186318 0.130729 0.091725 0.064359 0.045157 0.031684 0.022231 0.015598 0.010944 0.007679	0.000 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000 9.000 10.000 11.000 12.000 13.000 14.000 15.000 16.000	0.000000 0.560197 2.956735 3.040663 2.133464 1.496933 1.050315 0.736947 0.517075 0.362803 0.254558 0.178610 0.125320 0.087930 0.061696 0.043289 0.030373					
118	52.263467	0.000000	118.000	0.000000					

0.000000

0.000000

119.000

120.000

49,350 m3

49,350 m3

1.00000 Ok≈1.0 mm

=

=

=

=

Catatan :

- Column (1) = Integer numbers from 0 to as needed

0.000000

0.000000

- Column (2) = Column (1) * Tn (Section III No. 1)

- Column (3) = SUH Curve Shape it is Function(Column (2)) $\begin{array}{l} q(t) = MIN(1,t^{a},MIN(1,EXP((1-t)*(\beta^{*}Cp)))) \\ - Column (4) = Column (2) * Tp \quad (Hour) \end{array}$

- Column (5) = Column (5) * Qp (m3/s) Use Qp numerical not Exact

ITB-2b SUH 4.0 3.0 5.0 7.0 8.0 9.0 10.0 6.0 t=T/Tp

Timo	ITP 1h	Rainfall Depth (mm)				Hydrograph			
(Hour)		1	2	3	4	5	6	7	8
(nour)	3011	6.537	9.724	53.334	13.863	7.742	5.714	Q (m3/s)	Vol (m3)
0.00	0.000	0.000						0.000	0.000
1.00	0.128	0.838	0.000					0.838	1508.602
2.00	0.762	4.981	1.247	0.000				6.228	12718.375
3.00	1.562	10.211	7.409	6.838	0.000			24.457	55232.941
4.00	2.071	13.537	15.188	40.636	1.777	0.000		71.139	172072.841
5.00	2.162	14.135	20.136	83.301	10.562	0.992	0.000	129.127	360478.611
6.00	1.941	12.690	21.026	110.440	21.652	5.898	0.733	172.438	542817.901
7.00	1.570	10.265	18.876	115.317	28.706	12.091	4.354	189.610	651686.459
8.00	1.1//	7.694	15.269	103.530	29.9/3	16.031	8.925	181.422	66/85/.558
9.00	0.832	5.440	11.444	83.747	26.910	16./38	11.833	156.113	60/562.95/
10.00	0.562	3.6/4	8.092	62.768	21.768	15.028	12.356	123.685	503635.873
11.00	0.366	2.390	5.465	44.382	10.315	12.156	11.093	91.800	38/8/3.8/5
12.00	0.231	1.508	3.556	29.972	11.536	9.111	8.9/3	64.655	281620.478
13.00	0.142	0.927	2.244	19.501	7.790	0.442	0.725	43.630	194913.615
14.00	0.085	0.558	1.380	12.305	5.069	4.350	4./55	28.417	129684.831
15.00	0.050	0.329	0.830	/.50/	3.198	2.831	3.211	11.900	83489.981
17.00	0.029	0.191	0.490	4.552	1.90/	1.700	2.009	6 6 6 9 1	322/4.0/4
12.00	0.017	0.109	0.204	2.007	1.105	1.090	1.310	2.001	31900.070
10.00	0.009	0.002	0.103	1.300	0.090	0.001	0.011	2.933	11262 800
20.00	0.003	0.055	0.092	0.095	0.700	0.390	0.700	2.303	6523 088
20.00	0.003	0.019	0.031	0.307	0.232	0.220	0.200	0 749	3725 760
21.00	0.002	0.010	0.020	0.202	0.131	0.130	0.107	0.745	2101 818
22.00	0.001	0.000	0.010	0.150	0.075	0.075	0.050	0.715	1172 609
23.00	0.000	0.003	0.000	0.005	0.010	0.011	0.030	0.232	647 690
25.00	0.000	0.002	0.003	0.025	0.012	0.023	0.030	0.069	354 525
26.00	0.000	0.000	0.001	0.013	0.006	0.007	0.009	0.037	192,464
27.00	0.000	0.000	0.001	0.007	0.003	0.004	0.005	0.020	103.701
28.00	0.000	0.000	0.000	0.004	0.002	0.002	0.003	0.011	55.491
29.00	0.000	0.000	0.000	0.002	0.001	0.001	0.001	0.006	29.506
30.00	0.000	0.000	0.000	0.001	0.001	0.001	0.001	0.003	15.597
31.00	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.002	8.200
32.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	4.290
33.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2.234
34.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.158
35.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.598
36.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.307
37.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.158
38.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.080
39.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.041
40.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.021
41.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.011
42.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.005
43.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.003
44.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001
45.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001
46.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
47.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
48.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
FO A 5	0.00-	0.00-	0.00-	0.005	0.00-	0.00-	0.00-	0.00-	0.005
58.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
59.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
60.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
				VT = Hydro	ograph Volu	me = Σ Col	umn 8	m3	4782735.9
				ADAS = W	atershed Ai	rea = As pe	r Input	km2	49.350
				RE = Effec	tive Rainfal	l = As per I	nput	mm	96.915
				DRO = Rur	noff = VT/A	DAS/1000		mm	96.915
RRR = Rainfall Runoff Ratio = DRO/RT					%	100.00%			

Table A3. Convolution of ITB-1b SUH for Pinamula River for Tr=1.0 hour

Timo		Rainfall Depth (mm)				Hydrograph			
(Hour)		1	2	3	4	5	6	7	8
(nour)	50H	6.537	9.724	53.334	13.863	7.742	5.714	Q (m3/s)	Vol (m3)
0.00	0.000	0.000						0.000	0.000
1.00	0.560	3.662	0.000					3.662	6592.042
2.00	2.957	19.329	5.448	0.000				24.777	51190.622
3.00	3.041	19.878	28.752	29.878	0.000			78.508	185913.032
4.00	2.133	13.947	29.568	157.695	7.766	0.000		208.977	517472.376
5.00	1.497	9.786	20.747	162.171	40.988	4.337	0.000	238.029	804609.866
6.00	1.050	6.866	14.557	113.787	42.152	22.890	3.201	203.452	794665.822
7.00	0.737	4.818	10.214	79.838	29.576	23.539	16.896	164.880	662998.061
8.00	0.517	3.380	7.166	56.018	20.751	16.516	17.376	121.208	514958.339
9.00	0.363	2.372	5.028	39.304	14.560	11.589	12.192	85.045	371254.829
10.00	0.255	1.664	3.528	27.578	10.216	8.131	8.554	59.671	260488.863
11.00	0.179	1.168	2.475	19.350	7.168	5.705	6.002	41.868	182770.545
12.00	0.125	0.819	1.737	13.577	5.029	4.003	4.211	29.376	128239.925
13.00	0.088	0.575	1.219	9.526	3.529	2.809	2.955	20.612	89978.822
14.00	0.062	0.403	0.855	6.684	2.476	1.971	2.073	14.462	63133.134
15.00	0.043	0.283	0.600	4.690	1.737	1.383	1.455	10.147	44297.009
16.00	0.030	0.199	0.421	3.290	1.219	0.970	1.021	7.120	31080.747
17.00	0.021	0.139	0.295	2.309	0.855	0.681	0.716	4.996	21807.631
18.00	0.015	0.098	0.207	1.620	0.600	0.478	0.502	3.505	15301.202
19.00	0.010	0.069	0.145	1.137	0.421	0.335	0.353	2.459	10736.002
20.00	0.007	0.048	0.102	0.797	0.295	0.235	0.247	1.726	7532.856
21.00	0.005	0.034	0.072	0.560	0.207	0.165	0.174	1.211	5285.386
22.00	0.004	0.024	0.050	0.393	0.145	0.116	0.122	0.850	3708.461
23.00	0.003	0.017	0.035	0.275	0.102	0.081	0.085	0.596	2602.021
24.00	0.002	0.012	0.025	0.193	0.072	0.057	0.060	0.418	1825.693
25.00	0.001	0.008	0.017	0.136	0.050	0.040	0.042	0.293	1280.987
26.00	0.001	0.006	0.012	0.095	0.035	0.028	0.030	0.206	898.798
27.00	0.001	0.004	0.009	0.067	0.025	0.020	0.021	0.144	630.636
28.00	0.000	0.003	0.006	0.047	0.017	0.014	0.015	0.101	442.482
29.00	0.000	0.002	0.004	0.033	0.012	0.010	0.010	0.071	310.465
30.00	0.000	0.001	0.003	0.023	0.009	0.007	0.007	0.050	217.836
31.00	0.000	0.001	0.002	0.016	0.006	0.005	0.005	0.035	152.844
32.00	0.000	0.001	0.001	0.011	0.004	0.003	0.004	0.025	107.242
33.00	0.000	0.000	0.001	0.008	0.003	0.002	0.002	0.017	75.246
34.00	0.000	0.000	0.001	0.006	0.002	0.002	0.002	0.012	52.796
35.00	0.000	0.000	0.001	0.004	0.001	0.001	0.001	0.008	37.044
36.00	0.000	0.000	0.000	0.003	0.001	0.001	0.001	0.006	25.992
37.00	0.000	0.000	0.000	0.002	0.001	0.001	0.001	0.004	18.237
38.00	0.000	0.000	0.000	0.001	0.001	0.000	0.000	0.003	12.796
39.00	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.002	8.978
40.00	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.001	6.299
41.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	4.420
42.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	3.101
43.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2.176
44.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.527
45.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.071
46.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.743
47.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.500
48.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.267
58.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
59.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
60.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
				۱۲۲۰ – ۱۱۰٬۰۰۰		mo - 5 C-l		m2	4782725 0
					Jyrapii Volu		uiillið r Tarsut		40 250
					atersned Al	$e_a = As pe$	n Input		49.350
						= As per I	nput	11111	90.915
				DKO = Rui	A/TV = TT/A	DAS/1000	0 /07	mm	96.915
RRR = Rainfall Runoff Ratio = DRO/RT					%	100.00%			

Table A4. Convolution of ITB-2b SUH for Pinamula River for Tr=1.0 hour

Table A5. Computation of ITB-1b SUH for Pinamula River for Tr=0.5 hour

I. Characteristics of Watersh	ed an	d Rainfall	
1. River Name	=	Pinamula	
2. Station	=	Pinamula	
3. Watershed Area (A)	=	49.350	Km ²
4. Main River Length (L)	=	15.640	km
5. Rainfall Depth (R)	=	1.000	mm
6. Unit Rainfall Duration (Tr)	=	0.500	Hour
II. Calculation of Time Lag, T	ime t	o Peak, a	nd Time Base
1. Time Coefficient (Ct)	=	1.0000	-
2. Time Lag (TL) $TL = Ct*0.81225*L^{0.6}$	=	4.2289	Hour
TP = TL + 0.5 * Tr 4 Base Time (TB)	=	4.4789	Hour
TB = TP	=	10 0000	Defined
ТВ	=	44.7894	Hour
III. Computation of ASUH, Ki	o, and	Тр	
1. Tn = Tr/Tp	=	0.11163	-
2. Peak Coefficient (Cp)	=	1.00000	-
3. Alpha	=	3.70000	-
4. A _{SUH} (Numerik, Exact,)	=	1.33275	Exact
	=	1.33275	Numerik
5. Kp = 1/(3.6*ASUH)	=	0.20843	Exact
		0.20842	Numerik
6. $Qp = Kp A_{DAS} R/Tp$	=	2.29648	m3/s (Ext)
	=	2.29647	m3/s (Num)
	=	-0.0004%	Error

Normalize Unit Rainfall Duration

ITB-1 Time lag formula

 $A_{SUH} = \frac{e^m \Gamma(m+1,0)}{m^{m+1}}$ (Sum of Column (3) in Section V) x (Tr/Tp)

(Sum of Column (5) in Section IV) x (Tr*3600)

IV. Conservation Check

1. Rain Vol (1000 * R * ADAS)	=	49,350	m3
2. Hydrograph Volume	=	49,350	m3
3. Runoff Depth	=	1.00000	Ok≈1.0 mm

V. Table for Calculation of SUH ITB-1b:

No	Dimensionless SUH			Dimensional SUH		
NU	t=T/Tp	q=Q/Qp		T (hour)	Q=q×Qp	
(1)	(2)	(3)		(4)	(5)	
0	0.000000	0.000000		0.000	0.000000	
1	0.111633	0.008023		0.500	0.018425	
2	0.223267	0.068988		1.000	0.158429	
3	0.334900	0.204611		1.500	0.469883	
4	0.446534	0.392483		2.000	0.901324	
5	0.558167	0.592932		2.500	1.361649	
6	0.669801	0.770181		3.000	1.768695	
7	0.781434	0.901391		3.500	2.070015	
8	0.893068	0.977464		4.000	2.244714	
9	1.004701	0.999959		4.500	2.296374	
10	1.116335	0.977017		5.000	2.243689	
11	1.227968	0.919756		5.500	2.112189	
12	1.339602	0.839668		6.000	1.928270	
13	1.451235	0.747041		6.500	1.715556	
14	1.562869	0.650197		7.000	1.493157	
15	1.674502	0.555298		7.500	1.275225	
16	1.786136	0.466498		8.000	1.071298	
118	13.172753	0.000000		59.000	0.000000	
119	13.284386	0.000000		59.500	0.000000	
120	13.396020	0.000000		60.000	0.000000	

Note:

Column (1) = Integer numbers from 0 to as needed
Column (2) = Column (1) * Tn (Section III No. 1)
Column (3) = SUH Curve Shape it is Function(Column (2)) $\begin{aligned} & (t) = (t * EXP(1 - t))^{\land}(a * Cp) \\ & - Column (4) = Column (2) * Tp (Hour) \\ & - Column (5) = Column (5) * Qp (m3/s) \end{aligned}$

Use Qp numerical not Exact

ITB-1b SUH 1.2 1.0 0.8 q=Q/Qp 0.6 0.4 0.2 0.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 t=T/Tp

Table A6. Computation of ITB-1b SUH for Pinamula River for Tr=0.5 hour

I. Characteristics of Watershed and Rainfall							
1. River Name	=	Pinamula					
2. Station	=	Pinamula					
3. Watershed Area (A)	=	49.350	Km ²				
4. Main River Length (L)	=	15.640	mm				
5. Rainfall Depth (R)	=	1.000	mm				
6. Unit Rainfall Duration (Tr)	=	0.500	Hour				
II. Calculation of Time Lag, 1	Time	to Peak, a	nd Time Base				
1. Time Coefficient (Ct)	=	1.0000					
2. Time Lag (TL)							
$TL = Ct*0.81225*L^{0.6}$	=	1.4111	Hour				
3. Peak Time (TP)							
TP = TL + 0.5 * Tr	=	2.2578	Hour				
4. Base Time (TB)		~~ ~~~					
TB = TP	=	20.0000	Defined				
IB	=	45.1558	Hour				
III. Computation of ASUH, K	p, an	d Tp					
1. Tn = Tr/Tp	=	0.2215	-				
2. Peak Coefficient (Cp)	=	1.0000	-				
3. Alpha	=	2.4000	-				
	=	0.8000	-				
4. A _{SUH} (Numerik, Exact,)	=	1.5441	Exact				
	=	1.5377	Numerik				
5. Kp = 1/(3.6*ASUH)	=	0.1799	Exact				
		0.1806	Numerik				
6. $Qp = Kp A_{DAS} R/Tp$	=	3.9321	m3/s (Ext)				
	=	3.9486	m3/s (Num)				
	=	0.419%	Error				

$A_{\text{SUH}} = \frac{1}{m+1} + \frac{1}{(n \cdot Cp)}$	$\frac{\exp(-(b-1)*(n\cdot Cp))}{(n\cdot Cp)}$
(Sum of Column (3) in	Section V) x (Tr/Tp)

(Sum of Column (5) in Section IV) x (Tr*3600)

IV. Conservation Check

1. Rain Vol (1000 * R * ADAS)	=	49,350	m3
2. Hydrograph Volume	=	49,350	m3
3. Runoff Depth	=	1.00000	Ok≈1.0 mm

_

V. Table for Calculation of SUH ITB-2b:

No	HSS Tak berdimensi		HSS berdimensi			
NO	t=T/Tp	q=Q/Qp	T (jam)	Q=q×Qp		
(1)	(2)	(3)	(4)	(5)		
0	0.000000	0.000000	0.000	0.000000		
1	0.221455	0.026834	0.500	0.105956		
2	0.442911	0.141631	1.000	0.559239		
3	0.664366	0.374781	1.500	1.479845		
4	0.885821	0.747534	2.000	2.951680		
5	1.107277	0.917758	2.500	3.623819		
6	1.328732	0.768753	3.000	3.035464		
7	1.550188	0.643940	3.500	2.542633		
8	1.771643	0.539391	4.000	2.129816		
9	1.993098	0.451817	4.500	1.784024		
10	2.214554	0.378461	5.000	1.494374		
11	2.436009	0.317015	5.500	1.251750		
12	2.657464	0.265545	6.000	1.048519		
13	2.878920	0.222432	6.500	0.878284		
14	3.100375	0.186318	7.000	0.735687		
15	3.321831	0.156068	7.500	0.616243		
16	3.543286	0.130729	8.000	0.516191		
118	26.131734	0.000000	59.000	0.000000		
119	26.353189	0.000000	59.500	0.000000		
120	26.574644	0.000000	60.000	0.000000		
				1		

Catatan :

Column (1) = Integer numbers from 0 to as needed
Column (2) = Column (1) * Tn (Section III No. 1)
Column (3) = SUH Curve Shape it is Function(Column (2))

Use Qp numerical not Exact

Time	ITB-1h	Rainfall Depth (mm)							Hydrograph	
(Hour)	SUH	1	2		9	10	11	12	7	8
(3.269	3.269		3.871	3.871	2.857	2.857	Q (m3/s)	Vol (m3)
0.00	0.000	0.000							0.000	0.000
0.50	0.018	0.060	0.000						0.060	54.203
1.00	0.158	0.518	0.060						0.5/8	5/4.481
1.50	0.4/0	1.536	0.518						2.143	2449.301
2.00	0.901	2.946	1.536						5.342	6/36.806
2.50	1.362	4.451	2.946						10.943	14656.766
3.00	1.769	5.781	4.451		0.000				21.615	29302.870
3.50	2.070	0./00	5.781		0.000	0.000			40.434	55844.109
4.00	2.245	7.33/	0./00		0.000	0.000	0.000		67.116	96/94.454
4.50	2.296	7.506	7.33/		0.0/1	0.000	0.000	0.000	98.281	148857.331
5.00	2.244	7.334	7.500		0.013	0.071	0.000	0.000	129.485	204989.707
5.50	2.112	0.904 6 202	7.334		1.819	0.013	0.053	0.000	177 052	25//00.092
6.00 6.F0	1.928	0.303 E 609	0.904 6 202		5.489 5.271	1.819	0.453	0.053	101 240	301237.440
7.00	1./10	5.008 4 001	0.303 E 600		5.2/1	5.489	1.343	0.453	191.349	332282.303
7.00	1.493	4.881	5.008 1 001		0.840	5.2/1	2.5/5	1.343	197.140	349043.303
7.50 8.00	1.275	2 502	4.001		0.013	0.040	5.091	2.373	195.725	245471 051
0.00 8.50	1.0/1	2,202	4.100		0.009	8 680	5.054	5.091	175 760	3434/1.931
0.00	0.007	2.035	2 800		8 685	8 880	5.915 6.414	5.054	160 153	302330 568
9.00	0.725	2.370	2.099		8 176	0.009 8.685	6 561	5.915	142 724	272580 020
10.00	0.560	1.910	1 016		0.170 7.464	8 176	6 411	6 561	172.724	272369.929
10.00	0.709	1.332	1.510		6 641	7 464	6.035	6 411	107 084	208617 425
11 00	0.372	0 054	1.332		5 780	6 641	5 510	6.035	90 518	177841 428
11.00	0.292	0.954	0.954		4 936	5 780	4 902	5 510	75 449	149370 505
12.00	0.220	0.744	0.554		4 147	4 936	4 266	4 902	62 100	123793 865
12.00	0.170	0.370	0.576		3 434	4 147	3 644	4 266	50 532	101368 586
13.00	0.104	0.339	0.370		2 807	3 434	3 061	3 644	40.696	82105 552
13 50	0.079	0.258	0.339		2.007	2 807	2 534	3 061	32 468	65847 504
14.00	0.060	0.195	0.258		1.814	2.268	2.072	2.534	25.681	52333.951
14.50	0.045	0.147	0.195		1.438	1.814	1.674	2.072	20.154	41251.485
15.00	0.034	0.110	0.147		1.130	1.438	1.339	1.674	15.702	32270.302
15.50	0.025	0.082	0.110		0.881	1.130	1.061	1.339	12.152	25068.943
16.00	0.019	0.061	0.082		0.683	0.881	0.834	1.061	9.347	19349.593
16.50	0.014	0.046	0.061		0.525	0.683	0.651	0.834	7.149	14846.321
17.00	0.010	0.034	0.046		0.402	0.525	0.504	0.651	5,438	11328.276
17.50	0.008	0.025	0.034		0.306	0.402	0.388	0.504	4.117	8599.527
18.00	0.006	0.018	0.025		0.231	0.306	0.297	0.388	3.102	6496.844
18.50	0.004	0.013	0.018		0.174	0.231	0.226	0.297	2.327	4886.348
19.00	0.003	0.010	0.013		0.131	0.174	0.171	0.226	1.739	3659.692
19.50	0.002	0.007	0.010		0.098	0.131	0.129	0.171	1.295	2730.209
20.00	0.002	0.005	0.007		0.073	0.098	0.097	0.129	0.960	2029.277
20.50	0.001	0.004	0.005		0.054	0.073	0.072	0.097	0.710	1503.055
21.00	0.001	0.003	0.004		0.040	0.054	0.054	0.072	0.523	1109.642
21.50	0.001	0.002	0.003		0.029	0.040	0.040	0.054	0.384	816.667
22.00	0.000	0.001	0.002		0.022	0.029	0.029	0.040	0.282	599.285
22.50	0.000	0.001	0.001		0.016	0.022	0.022	0.029	0.206	438.546
23.00	0.000	0.001	0.001		0.012	0.016	0.016	0.022	0.150	320.076
23.50	0.000	0.001	0.001		0.008	0.012	0.012	0.016	0.109	233.026
24.00	0.000	0.000	0.001		0.006	0.008	0.008	0.012	0.079	169.248
59.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
59.50	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
60.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
$VT = Hydrograph Volume = \Sigma Column 8$								m3	4782735.9	
ADAS = Watershed Area = As per Input							km2	49.350		
RE = Effective Rainfall = As per Input								mm	96.915	
DRO = Runoff = VT/ADAS/1000								mm	96.915	
RRR = Rainfall Runoff Ratio = DRO/RT								%	100.00%	

Table A7. Convolution of ITB-2b SUH for Pinamula River for Tr=0.5 hour