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Abstract 

This study investigates the efficiency of the recently developed Elitist Stepped Distribution Algorithm (ESDA) as a 

metaheuristic framework for truss sizing optimization. ESDA builds upon the Cross-Entropy Method by introducing an 

elitist stepped sampling strategy that improves the balance between exploration and exploitation during the search process. 

To evaluate its effectiveness, ESDA is applied to a comprehensive test suite comprising seven benchmark truss 

optimization problems that cover a wide range of sizes, design variables, loading conditions, and constraint types. In all 

cases, the objective is to minimize structural weight while satisfying stress, displacement, and stability requirements. 

Numerical experiments are conducted with the proposed method, and the results are compared with those algorithms 

reported in the literature. The findings show that ESDA attains new best or near-best solutions for large-scale problems 

such as the 117-bar cantilever, 130-bar transmission tower, 354-bar dome, and 942-bar tower trusses, while also producing 

competitive results for the 25-bar, 72-bar, and 200-bar structures with relatively modest computational effort. The novelty 

of this work lies in demonstrating the robustness, efficiency, and scalability of ESDA across diverse benchmarks, 

highlighting its potential for future structural optimization applications. 
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1. Introduction 

Design optimization has long been recognized as a fundamental component of engineering practice, providing 

systematic methodologies to achieve superior performance while minimizing material consumption, structural weight, 

and overall cost [1]. Beyond economic considerations, optimization also facilitates compliance with safety regulations, 

serviceability requirements, and aesthetic demands, which are central to the realization of reliable and sustainable 

engineering systems [2]. While design optimization has been extensively applied in fields such as aerospace and 

mechanical engineering, where standardized components and mass production are prevalent, its application in civil 

engineering presents unique challenges. Civil engineering structures, particularly large-scale infrastructures such as 

bridges, towers, and frames, are typically bespoke projects with complex geometries and diverse loading scenarios. 

Consequently, optimization in this field has predominantly focused on reducing structural cost and weight without 

compromising safety or code compliance. Within structural optimization, the truss sizing problem has become a classical 

and widely adopted benchmark. Trusses are fundamental structural systems that combine analytical simplicity with the 

essential challenges of more complex structures, including geometric nonlinearity, discrete design variables, and the 
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high dimensionality arising from large numbers of members. Benchmark truss structures are therefore frequently 

employed to test and compare optimization algorithms. Although simplified relative to full-scale structural systems, 

optimal truss designs provide valuable insights during preliminary design stages and serve as effective platforms for 

assessing new computational methods [3]. 

Traditional deterministic optimization methods, including linear and nonlinear programming techniques, have 

historically been applied to such problems. However, the inherent nonlinearity, nonconvexity, and discrete nature of 

truss design often render deterministic approaches computationally demanding and highly sensitive to initial 

assumptions [4]. Their tendency toward premature convergence and difficulty in handling complex design constraints 

limit their applicability, particularly for large-scale truss systems where the search space expands rapidly with the 

number of members. To address these limitations, researchers have increasingly adopted metaheuristic algorithms, 

which rely on stochastic search processes inspired by natural, biological, or physical phenomena. Unlike deterministic 

methods, metaheuristics do not require gradient information and demonstrate stronger global search capabilities, 

enabling their application to both discrete and continuous optimization problems [5]. Representative approaches include 

evolutionary approaches such as Genetic Algorithms (GA) [6] and Differential Evolution (DE) [7]; swarm-based 

methods such as Particle Swarm Optimization (PSO) [8] and Ant Colony Optimization (ACO) [9]; and physics-based 

methods such as Simulated Annealing (SA) [10]. In recent decades, numerous new metaheuristics have been developed, 

recognizing that no single algorithm consistently outperforms others across all problem domains [11]. Examples include 

Big Bang-Big Crunch (BB-BC) [12], Adaptive Dimensional Search (ADS) [5], Nuclear Fission-Nuclear Fusion (N2F) 

[13], Grey Wolf Optimizer (GWO) [14], and Cuckoo Search (CS) [15]. Moreover, hybrid metaheuristics have been 

developed to combine the strengths of different algorithms and mitigate their weaknesses. Examples include Heuristic 

Particle Swarm Optimization (HPSO) [16], Hybrid Big Bang–Big Crunch optimization (HBB-BC) [17], Hybrid 

Harmony Search (HSS) [18], Heuristically Seeded Genetic Algorithm (HSGA) [19], Heuristic Particle Swarm Ant 

Colony Optimization (HPSACO) [20], and Improved Flower Pollination Algorithm (IFPA) [21]. 

Despite extensive research applying metaheuristics to truss sizing optimization, fundamental challenges persist with 

respect to the scalability of algorithms to large and high-dimensional design spaces, the effective incorporation of design 

constraints into the optimization process, and the avoidance of premature convergence. Many established algorithms 

perform well on benchmark trusses with grouped variables but often lose efficiency or reliability as problem 

dimensionality increases, resulting in excessive computational costs or suboptimal convergence. Furthermore, the 

consistent integration of code-based design constraints, such as those prescribed by engineering standards, remains a 

demanding task that has not been fully addressed. These limitations continue to motivate the exploration of alternative 

metaheuristic frameworks that can provide robust convergence behavior and enhanced scalability. 

Elitist Stepped Distribution Algorithm (ESDA) has been proposed as a distribution-based optimization method that 

builds upon the Cross Entropy Method (CEM) [22]. By applying stepped parameter settings to elite samples, ESDA 

introduces a more robust sampling scheme that enhances the balance between exploration and exploitation, while the 

elitist strategy mitigates premature convergence. In addition, its distribution-based structure improves scalability, 

enabling effective performance in high-dimensional search spaces. These features position ESDA as a promising yet 

unexplored candidate for structural optimization, with the potential to overcome persistent limitations of existing 

metaheuristics in large-scale, discrete, and constrained truss design. Nevertheless, its effectiveness in structural 

engineering applications has not yet been systematically investigated, which constitutes a critical gap in the current 

literature. To address this gap, the present study introduces the first comprehensive application of ESDA to truss sizing 

optimization. The algorithm is integrated with a finite element–based structural analysis framework and evaluated on a 

diverse set of benchmark problems—including the 25-bar, 72-bar, 117-bar cantilever, 130-bar transmission tower, 200-

bar, 354-bar braced dome, and 942-bar tower trusses—under multiple loading and code-based constraints. The practical 

relevance of the study is further demonstrated by (i) optimizing large-scale structures with and without member 

grouping, (ii) employing discrete design variables, (iii) addressing multiple loading conditions, and (iv) enforcing 

American Institute of Steel Construction (AISC) specifications for both Allowable Stress Design (ASD) and Load and 

Resistance Factor Design (LRFD). The remainder of this paper is organized as follows: Section 2 presents the problem 

formulation and ESDA-based methodology, Section 3 reports the optimization results and comparative analysis, and 

Section 4 concludes with the key findings and implications. 

2. Methodology 

2.1. Sizing Optimization of Truss Structures 

The objective of truss sizing optimization is to determine the cross-sectional areas of truss members that minimize 

the overall weight of the structure, which is often associated with cost. An optimal solution is achieved by satisfying 

design constraints, such as the maximum allowable stress in members (i.e., bars) and the displacements at nodes (i.e., 

joints). The mathematical formulation can be expressed as follows:  
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For a truss structure composed of I bars, and J joints, the goal is to determine the vector A, given in Equation 1, 

which represents the cross-sectional areas of bars, to minimize the objective function W denoting the overall weight of 

the truss structure, as defined in Equation 2. 

𝐴 = [𝐴1, 𝐴2, . . . , 𝐴𝐼]
   (1) 

𝑊 = ∑ 𝜌𝑖𝐿𝑖𝐴𝑖
𝐼
𝑖=1   (2) 

where 𝜌i, Li, and Ai denote the material density, length, and cross-sectional area of the bar i, respectively. The objective 

function W is subjected to the following design constraints specified in equations 3 and 4. 

𝑔𝑖 =
𝜎𝑖

(𝜎𝑖)𝑎𝑙𝑙
− 1 ≤ 0; 𝑖 = 1, . . . , 𝐼  (3) 

𝑠𝑗,𝑘 =
𝛿𝑗,𝑘

(𝛿𝑗,𝑘)
𝑎𝑙𝑙

− 1 ≤ 0; 𝑗 = 1, . . , 𝐽  (4) 

where iandj,k represent the stress in each bar, and the displacement of each joint in each direction applicable, 

respectively, with (ialland (j,k)all indicating their maximum allowable values [4].  

The constraints are handled through a penalty function approach [23] where a penalized objective function, also 

referred to the fitness function , is formulated as follows: 

𝜙 = (𝑊)(𝛹𝑝)  (5) 

𝛹𝑝 = [1 + 𝛼(∑ 𝑔𝑖
𝐼
𝑖=1 + ∑ ∑ 𝑠𝑗,𝑘

2𝑜𝑟3
𝑘=1

𝐽
𝑗=1 )]  (6) 

where p is the penalized weight function, and  is the penalty coefficient employed to adjust the magnitude of 

penalization. The maximum value of index k depends on the spatial dimension of the problem, which may be either two-

dimensional or three-dimensional [3, 24]. 

2.2. AISC Provisions 

In accordance with the AISC-ASD design code [25], the tensile stress in a truss member must not exceed the lesser 

of the values determined by Equation 7, where Fy and Fu denote the yield and ultimate tensile strength, respectively. 

(𝜎𝑡)𝑎𝑙𝑙 = min( 0.60𝐹𝑦 , 0.50𝐹𝑢)  (7) 

The maximum allowable compressive stress is determined by using Equations 8 and 9, where Ki, Li and ri represents 

the effective length factor (Ki=1), the length, and the minimum radius of gyration of the bar i, respectively. In these 

equations, E denotes the modulus of elasticity, while i and Cc specify the slenderness ratio and critical slenderness ratio, 

respectively, which are calculated using Equations 10 and 11. 

(𝜎𝑐)𝑎𝑙𝑙 = [
 
 
 
1−

(
𝐾𝑖𝐿𝑖
𝑟𝑖

)
2

2𝐶𝑐
2

]
 
 
 
𝐹𝑦

5

3
+

3(
𝐾𝑖𝐿𝑖
𝑟𝑖

)

8𝐶𝑐
−

(
𝐾𝑖𝐿𝑖
𝑟𝑖

)
3

8𝐶𝑐
3

, 𝜆𝑖 < 𝐶𝑐  (Inelastic buckling) (8) 

(𝜎𝑐)𝑎𝑙𝑙 =
12𝜋2𝐸

23(
𝐾𝑖𝐿𝑖
𝑟𝑖

)
2 , 𝜆𝑖 ≥ 𝐶𝑐 (Elastic buckling) (9) 

 𝜆𝑖 =
𝐾𝑖𝐿𝑖

𝑟𝑖
≤ 300  for members in tension 

𝜆𝑖 =
𝐾𝑖𝐿𝑖

𝑟𝑖
≤ 200   for members in compression 

(10) 

𝐶𝑐 = √
2𝜋2𝐸

𝐹𝑦
  (11) 

The AISC-LRFD [26] design code defines the nominal tensile strength Pn as the product of Fy (the yield strength) 

and Ag (the gross cross-sectional area of a bar), as shown in Equation 12. 

𝑃𝑛 = 𝐹𝑦𝐴𝑔  (12) 

The nominal compressive strength, shown in Equation 13, is determined by multiplying Ag, by Fcr (the critical stress 

associated with flexural buckling). The calculation of Fcr is shown in Equations 14 and 15. 
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𝑃𝑛 = 𝐹𝑐𝑟𝐴𝑔  (13) 

𝐹𝑐𝑟 = (0.658𝜆𝑐
2
) 𝐹𝑦 𝑖𝑓 𝜆𝑐 =

𝐾𝑳

𝑟𝜋
√

𝐹𝑦

𝐸
≤ 1.5  (14) 

𝐹𝑐𝑟 = (
0.877

𝜆𝑐
2 )𝐹𝑦 , 𝜆𝑐 =

𝐾𝑳

𝑟𝜋
√

𝐹𝑦

𝐸
> 1.5  (15) 

2.3. Elitist Stepped Distribution Algorithm 

Introduced by Altun & Pekcan [27], ESDA is a metaheuristic algorithm that leverages the core algorithmic structure 

of CEM to improve the search capabilities of distribution-based search algorithms. The improvements primarily focus 

on the distribution procedure, specifically on how the distribution parameters are updated. By enhancing the exploration 

and exploitation capabilities of CEM, ESDA is tailored to reduce the possibility of premature convergence to local 

optima by generating a large set of elite candidate solutions. 

ESDA has three main subroutines: (i) initialization, (ii) updating distribution parameters (including the center of the 

distribution and its standard deviation), and (iii) updating positions using a normal distribution. To illustrate, consider a 

function F(x) with I design variables, to be minimized, where the position vector of nth sample is represented as 𝑿𝒏 =

[𝑥1
𝑛, 𝑥2

𝑛 , . . . , 𝑥𝐼
𝑛]. In the first part, the algorithm performs a uniformly randomized distribution-based initialization as 

shown in Equation 16. Here, a random solution is generated using the random function rand between the lower (𝑥𝑖
𝑚𝑖𝑛) 

and upper bound (𝑥𝑖
𝑚𝑎𝑥) of each bar, where i denotes the ith design variable (cross-sectional area of the bar i). This 

subroutine is performed for all samples. 

𝑥𝑖
𝑛 = 𝑥𝑖

𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑(𝑥𝑖
𝑚𝑎𝑥 − 𝑥𝑖

𝑚𝑖𝑛)  (16) 

Second, the center of the distribution and deviation for each bar are updated based on the elite samples. To determine 

the elite samples for each iteration, the fitness value of each sample n is evaluated using the objective function at iteration 

t, 𝑓𝑖𝑡𝑛(𝑡) = 𝐹(𝑋𝑛(𝑡)). The samples are then sorted according to their fitness values, from the best to the worst solution. 

Using the sorted solutions, 𝑿̄𝒏 = [𝑥̄1
𝑛 , … , 𝑥̄𝑖

𝑛, … , 𝑥̄𝐼
𝑛], two different elite sets are determined by employing two distinct 

elite percentage parameters of ESDA, p1 and p2. The first elite set is selected among the best Kmean samples to compute 

the center of the deviation, where Kmean is the integer value obtained by multiplying p1 and K. As shown in Equation 17, 

the distribution center, 𝜇𝑖, is calculated by using a fitness-weighted mean of the elite set, with better fitness values 

contributing more significantly to the result. On the other hand, the second elite set is composed of the first p2 percent 

of the sorted solutions, denoted as Kstd. Using these samples, first, a mean position vector, 𝜇̃𝑖, is calculated for each bar 

i, as shown in Equation 18; then, the standard deviation of the elite samples for each dimension,𝜎𝑖, is determined using 

Equation 19. 

𝜇𝑖(𝑡 + 1) =
∑

𝑥̄𝑖
𝑛

𝑓𝑖𝑡𝑛(𝑡)

𝐾𝑚𝑒𝑎𝑛
𝑛=1

∑
1

𝑓𝑖𝑡𝑛(𝑡)

𝐾𝑚𝑒𝑎𝑛
𝑛=1

  (17) 

𝜇̃𝑖(𝑡) = ∑
𝑥̄𝑖

𝑛

𝐾𝑠𝑡𝑑

𝐾𝑠𝑡𝑑
𝑖=1   (18) 

𝜎𝑖(𝑡 + 1) = √
∑ (𝜇̃𝑖(𝑡)−𝑥̄𝑖

𝑛)
𝐾𝑠𝑡𝑑
𝑡=1

𝐾𝑠𝑡𝑑−1
  (19) 

In the last sub-routine of ESDA, after incrementing the iteration t=t+1, new position vectors for each sample are 

generated by applying the mean and the standard deviation within a normal distribution scheme given in Equation 20. 

In this equation, the function randn is a function that returns normally distributed random variables with parameters 

N(0,1), as explained previously. 

𝑥𝑖
𝑛(𝑡) = 𝜇𝑖(𝑡) + 𝑟𝑎𝑛𝑑𝑛 𝜎𝑖(𝑡)  (20) 

After generating a solution for each sample n in each iteration t, the algorithm checks boundary conditions, and 

calculates the fitness value based on the objective function. At the end of each iteration, the algorithm updates the best 

feasible solution by comparing the current best fitness value with that of the previous iteration. The overall procedure 

of ESDA, as applied to truss sizing optimization, is illustrated in the flowchart presented in Figure 1. 
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Figure 1. Flowchart of ESDA-based truss sizing optimization 

3. Numerical Examples 

The performance of ESDA in truss sizing optimization is evaluated through seven design problems. The four ones 
are established benchmark examples from the literature with grouped design variables: (i) 25-bar truss, (ii) 72-bar truss 

under two different loading cases, (iii) 200-bar truss, and (iv) 942-bar tower truss. The remaining three examples 
correspond to practically applicable truss design examples in compliance with AISC-ASD and AISC-LRFD provisions 
without member grouping: (i) 117-bar cantilever truss, (ii) 130-bar transmission tower truss, and (iii) 354-bar braced 
dome truss. For the 942-bar tower truss and one case of the 72-bar truss examples, optimization is performed within a 
continuous design domain, whereas for the other cases, truss member sizes are selected from a discrete set of readily 
available sections. The selection of these examples aims to: (i) assess the algorithm’s efficiency across a variety of 

design variables, loading conditions, and displacement constraints; and (ii) evaluate its robustness across sizing problems 
with various scales, both with and without grouped design variables.  

Due to the stochastic nature of metaheuristics [28], ESDA was executed 30 times independently for each example 
to assess the algorithm’s statistical performance. The best and worst solutions, along with the mean and standard 
deviation, are presented for each problem, along with the number of function evaluations (NFEs), calculated as the 
product of the number of iterations and sample (population) size. As the number of design variables increases, design 
problems become more complex. Accordingly, the number of iterations and sample size are adjusted to gradually 
increase NFEs, mitigating premature convergence, controlling computational cost, and improving solution quality. The 

adjustments made for each problem are reported in Table 1. The elite percent parameters, p1 and p2, are set to 0.05 and 
0.5, respectively, as recommended by the original study [27]. This selection is experimentally validated through 
comprehensive testing across multiple benchmark problems, showing an optimal exploration-exploitation balance with 
robust convergence. The penalty coefficient α is selected from a discrete set of values {0.5, 1.0, 1.5}. Initially set to 1.0, 
α is adjusted dynamically based on the algorithm’s performance such that it is increased when the algorithm tends to 
approach the infeasible solution domain, and decreased to accelerate convergence towards solutions near the boundary 

of the feasible domain. 
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Table 1. Parameter settings of ESDA for the test problems 

Example Number of Design Variables Number of Iterations Population Size Number of Analyses 

25-Bar Truss 8 50/25 100/200 5000 

72-Bar Truss 16 50/150 100 5000/15000 

200-Bar Truss 29 100 100 10000 

117-Bar Cantilever Truss 117 250 200 50000 

130-Bar Transmission Tower 130 250 200 50000 

354-Bar Truss Dome 354 500 400 200000 

942-Bar Tower Truss 59 250 400 100000 

3.1. Example 1: 25-Bar Truss 

The 25-bar truss, depicted in Figure 2, is a widely studied benchmark problem for testing metaheuristic algorithms 

in structural optimization. While various versions of this problem appear in the literature, this study considers a specific 

case with an elastic modulus of 10,000 ksi and a material density of 0.1 lb/in³. The structure has 8 design variables, 

which are selected from a set of 29 discrete sections (in2), S = [0.1, 0.2, ..., 2.4, 2.6, 2.8, 3.0, 3.2, 3.4]. The maximum 

allowable stress for members in both compression and tension is 40 ksi. The displacement of all nodes in the x, y, and z 

directions is limited to 0.35 in. A single load case is applied, with the specific loads detailed in Table 2. 

 

Figure 2. Schematic of the 25-bar truss 

Table 2. Loads acting on the 25-bar truss 

Joint 

 

Loads (kips) 

x y z 

1 1.0 -10.0 -10.0 

2 0.0 -10.0 -10.0 

3 0.5 0.0 0.0 

6 0.6 0.0 0.0 

The discrete sizing optimization of the 25-bar truss structure has been investigated using a variety of metaheuristic 

approaches in previous studies [4, 16, 18, 19, 29–43]. In this paper, ESDA was applied to this problem, and its 
performance is compared in Tables 3 and 4. Table 3 presents the cross-sectional areas, minimum weights, and the 
number of function evaluations required to achieve these results using various metaheuristics, including ESDA. A more 
in-depth statistical analysis is presented in Table 4, which compares the best and worst results alongside the mean values 
and standard deviations (SD) for each algorithm, thereby providing a comprehensive assessment of their performance. 
ESDA was executed 30 times to obtain the reported results, initially configured with a sample size of 100 and 50 

iterations. During this execution, ESDA successfully reached the optimum solution (i.e., 484.85 lb) reported in the 
literature by the 16th iteration, while using a comparatively lower number of function evaluations. However, it was 
noted that in more than half of the runs, the algorithm became trapped in a local optimum of 485.04 lb, resulting in a 
mean value of 484.95 lb. To enhance the algorithm’s performance, the number of iterations and sample size were 
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subsequently adjusted to 25 and 200, respectively. This modification reduced the number of solutions that became 
trapped in local optima and improved the mean value, as shown in Table 4. As inferred from comparison tables, most 
of the algorithms presented successfully locate the global optimum. However, as shown in Table 3, ESDA significantly 

outperforms the convergence speed of ABC [41], BI [30], PSO [4], ACO [31], and BB-BC [32], and even reaches the 
optimum slightly faster than PSO. As reported in Table 4, ESDA produces solutions that are not only accurate and 
consistent but also computationally efficient. Compared to most algorithms that achieve the optimum solution [4, 16, 
18, 30–33, 35, 36, 38, 39, 41, 43], ESDA exhibits a better performance in terms of the consistency of solutions across 
different runs, with the exceptions of DE [37] and DAJA [40]. Although DE [37] achieves a mean accuracy comparable 
to that of ESDA, it requires a significantly higher number of function evaluations — up to 40,000 — to achieve similar 

results. While DAJA [40] provides perfect consistency with zero deviation, ESDA achieves near-optimal mean results 
using only one-fifth of the function evaluations required by DAJA [40], ensuring both computational efficiency and 
high accuracy. Compared to alternatives such as IWOA [43] and MBA [39], which also show strong reliability but at 
higher costs, ESDA delivers a superior balance of solution quality, stability, and efficiency, establishing itself as a robust 
tool for structural optimization. 

Table 3. Comparison of different designs for the 25-bar truss problem 

Variable Index Members GA [29] TS [4] ABC [41] BI [30] PSO [4] ACO [31] BB-BC [32] ESDA 

1 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

2 2-5 0.5 0.4 0.3 0.3 0.3 0.3 0.3 0.3 

3 6-9 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 

4 10,11 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

5 12,13 1.5 1.8 2.1 2.1 2.1 2.1 2.1 2.1 

6 14-17 0.9 0.9 1 1 1 1 1 1 

7 18-21 0.6 0.6 0.5 0.5 0.5 0.5 0.5 0.5 

8 22-25 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 

 Best (lb) 486.29 485.57 484.85 484.85 484.85 484.85 484.85 484.85 

 NFEs N/A 1626 24250 2900 1600 7700 6670 1584 

Table 4. Statistical comparison of results for the 25-bar truss problem 

Algorithm Best (lb) Mean (lb) Worst (lb) SD (lb) NFEs 

ACO [31] 484.85 486.46 N/A 4.71 7700 

ABC [41] 484.85 484.94 485.05 N/A 24250 

HPSO [16] 484.85 N/A N/A N/A 25000 

GA [29] 486.29 N/A N/A N/A N/A 

HS [33] 484.85 N/A N/A N/A 18734 

BI [30] 484.85 485.76 N/A 1.06 2900 

PSO [4] 484.85 N/A N/A N/A 1600 

HS [4] 484.85 N/A N/A N/A 2100 

SA [4] 484.85 N/A N/A N/A 6624 

Ess [4] 485.05 N/A N/A N/A 4350 

AC [4] 485.05 N/A N/A N/A 10050 

SGA [4] 485.38 N/A N/A N/A 9050 

TS [4] 485.57 N/A N/A N/A 1626 

GAOS [34] 493.8 N/A N/A N/A N/A 

HSGA [19] 490.87 N/A N/A N/A 2000 

BB-BC [32] 484.85 485.2 N/A 0.62 6670 

CBO [35] 484.85 486.87 N/A N/A 20000 

ECBO [35] 484.85 485.89 N/A N/A 20000 

WEO [36] 484.85 485.252 N/A N/A 5060 

DE [37] 484.85 484.91 485.38 0.13 < 40000 

aeDE [37] 484.85 485.01 486.10 0.27 > 15000 

FA [38] 484.85 485.18 486.29 0.42 <  6000 

EFA [38] 484.85 485.18 486.82 0.50 >  5000 

MBA [39] 484.85 484.89 485.05 0.07 25000 

DAJA [40] 484.85 484.85 484.85 0.00 25000 

HHS [18] 484.85 484.946 N/A 0.365 5000 

IWOA [43] 484.85 484.87 N/A 0.059 15000 

oGMO [42] 484.854 485.122 N/A 0.223 12000 

ESDA 484.85 484.91 485.05 0.05 5000 
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3.2. Example 2: 72-Bar Truss 

The second benchmark problem is the 72-bar truss shown in Figure 3. The maximum allowable stress in bars is 

limited to 25 ksi for both tension and compression. The displacement of the top nodes is restrained to 0.25 inches in 

both the x and y directions. Using symmetry, all 72 bars are grouped and represented by 16 design variables as follows: 

(1) A1–A4, (2) A5–A12, (3) A13– A16, (4) A17–A18, (5) A19–A22, (6) A23–A30, (7) A31–A34, (8) A35– A36, (9) 

A37–A40, (10) A41–A48, (11) A49–A52, (12) A53–A54, (13) A55–A58, (14) A59–A66 (15), A67–A70, and (16) A71–

A72. The elasticity modulus of members is set to 10,000 ksi, and material density is specified as 0.1 lb/in3. 

 

Figure 3. Schematic of the 72-bar truss 

The structure is analyzed under two load cases, as summarized in Table 5. For Case 1, design variables are chosen 

from a predefined set of cross-sections according to AISC-ASD provisions [25]. In Case 2, the cross-sections are treated 

as continuous variables ranging from 0.1 in2 to 3.2 in2. 

Table 5. Loads acting on the 72-bar benchmark truss 

 

Joint 
Loads (kips) 

 x y z 

Case 1 17 5.0 5.0 -5.0 

Case 2 

17 0.0 0.0 -5.0 

18 0.0 0.0 -5.0 

19 0.0 0.0 -5.0 

20 0.0 0.0 -5.0 

Case - 1: Discrete Design Variables 

The best designs achieved by ESDA, COA [44], WCA [45], DAJA [40], and DHPSACO [46] are summarized in 

Table 6. The results show that ESDA reaches the literature-reported optimum of 389.33 lb in only 25 iterations (2,463 

analyses), achieving this 25% faster than the previous best benchmark established by DAJA. Additionally, a total of 

5,000 analyses were conducted to compare its performance against various metaheuristics, including COA and MCOA 

[44], WCA, MBA and IMBA [45], ICA [47], DHPSACO, DE and aeDE [37], FA and EFA [38], FWA and IFWA [48], 

DAJA [40], oGMO [42], SHADE [49], hGMO [50], and ICOOT [51] as reported in Table 7. The comparative results 

demonstrate the robustness and efficiency of the proposed ESDA in this problem. While several algorithms are able to 

reach the optimum solution, their mean performance is often degraded due to higher variability across independent runs. 

When compared to other efficient methods SHADE [49], hGMO [50], and DAJA [40], ESDA remains competitive with 

offering low computational cost and remarkable consistency. Although a few runs exhibited early convergence, leading 

to a slightly higher standard deviation than DAJA [40], this has minimal impact on its overall performance. Ultimately, 

the statistics clearly show that ESDA surpasses all other methods, delivering superior best and mean results with 

significantly fewer analyses. 
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Table 6. Comparison of different designs for the 72-bar truss with discrete design variables (Case 1) 

Variable Index Members COA [44] WCA [45] DAJA [40] ICA [47] DHPSACO [46] oGMO [42] ESDA 

1 1-4 1.99 1.99 1.99 1.99 1.8 1.990 1.99 

2 5-12 0.563 0.442 0.442 0.442 0.442 0.563 0.442 

3 13-16 0.111 0.111 0.111 0.111 0.141 0.111 0.111 

4 17,18 0.111 0.111 0.111 0.141 0.111 0.111 0.111 

5 19-22 1.228 1.228 1.228 1.228 1.228 1.228 1.228 

6 23-30 0.442 0.563 0.563 0.602 0.563 0.442 0.563 

7 31-34 0.111 0.111 0.111 0.111 0.111 0.111 0.111 

8 35,36 0.111 0.111 0.111 0.141 0.111 0.111 0.111 

9 37-40 0.563 0.563 0.563 0.563 0.563 0.563 0.563 

10 41-48 0.563 0.563 0.563 0.563 0.563 0.563 0.563 

11 49-52 0.111 0.111 0.111 0.111 0.111 0.111 0.111 

12 53,54 0.111 0.111 0.111 0.111 0.25 0.111 0.111 

13 55-58 0.196 0.196 0.196 0.196 0.196 0.196 0.196 

14 59-66 0.563 0.563 0.563 0.563 0.563 0.563 0.563 

15 67-70 0.391 0.391 0.391 0.307 0.442 0.391 0.391 

16 71,72 0.563 0.563 0.563 0.602 0.563 0.563 0.563 

 Best (lb) 389.334 389.334 389.334 392.84 393.38 389.33417 389.3342 

 NFEs (lb) 6800 4600 3376 4500 5330 4100 2463 

Table 7. Statistical comparison of results for the 72-bar truss problem with discrete design variables (Case 1) 

Algorithm Best (lb) Mean (lb) Worst (lb) SD (lb) NFEs 

COA [44] 389.334 393.618 393.965 1.561 8000 

MCOA [44] 389.334 390.162 392.158 1.018 8000 

WCA [45] 389.334 389.941 393.778 1.43 50000 

MBA [45] 390.739 395.432 399.490 3.04 50000 

IMBA [45] 389.334 389.823 N/A 0.84 50000 

ICA [47] 392.84 N/A N/A N/A 4500 

DHPSACO [46] 393.38 N/A N/A N/A 5330 

DE [37] 389.334 390.531 394.170 1.400 > 12000 

aeDE [37] 389.334 390.913 393.325 1.161 > 4000 

FA [38] 389.334 391.644 396.245 1.794 > 8000 

EFA [38] 389.334 391.376 393.826 1.376 > 3000 

FWA [48] 394.051 405.03 N/A N/A 5000 

IFWA [48] 389.334 389.461 N/A N/A 5000 

DAJA [40] 389.334 389.495 389.828 0.159 >5437 

oGMO [42] 389.3342 390.0631 N/A 0.5001 15000 

SHADE [49] 389.3342 389.5727 391.3948 0.4458 3990 

hGMO [50] 389.334 389.880 N/A 0.267 3950 

ICOOT [51] 389.3342 405.1210 453.3486 18.1604 N/A 

ESDA 389.3342 389.4369 390.9522 0.2972 5000 

Case - 2: Continuous Design Variables 

In the continuous design space case of the problem, the number of function evaluations for ESDA is set to 15,000, 

which is three times greater than that in Case 1. The performance of ESDA is compared against various algorithms, 

including HBB-BC [17], Multi-Phase BB-BC [32], ACO [31], GA [34], PSO [52], CBO [53], WSA [54], SAHS [55], 

RO [56], CPA [57], CSP [58], ECBO [59], HTS [60], IGWO [61], TLBO [62], ISRES [63], oGMO [42], ACCS [64], 

CBSO [65], and dDEmRao-DiC [66]. As shown in Table 8, ESDA slightly improves upon the optimum design reported 

in the previous studies. Moreover, it produces competitive solutions by improving all statistical metrics from the earlier 
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studies reported in Table 9, except the recent work by Adil & Cengiz [54], which employed the Weighted Superposition 

Attraction (WSA) algorithm. While ESDA surpasses the best solution reported by WSA using a slightly higher number 

of function evaluations, its mean result is marginally worse. This may be attributed to two reasons: (i) the number of 

iterations, which is sufficient for convergence near the optimum since WSA uses only ten samples in its search 

procedure, and (ii) the tendency of distribution-based algorithms, like ESDA, to exhibit greater variability when fewer 

samples are used. Consequently, a higher number of function evaluations is necessary to improve the solution. To 

validate this hypothesis, ESDA was executed again with an increased number of iterations and sample size, set to 150 

and 200, respectively. The results revealed that the best and mean results were improved to 379.6151 and 379.6165 lb, 

respectively, indicating that ESDA can outperform WSA [54] when the sample size is doubled. 

Table 8. Comparison of different designs for the 72-bar truss with continuous design variables (Case 2) 

Variable Index Members GA [34] PSO [52] ACO [31] RO [56] CPA [57] oGMO [42] ESDA 

1 1-4 0.161 0.1615 1.948 1.83649 1.8873 1.8515 1.882518 

2 5-12 0.544 0.5092 0.508 0.502096 0.5111 0.5124 0.51286 

3 13-16 0.379 0.4967 0.101 0.100007 0.1 0.1000 0.100001 

4 17,18 0.521 0.5619 0.102 0.10039 0.1 0.1000 0.100002 

5 19-22 0.535 0.5142 1.303 1.252233 1.2554 1.2436 1.265879 

6 23-30 0.535 0.5464 0.511 0.503347 0.5141 0.5141 0.511689 

7 31-34 0.103 0.1 0.101 0.100179 0.1 0.1000 0.100001 

8 35,36 0.111 0.1095 0.1 0.100151 0.1 0.1000 0.100000 

9 37-40 1.31 1.3079 0.561 0.572989 0.5312 0.5169 0.522491 

10 41-48 0.498 0.5193 0.492 0.549872 0.5174 0.5253 0.516818 

11 49-52 0.11 0.1 0.1 0.100445 0.1 0.1001 0.100000 

12 53,54 0.103 0.1 0.107 0.100102 0.1 0.1013 0.100004 

13 55-58 1.91 1.7427 0.156 0.157583 0.1564 0.1561 0.156411 

14 59-66 0.525 0.5185 0.55 0.52222 0.5443 0.5556 0.547325 

15 67-70 0.122 0.1 0.39 0.435582 0.4106 0.4012 0.409439 

16 71,72 0.103 0.1 0.592 0.597158 0.5717 0.5643 0.569885 

 Best (lb) 383.12 381.91 380.24 380.458 379.62 379.7234 379.6162 

 NFEs (lb) N/A N/A 18500 19084 23580 11750 15000 

Table 9. Statistical comparison of results for the 72-bar truss problem with continuous design variables (Case 2) 

Algorithm Best (lb) Mean (lb) Worst (lb) SD (lb) NFEs 

HBB-BC [17] 379.66 381.85 N/A 1.201 13200 

Multi-Phase BB-BC [32] 379.85 382.08 N/A 1.912 ~19621 

ACO [31] 380.24 383.16 N/A 3.66 ~18500 

GA [34] 383.12 N/A N/A N/A N/A 

PSO [52] 381.91 N/A 384.62 N/A 8000 

CBO [53] 379.6943 379.8961 N/A 0.0791 15600 

WSA [54] 379.618 379.6201 N/A 0.0038 10000 

SAHS [55] 380.62 382.42 383.89 1.38 13742 

RO [56] 380.458 382.554 N/A 1.221 19084 

CPA [57] 379.62 380.83 N/A 0.61 23580 

CSP [58] 379.97 381.560 N/A 1.803 10500 

ECBO [59] 379.77 380.39 N/A 0.810 20000 

HTS [60] 379.73 382.26 N/A 1.94 13166 

IGWO [61] 379.7615 380.6811 N/A 0.7315 11960 

TLBO [62] 379.63 380.20 380.83 0.41 25000 

ISRES [63] 379.98 N/A N/A N/A N/A 

oGMO [42] 379.7234 380.5597 N/A 0.4557 15000 

ACCS [64] 379.7512 379.81 N/A 0.148 12000 

CBSO [65] 379.6585 379.7445 N/A 0.0684 50000 

dDEmRao-DiC [66] 379.6506 379.882 380.4806 0.21203 7727 

ESDA 379.6162 379.6210 379.646002 0.0059 15000 
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3.3. Example 3: 117-Bar Cantilever Truss 

The steel cantilever truss, consisting of 117 bars and 30 joints, is investigated by Azad & Hasançebi [67] as well as 

Azad [68, 69]. A schematic of this truss is given in Figure 4. In this problem, the bars are treated as individual elements 

without member grouping, resulting in 117 design variables, allowing for a comprehensive evaluation of the algorithm’s 

capabilities in large design spaces [67]. The elastic modulus, yield strength, and density of steel are specified as 200 

GPa, 248.2 MPa, and 7.85 ton/m3, respectively. The structure is subjected to multiple loading cases: (i) +15 kN applied 

in the x-direction, (ii) +15 kN applied in the y-direction, and (iii) +15 kN applied in the z-direction to all unsupported 

joints, as tabulated in Table 10. The displacement of each joint in all directions is limited to 4 cm, and the maximum 

allowable stress in the bars is determined by the AISC-LRFD [26] provisions. The sizing variables are selected from a 

predefined list of pipe sections provided in Table 11.  

 

Figure 4. Schematic of the 117-bar cantilever truss 

Table 10. Loads acting on the 117-bar cantilever truss 

 

Joint 
Loads (kN) 

 x y z 

Case 1 All unsupported 15.0 0.0 0.0 

Case 2 All unsupported 0.0 15.0 0.0 

Case 3 All unsupported 0.0 0.0 15.0 

Table 11. Cross-sectional properties of the ready sections from AISC-LRFD [26] provisions 

Number Ready Section Area (cm2) Number Ready Section Area (cm2) Number Ready Section Area (cm2) 

1 PIPE1/2STD 1.6129 14 PIPE3STD 14.3871 26 PIPE5XS 39.4193 

2 PIPE1/2XS 2.0645 15 PIPE2-1/2XS 14.5161 27 PIPE4XXS 52.258 

3 PIPE3/4STD 2.1484 16 PIPE2XXS 17.1613 28 PIPE6XS 54.1934 

4 PIPE3/4XS 2.7935 17 PIPE3-1/2STD 17.2903 29 PIPE8STD 54.1934 

5 PIPE1STD 3.1871 18 PIPE3XS 19.4838 30 PIPE5XXS 72.9031 

6 PIPE1XS 4.1226 19 PIPE4STD 20.4516 31 PIPE10STD 76.774 

7 PIPE1-1/4STD 4.3161 20 PIPE3-1/2XS 23.7419 32 PIPE8XS 82.5805 

8 PIPE1-1/2STD 5.1548 21 PIPE2-1/2XXS 25.9999 33 PIPE12STD 94.1934 

9 PIPE1-1/4XS 5.6839 22 PIPE5STD 27.7419 34 PIPE6XXS 100.645 

10 PIPE1-1/2XS 6.9032 23 PIPE4XS 28.4516 35 PIPE10XS 103.8708 

11 PIPE2STD 6.9032 24 PIPE3XXS 35.2903 36 PIPE12XS 123.8707 

12 PIPE2XS 9.5484 25 PIPE6STD 35.9999 37 PIPE8XXS 137.4191 

13 PIPE2-1/2STD 10.9677       

As mentioned earlier, the sizing optimization of 117-bar truss problems was previously studied using a variety of 

metaheuristics, including Adaptive Dimensional Search, Big Bang Big Crunch, Guided Stochastic Search, and their 

enhanced and hybridized versions [67–70]. In the implementation of ESDA, the maximum number of iterations is set to 

250, with a population size of 200. As inferred in Table 12, reinforcing the distribution-based Exponential Big Bang–

Big Crunch algorithm with convergence-curve monitoring and guided stochastic search heuristics yields a notable 

enhancement in performance. Nevertheless, owing to its intrinsically balanced distribution-oriented exploration 

mechanism, ESDA consistently outperforms these reinforced variants as well as other metaheuristics, in terms of both 

best and mean solutions, and attains the minimum structural weight. A new optimum design of 3,004.62 kg is attained 
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through 50,000 structural analyses, improving the previously reported best design by 31 kg. Additionally, the mean 

value of the designs obtained from independent runs of ESDA also surpasses the corresponding values reported by the 

other methods. The best design obtained by ESDA is presented in the supplementary material. 

Table 12. Comparison of different designs for the 117-bar steel cantilever truss 

Algorithm Best (kg) Mean (kg) Worst (kg) SD (kg) NFEs 

PSO [67] 3476 3600.7 3828.2 141.1 25000 

BB-BC [67] 3586.5 3855.9 4265.5 249.8 25000 

EBB-BC [67] 3123.6 3209.9 3277.3 66.8 25000 

MBB-BC [67] 3125.4 3205.8 3253.5 60.7 25000 

GSSA [67] 3100.9 3112.3 3133.5 12.6 317 

GSSB [67] 3072.2 3078.3 3085.9 6.6 317 

ADS [68] 3078.02 3166.31 3297.07 64.64 50000 

EBB-BC [68] 3041.17 3218.80 3692.74 199.30 50000 

MBB-BC [68] 3154.90 3298.28 3417.87 90.74 50000 

GADS [68] 3067.88 3139.71 3226.14 55.19 50000 

GEBB [68] 3035.50 3075.87 3133.86 27.35 50000 

GMBB [68] 3058.77 3149.82 3320.91 75.62 50000 

GADS_EBB [68] 3047.98 3108.81 3182.31 35.18 50000 

GADS_MBB [68] 3069.09 3132.16 3201.15 42.43 50000 

GADS_EBB_MBB [68] 3067.46 3128.74 3342.73 82.05 50000 

MCC_ADS [69] 3077.79 3127.99 3186.25 28.33 50000 

MCC_EB [69] 3041.29 3075.87 3284.28 59.17 50000 

MCC_MB [69] 3052.88 3098.57 3286.99 69.92 50000 

CSAM [70] 3628.64 3981.93 4242.35 145.59 150000 

ESDA 3004.62 3031.09 3051.29 13.40 50000 

3.4. Example 4: 130-Bar Transmission Tower 

The 130-bar transmission tower illustrated schematically in Figure 5, is composed of 33 joints and 130 bars. The 

cross-sectional areas of the truss members are also selected from a discrete set given in Table 11. The material properties 

and stress constraints are identical to those used in the 117-bar cantilever steel truss. All nodes are subjected to a 

displacement constraint of 3 cm in all directions. A single loading case, detailed in Table 13, is applied to the structure. 

 

Figure 5. Schematic of the 130-bar transmission tower 



Civil Engineering Journal         Vol. 11, No. 11, November, 2025 

4525 

 

Table 13. Loads acting on the 130-bar transmission tower 

Joint 

Loads (kN) 

x y z 

29 100.0 0.0 0.0 

30 100.0 0.0 0.0 

31 0.0 25.0 0.0 

32 0.0 25.0 0.0 

33 0.0 0.0 50.0 

The problem was previously addressed by Azad et al. [71], where a performance comparison was conducted among 

the Guided Stochastic Search heuristic, Particle Swarm Optimization, and various versions of Big Bang-Big Crunch 

algorithms. A summary of this comparison is provided in Table 14. In the implementation of ESDA for this example, 

the maximum number of iterations is set to 250, with a population size of 200. The results reveal that, similar to the 117-

bar cantilever truss problem, ESDA delivers a superior solution, achieving a minimum weight of 5,586.72 kg, with the 

design details provided in the supplementary material. This outcome corresponds to an improvement of approximately 

3.7% over the best design reported in the literature. Moreover, with a standard deviation of only 36.05, ESDA also 

exhibits the lowest variability, reflecting a level of robustness and reliability not observed in competing methods whose 

deviations exceed 80–300. Collectively, these results highlight ESDA’s capacity to deliver the lightest and most stable 

designs without incurring additional computational cost. 

Table 14. Comparison of different designs for the 130-bar transmission tower 

Algorithm Best (kg) Mean (kg) Worst (kg) SD (kg) NFEs 

PSO [71] 6059.6 6364.3 6611.4 227.3 50000 

BB-BC [71] 6427.8 7172.6 6742.9 303.8 50000 

EBB-BC [71] 5973.5 6434.7 6144.5 188.9 50000 

MBB-BC [71] 5853.9 6526.4 6059.5 240.4 50000 

GSS [71] 5801.3 6118.5 6004.4 87.6 50000 

ESDA 5586.72 5662.09 5760.89 36.05 50000 

3.5. Example 5: 200-Bar Truss 

The 200-bar benchmark truss, schematically illustrated in Figure 6, consists of 77 joints. The truss members are 

grouped into 29 different sizing variables, which are selected from a discrete set, S = [0.1, 0.347, 0.44, 0.539, 0.954, 

1.081, 1.174, 1.333, 1.488, 1.764, 2.142, 2.697, 2.8, 3.131, 3.565, 3.813,4.805, 5.952, 6.572, 7.192, 8.525, 9.3, 

10.85, 13.33, 14.29, 17.17, 19.18, 23.68, 28.08, 33.7]. The three load cases applied to the truss are summarized 

below: 

(i) 1.0-kip load is applied to joints 1, 6, 15, 20, 29, 34, 43, 48, 57, 62, 71 in the positive x-direction. 

(ii) 10.0-kip load is applied to joints 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 15, 16, 17, 18, 19, 20, 22, 24, 26, 28, 29, 30, 31, 32, 

33, 34, 36, 38, 40, 42, 43, 44, 45, 46, 47, 48, 50, 52, 54, 56, 57, 58, 59, 60, 61, 62, 64, 66, 68, 70, 71, 72, 73, 74, 

75 in the negative y-direction. 

(iii) Both load cases (i) and (ii) are applied simultaneously. 

This problem is governed solely by stress constraints, with the maximum allowable stress set at 10 ksi for both tensile 

and compressive forces. The material properties include an elastic modulus of 30,000 ksi and a density of 0.283 lb/in3, 

respectively. 
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Figure 6. Schematic of the 200-bar truss 

The 200-bar truss problem is a widely recognized benchmark example that has been studied using various 

metaheuristics, including ADS [5], ESASS [72], IGA [73], HACOHS-T [74], FA and EFA [38], DE and aeDE [37], 

BH, IBH, MV and IMV [75], DAJA [40], and HHS [18]. The best design of the structure attained from 30 independent 

runs of ESDA is presented alongside the best designs reported by selected algorithms in Table 15, and a full statistical 

comparison is carried out in Table 16. Accordingly, the best design achieved by ESDA, weighing 27,289.91 lb, is slightly 

higher than those obtained by HHS [18] and ADS [5], and very close to the results from IMV [75] and DAJA [40], yet 

it offers a lighter solution than the remaining algorithms. On the other hand, ESDA delivers a lower mean weight with 

a relatively smaller standard deviation compared to these algorithms, even though this example exhibits greater 

variability in the optimum designs found, relative to other cases. While HHS [18] and ADS [5] require additional 

iterations to refine their designs, IMV [75] exhibits significantly greater variability, and DAJA [40] demonstrates limited 

convergence capability. Overall, although ESDA does not surpass the best design reported to date, it provides a 

competitive solution by delivering a lower mean weight with reduced variability, achieving superior performance and 

consistency compared to other algorithms. 
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Table 15. Comparison of different designs for the 200-bar truss 

Variable 

Index 
Members HHS [18] ESASS [72] ADS [5] ESDA 

1 1, 2, 3, 4 0.1 0.1 0.1 0.1 

2 5, 8, 11, 14, 17 0.954 0.954 0.954 0.954 

3 19, 20, 21, 22, 23, 24 0.1 0.1 0.347 0.347 

4 18, 25, 56, 63, 94, 101, 132, 139, 170, 177 0.1 0.1 0.1 0.1 

5 26, 29, 32, 35, 38 2.142 2.142 2.142 2.142 

6 6, 7, 9, 10, 12, 13, 15, 16, 27, 28, 30, 31, 33, 34, 36, 37 0.347 0.347 0.347 0.347 

7 39, 40, 41, 42 0.1 0.1 0.1 0.1 

8 43, 46, 49, 52, 55 3.131 3.131 3.131 3.131 

9 57, 58, 59, 60, 61, 62 0.1 0.1 0.1 0.1 

10 64, 67, 70, 73, 76 4.805 4.805 4.805 4.805 

11 44, 45, 47, 48, 50, 51, 53, 54, 65, 66, 68, 69, 71, 72, 74, 75 0.44 0.347 0.44 0.44 

12 77, 78, 79, 80 0.347 0.1 0.1 0.1 

13 81, 84, 87, 90, 93 5.952 5.952 5.952 5.952 

14 95, 96, 97, 98, 99, 100 0.347 0.1 0.1 0.1 

15 102, 105, 108, 111, 114 6.572 6.572 6.572 6.572 

16 82, 83, 85, 86, 88, 89, 91, 92, 103, 104, 106, 107, 109, 110, 112, 113 0.954 0.44 0.539 0.539 

17 115, 116, 117, 118 0.347 0.539 0.1 0.347 

18 119, 122, 125, 128, 131 8.525 7.192 8.525 8.525 

19 133, 134, 135, 136, 137, 138 0.1 0.44 0.539 0.347 

20 140, 143, 146, 149, 152 9.3 8.525 9.3 9.3 

21 120, 121, 123, 124, 126, 127, 129, 130, 141, 142, 144, 145, 147, 148, 150, 151 1.081 0.954 0.954 0.954 

22 153, 154, 155, 156 0.347 1.174 0.1 0.954 

23 157, 160, 163, 166, 169 13.33 10.85 10.85 10.85 

24 171, 172, 173, 174, 175, 176 0.954 0.44 0.954 0.347 

25 178, 181, 184, 187, 190 13.33 10.85 13.33 13.33 

26 158, 159, 161, 162, 164, 165, 168, 179, 180, 182, 183, 185, 186, 188, 189 1.764 1.764 1.333 1.488 

27 191, 192, 193, 194 3.813 8.525 7.192 6.572 

28 195, 197, 198, 200 8.525 13.33 10.85 10.85 

29 196, 199 17.17 13.33 14.29 14.29 

 Weight(lb) 27163.90 28075.49 27190.49 27289.91 

 Number of structural analyses: 5000 11156 5000 6255 

Table 16. Statistical comparison of results for the 200-bar benchmark truss 

Algorithm Best (lb) Mean (lb) Worst (lb) SD (lb) NFEs 

ADS [5] 27190.49 28146.1 N/A 786.6 5000 

ESASS [72] 28075.488 N/A N/A N/A 11156 

IGA [73] 28544.014 N/A N/A N/A 51360 

HACOHS-T [74] 28030.20 N/A N/A N/A N/A 

FA [38] 28250.570 29871.915 33726.494 481.590 > 20000 

EFA [38] 27421.944 28434.603 30180.343 749.0776 > 5000 

DE [37] 27901.583 28470.114 29652.891 457.467 45740 

aeDE [37] 27858.500 28425.871 29415.000 481.590 11644 

FWA [48] 27777.95 29077.12 N/A 708.69 10000 

IFWA [48] 27449.25 27859.42 N/A 380.55 10000 

BH [75] 30124.50 31375.009 N/A 865.909 15000 

IBH [75] 27337.80 28780.12 N/A 745.376 15000 

MV [75] 29093.50 31140.377 N/A 1077.402 15000 

IMV [75] 27281.35 28771.426 N/A 624.026 15000 

DAJA [40] 27282.57 27878.27 28108.61 282.88 > 10,783 

HHS [18] 27163.59 28159.59 N/A 1149.91 5000 

ESDA 27289.909 27833.746 28423.663 267.2697 10000 
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3.6. Example 6: 354-Bar Dome Truss 

The 354-bar steel dome truss is illustrated schematically in Figure 7. In this example, the bars are treated as individual 

elements without grouping, resulting in 354 design variables. Material properties, stress constraints, and the section list 

are identical to those used in the 117-bar cantilever truss and 130-bar transmission tower. The displacement of the dome 

tip is limited to 2 cm. All unsupported joints are subjected to a 15 kN load in the negative z-direction, and an additional 

100 kN load is applied to the topmost joint in the same direction. 

 

 

  
 

  

 

 

(a) 3D view 

 

 

 

 

(b) side view                                                                                (c) top view 

Figure 7. Schematics of the 354-bar dome truss, (a) 3D view, (b) side view, and (c) top view 

This problem was previously investigated by Azad [68]. ESDA was implemented for this example with a population 

size of 500 samples over 400 iterations. The findings in Table 17 offer clear evidence of the advantages of ESDA over 

both classical and recently proposed metaheuristics. Despite being tested under the same computational budget of 

200,000 NFEs, competing methods such as ADS, GEBB, and GADS [68] could only achieve best solutions between 

13,614 and 13,967 kg, with average results typically above 14,000 kg and worst outcomes often exceeding 15,000 kg. 

Even hybrid variants, including GADS_EBB and GADS_MBB [68], provided no tangible improvement and in fact 

introduced considerable variability, as reflected in standard deviations well above 500 kg. ESDA, by contrast, 

consistently delivered superior solutions: its best design of 13,471.86 kg improves upon the nearest competitor (GADS 

[68]) by more than 140 kg, while its mean value (13,694.00 kg) and worst-case result (13,841.05 kg) remain lower than 

the best solutions of all other algorithms. Importantly, ESDA achieved this with an exceptionally small standard 

deviation of just 89.13, highlighting its ability to reproduce high-quality results reliably across independent trials. In 

practical terms, these results illustrate that ESDA not only finds lighter designs but also does so with far greater stability 

and predictability than its peers, which makes it a compelling framework for tackling larger-scale and complex structural 

optimization problems. 

Table 17. Statistical comparison of results for the 354-bar truss dome 

Algorithm Best (kg) Mean (kg) Worst (kg) SD (kg) NFEs 

ADS [68] 13945.55 14469.43 15072.98 339.01 200000 

EBB-BC [68] 14021.88 14715.87 16059.02 561.71 200000 

MBB-BC [68] 15279.94 16057.03 17137.68 580.64 200000 

GADS [68] 13614.55 14064.70 14702.13 337.08 200000 

GEBB [68] 13966.80 14426.17 14871.37 298.6 200000 

GMBB [68] 14672.29 16929.17 19595.92 1601.22 200000 

GADS_EBB [68] 13653.34 14249.88 15358.57 534.79 200000 

GADS_MBB [68] 13954.33 14774.50 16227.15 776.90 200000 

GADS_EBB_MBB [68] 13780.96 14712.15 15926.40 632.00 200000 

ESDA 13471.86 13694.00 13841.05 89.13 200000 
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3.7. Example 7: 942-Bar Tower Truss 

The last design example in this study is the 26-story, 942-bar tower truss. As shown in Figure 8, the tower consists 

of three sections, with a total of 59 member groups. These groups have continuous sizing variables ranging from 0.1 to 

200 in2. The elastic modulus and material density for this problem are 10,000 ksi and 0.1 lb/in2, respectively. The bars 

are subjected to a maximum allowable stress of 25 ksi in both tension and compression, and the displacement of the 

topmost four joints is limited to 15 inches in the x, y and z directions. The tower is symmetric around the x and y axes. 

The loads applied in the x, y, and z directions are summarized as follows:  

(i) In the x-direction: +1.5 kips on the nodes located on the left side (including the center nodes) and +1.0 kip on 

the right side;  

(ii) In the y-direction: +1.0 kip for all nodes;  

(iii) In the z-direction: -3.0, -6.0, and -9.0 kips on the nodes located in the first, second, and third sections, 

respectively.  

              

     (a)  3D view (b) side view (c) top view 

Figure 8. Schematic of the 942-bar tower truss, (a) 3D view, (b) side view, and (c) top view 

Ambiguity in the description of the x-direction loads on the central nodes (x = 0) has resulted in varying treatments 
of this problem in the literature, yet prior studies have compared optimum solutions without properly accounting for 
these differences. To ensure a fair comparison, the reported optimum designs were reanalyzed using our structural 
analysis code and only results corresponding to the specified load case are presented. 

This problem has been previously studied using several algorithms, including AES [76], SA [77], JAYA [24], GNMS 
[78], FFA [79], and MAISA [80]. ESDA was implemented for this example with a population size of 400 samples over 
250 iterations. The reported best designs and statistical comparison of the solutions produced by various algorithms are 

presented in Tables 18 and 19, respectively. Although Gandomi et al. [81] reported an optimum result of 134,119.6 lb, 
the problem was somewhat modified since the center joint (x=0) was subjected to a load of +1.0 kip, rather than +1.5 
kips as considered in this study. Among the six feasible results reported in the tables, the designs produced by ESDA 
and JAYA [24] are the most competitive. JAYA shows evolutionary behavior, in which a higher number of iterations is 
performed using a lower population size, whereas ESDA implements a higher number of structural analyses to ensure 
convergence to the best available design. The results show that ESDA improves upon the best design of JAYA by more 

than 120 lb. ESDA was also able to reach JAYA’s best solution in 113 iterations, indicating faster convergence compared 
to JAYA. While ESDA slightly enhances the mean result achieved by JAYA, it exhibits a marginally higher standard 
deviation due to the inherent characteristics of distribution-based algorithms. 
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Table 18. Comparison of different designs for the 942-bar tower truss problem 

Variable Index SA [77] GNMS [78] AES [76] JAYA [24] ESDA 

1 1 2.7859 1.02 1.045258 1.004178 

2 1 1.3572 1.037 1.00163 1.000709 

3 3 5.0362 2.943 3.549999 3.246822 

4 1 2.2398 1.92 1.92459 1.835223 

5 1 1.2226 1.025 1.000032 1.000863 

6 17 14.9575 14.961 15.33708 14.966988 

7 3 2.9568 3.074 3.108905 3.071568 

8 7 10.9038 6.78 6.589077 6.945463 

9 20 14.4177 18.58 16.56966 17.292298 

10 1 3.7090 2.415 2.553777 2.703624 

11 8 5.7076 6.584 6.433946 6.099534 

12 7 4.9264 6.291 5.812166 5.675526 

13 19 14.1751 15.383 15.83688 15.490186 

14 2 1.9043 2.1 2.196943 2.233097 

15 5 2.8101 6.021 4.324553 4.317106 

16 1 1.0000 1.022 1.000047 1.000823 

17 22 18.8070 23.099 21.97377 21.995683 

18 3 2.6151 2.889 2.674909 2.704847 

19 9 12.5328 7.96 8.722646 8.302610 

20 1 1.1314 1.008 1.000032 1.000700 

21 34 30.5122 28.548 29.89861 29.400846 

22 3 3.3460 3.349 3.249223 3.319940 

23 19 17.0450 16.144 16.99562 16.477752 

24 27 18.0785 24.822 25.51041 25.187918 

25 42 39.2717 38.401 37.63407 37.336824 

26 1 2.6062 3.787 1.220731 1.616201 

27 12 9.8303 12.32 11.94408 11.823109 

28 16 13.1126 17.036 16.515 16.451946 

29 19 13.6897 14.733 14.82289 14.539647 

30 14 16.9776 15.031 15.98357 15.717375 

31 42 37.6006 38.597 38.51425 38.247991 

32 4 3.0602 3.511 3.323571 3.279045 

33 4 5.5106 2.997 3.189674 3.212573 

34 4 1.8014 3.06 2.82237 2.707864 

35 1 1.1568 1.086 1.001323 1.000178 

36 1 1.2423 1.462 1.002606 1.000657 

37 62 62.7741 59.433 59.53012 59.054679 

38 3 3.3276 3.632 3.250054 3.293982 

39 2 4.2369 1.887 2.068093 1.871094 

40 4 1.7202 4.072 3.084539 3.193299 

41 1 1.0148 1.595 1.000717 1.000245 

42 2 5.4628 3.671 1.239938 1.935353 

43 77 78.0094 79.511 79.89118 79.706585 

44 3 3.2206 3.394 3.299488 3.286241 

45 2 3.5934 1.581 1.964128 1.713053 

46 3 4.7668 4.204 3.489718 3.481911 

47 2 1.1531 1.329 1.000032 1.001021 

48 3 2.1698 2.242 1.000032 1.001372 

49 100 99.6406 96.886 97.18147 95.707246 

50 4 4.1469 3.71 3.322281 3.377505 

51 1 2.1600 1.055 1.002997 1.574221 

52 4 4.1499 4.566 3.651629 3.787710 

53 6 11.2070 9.606 7.226228 9.454469 

54 3 11.0904 2.984 4.544599 7.083401 

55 49 35.9499 45.917 41.41107 42.491303 

56 1 2.1937 1 1.002207 1.000471 

57 62 66.1705 62.426 64.80352 62.769092 

58 1 3.3402 2.977 2.525618 3.873196 

59 3 4.0525 1 1.000054 1.034346 

Weight(lb) 143436 142295.8 141241 137344.356 137222.24 

Number of structural analyses: 39834 N/A 150000 58274 99801 
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Table 19. Statistical comparison of results for the 942-bar tower truss problem 

Algorithm Best (lb) Mean (lb) Worst (lb) SD (lb) NFEs 

AES [76] 141241 N/A N/A N/A 150000 

SA [77] 143436.02 N/A N/A N/A N/A 

JAYA [24] 137344.356 137379.616 137420.440 38.346 ~70000 

GNMS [78] 142295.75 N/A N/A N/A N/A 

FFA [79] 138878 139682 142265 1098 50000 

MAISA [80] 142287.47 142994.38 N/A 641.27 217500 

ESDA 137222.24 137356.60 137581.43 91.13 100000 

4. Conclusion 

In the present study, the Elitist Stepped Distribution Algorithm (ESDA), a recently developed distribution-based 

metaheuristic, is introduced, implemented, and rigorously evaluated for truss sizing optimization problems, marking its 

first application in the structural optimization literature. The performance of ESDA in structural optimization was 

investigated through a series of test problems: (i) 25-bar truss, (ii) 72-bar truss, (iii) 117-bar cantilever truss, (iv) 130-

bar transmission tower, (v) 200-bar truss, (vi) 354-bar dome truss, and (vii) 942-bar tower truss. These examples were 

specifically selected to cover a broad spectrum of problem characteristics, including (i) both discrete and continuous 

solution sets, (ii) grouped and ungrouped design variables, and (iii) single and multiple loading cases with both 

displacement and stress constraints. This diverse selection of problems was intended to simulate real-world structural 

design challenges, providing a robust evaluation of ESDA’s effectiveness across a wide range of optimization scenarios. 

ESDA demonstrated a strong performance by achieving the previously reported optimum design weights for the 25-

bar and 72-bar benchmark trusses with fewer structural analyses and lower standard deviations compared to most 

metaheuristics in the literature. Similarly, for the 200-bar benchmark truss, ESDA achieved the best mean weight and 

standard deviation across 30 independent runs. The algorithm further demonstrated its efficacy on complex problems 

with a large number of design variables, such as the 117-bar cantilever truss, 130-bar transmission tower, and 354-bar 

dome truss, where it improved upon previously reported results. One-sided Welch’s t-tests with 95% confidence 

intervals confirmed that ESDA achieved significantly lower mean weights than the compared algorithms on these 

benchmarks, with all confidence intervals lying entirely in the negative domain. Notably, for the 942-bar tower truss 

design problem involving numerous bars and grouped design variables, ESDA set a new optimum design, surpassing 

the best existing solution. However, the statistical test indicates that the improvement over the literature-reported best 

performance of JAYA was not statistically significant. 

The solutions produced by ESDA underscore the algorithm's robustness and efficiency in truss sizing optimization 

problems. Notably, as the number of design variables and the complexity of the solution set grow, ESDA has shown a 

distinct advantage in enhancing solution quality compared to other metaheuristics applied to similar problems. Unlike 

evolutionary algorithms, which heavily depend on numerous iterations to achieve optimal results, ESDA benefits from 

a larger sample size within a moderate number of iterations as the problem's complexity increases. This approach 

enhances the algorithm's exploration capability, enabling a more thorough search across the solution space. Nonetheless, 

scaling ESDA to problems involving thousands of design variables and highly nonlinear constraints may present 

challenges, particularly in terms of sampling efficiency, constraint-handling, and computational cost. Addressing these 

aspects through adaptive sampling strategies, hybridization with local search, and adaptive or multi-objective 

mechanisms could enhance its applicability to such large-scale settings. Taken together, these outcomes highlight 

ESDA’s scalability while also indicating promising avenues, including its extension to truss layout and topology 

optimization, as well as to alternative structural systems such as frames and shells, which would further broaden its 

utility in structural design optimization. 
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