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Abstract

This study investigates the efficiency of the recently developed Elitist Stepped Distribution Algorithm (ESDA) as a
metaheuristic framework for truss sizing optimization. ESDA builds upon the Cross-Entropy Method by introducing an
elitist stepped sampling strategy that improves the balance between exploration and exploitation during the search process.
To evaluate its effectiveness, ESDA is applied to a comprehensive test suite comprising seven benchmark truss
optimization problems that cover a wide range of sizes, design variables, loading conditions, and constraint types. In all
cases, the objective is to minimize structural weight while satisfying stress, displacement, and stability requirements.
Numerical experiments are conducted with the proposed method, and the results are compared with those algorithms
reported in the literature. The findings show that ESDA attains new best or near-best solutions for large-scale problems
such as the 117-bar cantilever, 130-bar transmission tower, 354-bar dome, and 942-bar tower trusses, while also producing
competitive results for the 25-bar, 72-bar, and 200-bar structures with relatively modest computational effort. The novelty
of this work lies in demonstrating the robustness, efficiency, and scalability of ESDA across diverse benchmarks,
highlighting its potential for future structural optimization applications.
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1. Introduction

Design optimization has long been recognized as a fundamental component of engineering practice, providing
systematic methodologies to achieve superior performance while minimizing material consumption, structural weight,
and overall cost [1]. Beyond economic considerations, optimization also facilitates compliance with safety regulations,
serviceability requirements, and aesthetic demands, which are central to the realization of reliable and sustainable
engineering systems [2]. While design optimization has been extensively applied in fields such as aerospace and
mechanical engineering, where standardized components and mass production are prevalent, its application in civil
engineering presents unique challenges. Civil engineering structures, particularly large-scale infrastructures such as
bridges, towers, and frames, are typically bespoke projects with complex geometries and diverse loading scenarios.
Consequently, optimization in this field has predominantly focused on reducing structural cost and weight without
compromising safety or code compliance. Within structural optimization, the truss sizing problem has become a classical
and widely adopted benchmark. Trusses are fundamental structural systems that combine analytical simplicity with the
essential challenges of more complex structures, including geometric nonlinearity, discrete design variables, and the
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high dimensionality arising from large numbers of members. Benchmark truss structures are therefore frequently
employed to test and compare optimization algorithms. Although simplified relative to full-scale structural systems,
optimal truss designs provide valuable insights during preliminary design stages and serve as effective platforms for
assessing new computational methods [3].

Traditional deterministic optimization methods, including linear and nonlinear programming techniques, have
historically been applied to such problems. However, the inherent nonlinearity, nonconvexity, and discrete nature of
truss design often render deterministic approaches computationally demanding and highly sensitive to initial
assumptions [4]. Their tendency toward premature convergence and difficulty in handling complex design constraints
limit their applicability, particularly for large-scale truss systems where the search space expands rapidly with the
number of members. To address these limitations, researchers have increasingly adopted metaheuristic algorithms,
which rely on stochastic search processes inspired by natural, biological, or physical phenomena. Unlike deterministic
methods, metaheuristics do not require gradient information and demonstrate stronger global search capabilities,
enabling their application to both discrete and continuous optimization problems [5]. Representative approaches include
evolutionary approaches such as Genetic Algorithms (GA) [6] and Differential Evolution (DE) [7]; swarm-based
methods such as Particle Swarm Optimization (PSO) [8] and Ant Colony Optimization (ACO) [9]; and physics-based
methods such as Simulated Annealing (SA) [10]. In recent decades, numerous new metaheuristics have been developed,
recognizing that no single algorithm consistently outperforms others across all problem domains [11]. Examples include
Big Bang-Big Crunch (BB-BC) [12], Adaptive Dimensional Search (ADS) [5], Nuclear Fission-Nuclear Fusion (N2F)
[13], Grey Wolf Optimizer (GWO) [14], and Cuckoo Search (CS) [15]. Moreover, hybrid metaheuristics have been
developed to combine the strengths of different algorithms and mitigate their weaknesses. Examples include Heuristic
Particle Swarm Optimization (HPSO) [16], Hybrid Big Bang-Big Crunch optimization (HBB-BC) [17], Hybrid
Harmony Search (HSS) [18], Heuristically Seeded Genetic Algorithm (HSGA) [19], Heuristic Particle Swarm Ant
Colony Optimization (HPSACO) [20], and Improved Flower Pollination Algorithm (IFPA) [21].

Despite extensive research applying metaheuristics to truss sizing optimization, fundamental challenges persist with
respect to the scalability of algorithms to large and high-dimensional design spaces, the effective incorporation of design
constraints into the optimization process, and the avoidance of premature convergence. Many established algorithms
perform well on benchmark trusses with grouped variables but often lose efficiency or reliability as problem
dimensionality increases, resulting in excessive computational costs or suboptimal convergence. Furthermore, the
consistent integration of code-based design constraints, such as those prescribed by engineering standards, remains a
demanding task that has not been fully addressed. These limitations continue to motivate the exploration of alternative
metaheuristic frameworks that can provide robust convergence behavior and enhanced scalability.

Elitist Stepped Distribution Algorithm (ESDA) has been proposed as a distribution-based optimization method that
builds upon the Cross Entropy Method (CEM) [22]. By applying stepped parameter settings to elite samples, ESDA
introduces a more robust sampling scheme that enhances the balance between exploration and exploitation, while the
elitist strategy mitigates premature convergence. In addition, its distribution-based structure improves scalability,
enabling effective performance in high-dimensional search spaces. These features position ESDA as a promising yet
unexplored candidate for structural optimization, with the potential to overcome persistent limitations of existing
metaheuristics in large-scale, discrete, and constrained truss design. Nevertheless, its effectiveness in structural
engineering applications has not yet been systematically investigated, which constitutes a critical gap in the current
literature. To address this gap, the present study introduces the first comprehensive application of ESDA to truss sizing
optimization. The algorithm is integrated with a finite element—based structural analysis framework and evaluated on a
diverse set of benchmark problems—including the 25-bar, 72-bar, 117-bar cantilever, 130-bar transmission tower, 200-
bar, 354-bar braced dome, and 942-bar tower trusses—under multiple loading and code-based constraints. The practical
relevance of the study is further demonstrated by (i) optimizing large-scale structures with and without member
grouping, (ii) employing discrete design variables, (iii) addressing multiple loading conditions, and (iv) enforcing
American Institute of Steel Construction (AISC) specifications for both Allowable Stress Design (ASD) and Load and
Resistance Factor Design (LRFD). The remainder of this paper is organized as follows: Section 2 presents the problem
formulation and ESDA-based methodology, Section 3 reports the optimization results and comparative analysis, and
Section 4 concludes with the key findings and implications.

2. Methodology

2.1. Sizing Optimization of Truss Structures

The objective of truss sizing optimization is to determine the cross-sectional areas of truss members that minimize
the overall weight of the structure, which is often associated with cost. An optimal solution is achieved by satisfying
design constraints, such as the maximum allowable stress in members (i.e., bars) and the displacements at nodes (i.e.,
joints). The mathematical formulation can be expressed as follows:
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For a truss structure composed of | bars, and J joints, the goal is to determine the vector A, given in Equation 1,
which represents the cross-sectional areas of bars, to minimize the objective function W denoting the overall weight of
the truss structure, as defined in Equation 2.
A=[A,4,..., 4] @
W =%l 1 piLi4; 2

where pj, Li, and A; denote the material density, length, and cross-sectional area of the bar i, respectively. The objective
function W is subjected to the following design constraints specified in equations 3 and 4.

i

gi=(ﬁ)au—1§0;i=1'_“'1 @)
_ _Six _ .
Sjk = () all 1<0;j=1,..,] (4)

where i and gk represent the stress in each bar, and the displacement of each joint in each direction applicable,
respectively, with (a)ai and (dx)an indicating their maximum allowable values [4].

The constraints are handled through a penalty function approach [23] where a penalized objective function, also
referred to the fitness function ¢, is formulated as follows:
¢ = W)(%) )
¥ = [1+a(Xiig:+ Z§=1 TRy Sj,k)] (6)

where W, is the penalized weight function, and « is the penalty coefficient employed to adjust the magnitude of
penalization. The maximum value of index k depends on the spatial dimension of the problem, which may be either two-
dimensional or three-dimensional [3, 24].

2.2. AISC Provisions

In accordance with the AISC-ASD design code [25], the tensile stress in a truss member must not exceed the lesser
of the values determined by Equation 7, where Fy and Fy denote the yield and ultimate tensile strength, respectively.

(91)qu = min( 0.60F,, 0.50F,) )

The maximum allowable compressive stress is determined by using Equations 8 and 9, where K;, L; and r; represents
the effective length factor (Ki=1), the length, and the minimum radius of gyration of the bar i, respectively. In these
equations, E denotes the modulus of elasticity, while A; and C. specify the slenderness ratio and critical slenderness ratio,
respectively, which are calculated using Equations 10 and 11.

(6)au = — 3, A; < C, (Inelastic buckling) (8)

3" 8Cc 8Cc3

12m%E

(0)an = —7=, 4 = C. (Elastic buckling) )
=(57)
A= % < 300 for members in tension
K-Ll- . . (10)
A = rl_‘ < 200 for members in compression
C. = 2m2E 11)
c Fy

The AISC-LRFD [26] design code defines the nominal tensile strength P, as the product of Fy (the yield strength)
and Aq (the gross cross-sectional area of a bar), as shown in Equation 12.

B, =FEA, (12)

The nominal compressive strength, shown in Equation 13, is determined by multiplying Ag by F¢r (the critical stress
associated with flexural buckling). The calculation of F is shown in Equations 14 and 15.
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P, = F Ay (13)

F, = (0.658%2) Fyif 4. = %E <15 (14)
0.877 KL |F

Fcr = (F) Fyi/lc = ;\/; > 15 (15)

2.3. Elitist Stepped Distribution Algorithm

Introduced by Altun & Pekcan [27], ESDA is a metaheuristic algorithm that leverages the core algorithmic structure
of CEM to improve the search capabilities of distribution-based search algorithms. The improvements primarily focus
on the distribution procedure, specifically on how the distribution parameters are updated. By enhancing the exploration
and exploitation capabilities of CEM, ESDA is tailored to reduce the possibility of premature convergence to local
optima by generating a large set of elite candidate solutions.

ESDA has three main subroutines: (i) initialization, (ii) updating distribution parameters (including the center of the
distribution and its standard deviation), and (iii) updating positions using a normal distribution. To illustrate, consider a
function F(x) with | design variables, to be minimized, where the position vector of n" sample is represented as X™ =
[x, xZ,...,x[*]. In the first part, the algorithm performs a uniformly randomized distribution-based initialization as
shown in Equation 16. Here, a random solution is generated using the random function rand between the lower (x™™)
and upper bound (x™**) of each bar, where i denotes the i"" design variable (cross-sectional area of the bar i). This
subroutine is performed for all samples.

X = x4 rand (x"* — x™) (16)

Second, the center of the distribution and deviation for each bar are updated based on the elite samples. To determine
the elite samples for each iteration, the fitness value of each sample n is evaluated using the objective function at iteration
t, fit™(t) = F(X™(t)). The samples are then sorted according to their fitness values, from the best to the worst solution.
Using the sorted solutions, X® =[x}, ..., x]", ..., xI'], two different elite sets are determined by employing two distinct
elite percentage parameters of ESDA, p1 and p2. The first elite set is selected among the best Knean Samples to compute
the center of the deviation, where Kean is the integer value obtained by multiplying p1 and K. As shown in Equation 17,
the distribution center, y;, is calculated by using a fitness-weighted mean of the elite set, with better fitness values
contributing more significantly to the result. On the other hand, the second elite set is composed of the first p, percent
of the sorted solutions, denoted as Kgq. Using these samples, first, a mean position vector, fi;, is calculated for each bar
i, as shown in Equation 18; then, the standard deviation of the elite samples for each dimension,g;, is determined using
Equation 19.

o
Kmean__*i

it iy
it +1) = e (@7
n=1  fitn(t)
~ Kstqa X1
() = Zi=§d@ (18)

Kstd(+ cpy_ont
oi(t+1) = /Eirnljﬁ?l i) (19)

In the last sub-routine of ESDA, after incrementing the iteration t=t+1, new position vectors for each sample are
generated by applying the mean and the standard deviation within a normal distribution scheme given in Equation 20.
In this equation, the function randn is a function that returns normally distributed random variables with parameters
N(0,1), as explained previously.

xiH(t) = i (t) + randn o;(t) (20)
After generating a solution for each sample n in each iteration t, the algorithm checks boundary conditions, and
calculates the fitness value based on the objective function. At the end of each iteration, the algorithm updates the best

feasible solution by comparing the current best fitness value with that of the previous iteration. The overall procedure
of ESDA, as applied to truss sizing optimization, is illustrated in the flowchart presented in Figure 1.
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Establish the design-space boundaries
(and catalog constraints, if the problem involves discrete variables).

\
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sample size N and the maximum number of iterations f,,,. Set best
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'

Generate initial designs using random solutions for each dimension
of the position vector for all N samples using Eq. (16).

v

Perform the structural analysis for each design. Calculate nodal
displacements and member stress.

Generate new designs with normally randomized
solutions using the mean and deviation values for each ———
sample using Eq. (20)

1 SR ¢

Calculate truss weight and penalty coefficient and apply the penalty
function in Eq. (6) to calculate the objective fitness value for each
sample n.

Sort the samples in order of their fitness values, from
the best to the worst.
Select the elite sample sets for mean and deviation
calculations, separately. ¢

Calculate the center of the distribution and its standard
deviation for each dimension using Eqs. (17-19)

Memorize the best feasible solution, without any stress or

A displacement violation, and update it it it is improved at iteration t.

YES

Figure 1. Flowchart of ESDA-based truss sizing optimization

3. Numerical Examples

The performance of ESDA in truss sizing optimization is evaluated through seven design problems. The four ones
are established benchmark examples from the literature with grouped design variables: (i) 25-bar truss, (ii) 72-bar truss
under two different loading cases, (iii) 200-bar truss, and (iv) 942-bar tower truss. The remaining three examples
correspond to practically applicable truss design examples in compliance with AISC-ASD and AISC-LRFD provisions
without member grouping: (i) 117-bar cantilever truss, (ii) 130-bar transmission tower truss, and (iii) 354-bar braced
dome truss. For the 942-bar tower truss and one case of the 72-bar truss examples, optimization is performed within a
continuous design domain, whereas for the other cases, truss member sizes are selected from a discrete set of readily
available sections. The selection of these examples aims to: (i) assess the algorithm’s efficiency across a variety of
design variables, loading conditions, and displacement constraints; and (ii) evaluate its robustness across sizing problems
with various scales, both with and without grouped design variables.

Due to the stochastic nature of metaheuristics [28], ESDA was executed 30 times independently for each example
to assess the algorithm’s statistical performance. The best and worst solutions, along with the mean and standard
deviation, are presented for each problem, along with the number of function evaluations (NFEs), calculated as the
product of the number of iterations and sample (population) size. As the number of design variables increases, design
problems become more complex. Accordingly, the number of iterations and sample size are adjusted to gradually
increase NFEs, mitigating premature convergence, controlling computational cost, and improving solution quality. The
adjustments made for each problem are reported in Table 1. The elite percent parameters, p: and p, are set to 0.05 and
0.5, respectively, as recommended by the original study [27]. This selection is experimentally validated through
comprehensive testing across multiple benchmark problems, showing an optimal exploration-exploitation balance with
robust convergence. The penalty coefficient a is selected from a discrete set of values {0.5, 1.0, 1.5}. Initially set to 1.0,
a is adjusted dynamically based on the algorithm’s performance such that it is increased when the algorithm tends to
approach the infeasible solution domain, and decreased to accelerate convergence towards solutions near the boundary
of the feasible domain.
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Table 1. Parameter settings of ESDA for the test problems

Example Number of Design Variables  Number of Iterations Population Size  Number of Analyses
25-Bar Truss 8 50/25 100/200 5000

72-Bar Truss 16 50/150 100 5000/15000
200-Bar Truss 29 100 100 10000
117-Bar Cantilever Truss 117 250 200 50000
130-Bar Transmission Tower 130 250 200 50000
354-Bar Truss Dome 354 500 400 200000
942-Bar Tower Truss 59 250 400 100000

3.1. Example 1: 25-Bar Truss

The 25-bar truss, depicted in Figure 2, is a widely studied benchmark problem for testing metaheuristic algorithms
in structural optimization. While various versions of this problem appear in the literature, this study considers a specific
case with an elastic modulus of 10,000 ksi and a material density of 0.1 Ib/in3. The structure has 8 design variables,
which are selected from a set of 29 discrete sections (in?), S = [0.1, 0.2, ..., 2.4, 2.6, 2.8, 3.0, 3.2, 3.4]. The maximum
allowable stress for members in both compression and tension is 40 ksi. The displacement of all nodes in the X, y, and z
directions is limited to 0.35 in. A single load case is applied, with the specific loads detailed in Table 2.

z
L)

100in

N (8)

Figure 2. Schematic of the 25-bar truss

Table 2. Loads acting on the 25-bar truss

Joint Loads (kips)
X y z
1 1.0 -10.0 -10.0
2 0.0 -10.0 -10.0
3 0.5 0.0 0.0
6 0.6 0.0 0.0

The discrete sizing optimization of the 25-bar truss structure has been investigated using a variety of metaheuristic
approaches in previous studies [4, 16, 18, 19, 29-43]. In this paper, ESDA was applied to this problem, and its
performance is compared in Tables 3 and 4. Table 3 presents the cross-sectional areas, minimum weights, and the
number of function evaluations required to achieve these results using various metaheuristics, including ESDA. A more
in-depth statistical analysis is presented in Table 4, which compares the best and worst results alongside the mean values
and standard deviations (SD) for each algorithm, thereby providing a comprehensive assessment of their performance.
ESDA was executed 30 times to obtain the reported results, initially configured with a sample size of 100 and 50
iterations. During this execution, ESDA successfully reached the optimum solution (i.e., 484.85 Ib) reported in the
literature by the 16th iteration, while using a comparatively lower number of function evaluations. However, it was
noted that in more than half of the runs, the algorithm became trapped in a local optimum of 485.04 Ib, resulting in a
mean value of 484.95 Ib. To enhance the algorithm’s performance, the number of iterations and sample size were
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subsequently adjusted to 25 and 200, respectively. This modification reduced the number of solutions that became
trapped in local optima and improved the mean value, as shown in Table 4. As inferred from comparison tables, most
of the algorithms presented successfully locate the global optimum. However, as shown in Table 3, ESDA significantly
outperforms the convergence speed of ABC [41], BI [30], PSO [4], ACO [31], and BB-BC [32], and even reaches the
optimum slightly faster than PSO. As reported in Table 4, ESDA produces solutions that are not only accurate and
consistent but also computationally efficient. Compared to most algorithms that achieve the optimum solution [4, 16,
18, 30-33, 35, 36, 38, 39, 41, 43], ESDA exhibits a better performance in terms of the consistency of solutions across
different runs, with the exceptions of DE [37] and DAJA [40]. Although DE [37] achieves a mean accuracy comparable
to that of ESDA, it requires a significantly higher number of function evaluations — up to 40,000 — to achieve similar
results. While DAJA [40] provides perfect consistency with zero deviation, ESDA achieves near-optimal mean results
using only one-fifth of the function evaluations required by DAJA [40], ensuring both computational efficiency and
high accuracy. Compared to alternatives such as IWOA [43] and MBA [39], which also show strong reliability but at
higher costs, ESDA delivers a superior balance of solution quality, stability, and efficiency, establishing itself as a robust
tool for structural optimization.

Table 3. Comparison of different designs for the 25-bar truss problem

Variable Index Members  GA[29]  TS[4] ABC [41] BI[30] PSO[4]  ACOI31] BB-BC [32] ESDA

1 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
2 2-5 0.5 0.4 0.3 0.3 0.3 0.3 03 0.3
3 6-9 3.4 3.4 3.4 3.4 3.4 34 3.4 34
4 10,11 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
5 12,13 15 1.8 2.1 21 21 2.1 2.1 21
6 14-17 0.9 0.9 1 1 1 1 1 1
7 18-21 0.6 0.6 0.5 0.5 0.5 0.5 0.5 0.5
8 22-25 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4

Best (Ib) 486.29 485.57 484.85 484.85 484.85 484.85 484.85 484.85

NFEs N/A 1626 24250 2900 1600 7700 6670 1584

Table 4. Statistical comparison of results for the 25-bar truss problem

Algorithm Best (Ib) Mean (Ib) Worst (Ib) SD (Ib) NFEs
ACO [31] 484.85 486.46 N/A 471 7700
ABC [41] 484.85 484.94 485.05 N/A 24250
HPSO [16] 484.85 N/A N/A N/A 25000
GA [29] 486.29 N/A N/A N/A N/A
HS [33] 484.85 N/A N/A N/A 18734
BI [30] 484.85 485.76 N/A 1.06 2900
PSO [4] 484.85 N/A N/A N/A 1600
HS [4] 484.85 N/A N/A N/A 2100
SA[4] 484.85 N/A N/A N/A 6624
Ess [4] 485.05 N/A N/A N/A 4350
AC [4] 485.05 N/A N/A N/A 10050
SGA [4] 485.38 N/A N/A N/A 9050
TS [4] 485.57 N/A N/A N/A 1626
GAOS [34] 493.8 N/A N/A N/A N/A
HSGA [19] 490.87 N/A N/A N/A 2000
BB-BC [32] 484.85 485.2 N/A 0.62 6670
CBO [35] 484.85 486.87 N/A N/A 20000
ECBO [35] 484.85 485.89 N/A N/A 20000
WEO [36] 484.85 485.252 N/A N/A 5060
DE [37] 484.85 484.91 485.38 0.13 < 40000
aeDE [37] 484.85 485.01 486.10 0.27 > 15000
FA [38] 484.85 485.18 486.29 0.42 < 6000
EFA [38] 484.85 485.18 486.82 0.50 > 5000
MBA [39] 484.85 484.89 485.05 0.07 25000
DAJA [40] 484.85 484.85 484.85 0.00 25000
HHS [18] 484.85 484.946 N/A 0.365 5000
IWOA [43] 484.85 484.87 N/A 0.059 15000
oGMO [42] 484.854 485.122 N/A 0.223 12000
ESDA 484.85 484.91 485.05 0.05 5000
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3.2. Example 2: 72-Bar Truss

The second benchmark problem is the 72-bar truss shown in Figure 3. The maximum allowable stress in bars is
limited to 25 ksi for both tension and compression. The displacement of the top nodes is restrained to 0.25 inches in
both the x and y directions. Using symmetry, all 72 bars are grouped and represented by 16 design variables as follows:
(1) A1-A4, (2) A5-A12, (3) A13- AlS6, (4) A17-A18, (5) A19-A22, (6) A23-A30, (7) A31-A34, (8) A35- A36, (9)
A37-A40, (10) A41-A48, (11) A49-A52, (12) A53-A54, (13) A55-A58, (14) A59-A66 (15), A67-AT70, and (16) A71-
AT72. The elasticity modulus of members is set to 10,000 ksi, and material density is specified as 0.1 Ib/in.
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Figure 3. Schematic of the 72-bar truss

The structure is analyzed under two load cases, as summarized in Table 5. For Case 1, design variables are chosen
from a predefined set of cross-sections according to AISC-ASD provisions [25]. In Case 2, the cross-sections are treated
as continuous variables ranging from 0.1 in? to 3.2 in?.

Table 5. Loads acting on the 72-bar benchmark truss

. Loads (kips)
Joint
X y z

Case 1 17 5.0 5.0 -5.0

17 0.0 0.0 -5.0

18 0.0 0.0 -5.0
Case 2

19 0.0 0.0 -5.0

20 0.0 0.0 -5.0

Case - 1: Discrete Design Variables

The best designs achieved by ESDA, COA [44], WCA [45], DAJA [40], and DHPSACO [46] are summarized in
Table 6. The results show that ESDA reaches the literature-reported optimum of 389.33 Ib in only 25 iterations (2,463
analyses), achieving this 25% faster than the previous best benchmark established by DAJA. Additionally, a total of
5,000 analyses were conducted to compare its performance against various metaheuristics, including COA and MCOA
[44], WCA, MBA and IMBA [45], ICA [47], DHPSACO, DE and aeDE [37], FA and EFA [38], FWA and IFWA [48],
DAJA [40], oGMO [42], SHADE [49], hGMO [50], and ICOOT [51] as reported in Table 7. The comparative results
demonstrate the robustness and efficiency of the proposed ESDA in this problem. While several algorithms are able to
reach the optimum solution, their mean performance is often degraded due to higher variability across independent runs.
When compared to other efficient methods SHADE [49], hGMO [50], and DAJA [40], ESDA remains competitive with
offering low computational cost and remarkable consistency. Although a few runs exhibited early convergence, leading
to a slightly higher standard deviation than DAJA [40], this has minimal impact on its overall performance. Ultimately,
the statistics clearly show that ESDA surpasses all other methods, delivering superior best and mean results with
significantly fewer analyses.
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Table 6. Comparison of different designs for the 72-bar truss with discrete design variables (Case 1)

Variable Index Members COA[44] WCA[45] DAJA[40] ICA[47] DHPSACO[46] 0oGMO[42] ESDA

1 1-4 1.99 1.99 1.99 1.99 1.8 1.990 1.99
2 5-12 0.563 0.442 0.442 0.442 0.442 0.563 0.442
3 13-16 0.111 0.111 0.111 0.111 0.141 0.111 0.111
4 17,18 0.111 0.111 0.111 0.141 0.111 0.111 0.111
5 19-22 1.228 1.228 1.228 1.228 1.228 1.228 1.228
6 23-30 0.442 0.563 0.563 0.602 0.563 0.442 0.563
7 31-34 0.111 0.111 0.111 0.111 0.111 0.111 0.111
8 35,36 0.111 0.111 0.111 0.141 0.111 0.111 0.111
9 37-40 0.563 0.563 0.563 0.563 0.563 0.563 0.563
10 41-48 0.563 0.563 0.563 0.563 0.563 0.563 0.563
11 49-52 0.111 0.111 0.111 0.111 0.111 0.111 0.111
12 53,54 0.111 0.111 0.111 0.111 0.25 0.111 0.111
13 55-58 0.196 0.196 0.196 0.196 0.196 0.196 0.196
14 59-66 0.563 0.563 0.563 0.563 0.563 0.563 0.563
15 67-70 0.391 0.391 0.391 0.307 0.442 0.391 0.391
16 71,72 0.563 0.563 0.563 0.602 0.563 0.563 0.563
Best (Ib) 389.334 389.334 389.334 392.84 393.38 389.33417  389.3342
NFEs (Ib) 6800 4600 3376 4500 5330 4100 2463

Table 7. Statistical comparison of results for the 72-bar truss problem with discrete design variables (Case 1)

Algorithm Best (Ib) Mean (Ib) Worst (Ib) SD (Ib) NFEs

COA [44] 380.334  393.618 393.965 1.561 8000
MCOA [44] 389.334  390.162 392.158 1.018 8000
WCA [45] 380.334  389.941 393.778 1.43 50000
MBA [45] 390.739 395.432 399.490 3.04 50000
IMBA [45] 389.334  389.823 N/A 0.84 50000
ICA[47] 392.84 N/A N/A N/A 4500
DHPSACO [46]  393.38 N/A N/A N/A 5330
DE [37] 389.334  390.531 394.170 1.400 > 12000
aeDE [37] 389.334  390.913 393.325 1.161 > 4000
FA [38] 389334  391.644 396.245 1.794 > 8000
EFA [38] 389.334 391376 393.826 1.376 > 3000
FWA [48] 394.051 405.03 N/A N/A 5000
IFWA [48] 389334  389.461 N/A N/A 5000
DAJA [40] 389334  389.495 389.828 0.159 >5437
oGMO[42]  389.3342  390.0631 N/A 05001 15000
SHADE [49]  389.3342 3895727  391.3948 0.4458 3990
hGMO [50] 389334 389.880 N/A 0.267 3950
ICOOT[51]  389.3342 4051210  453.3486  18.1604 N/A
ESDA 3803342 3894369  390.9522 0.2972 5000

Case - 2: Continuous Design Variables

In the continuous design space case of the problem, the number of function evaluations for ESDA is set to 15,000,
which is three times greater than that in Case 1. The performance of ESDA is compared against various algorithms,
including HBB-BC [17], Multi-Phase BB-BC [32], ACO [31], GA [34], PSO [52], CBO [53], WSA [54], SAHS [55],
RO [56], CPA [57], CSP [58], ECBO [59], HTS [60], IGWO [61], TLBO [62], ISRES [63], o0GMO [42], ACCS [64],
CBSO [65], and dDEmRao-DiC [66]. As shown in Table 8, ESDA slightly improves upon the optimum design reported
in the previous studies. Moreover, it produces competitive solutions by improving all statistical metrics from the earlier
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studies reported in Table 9, except the recent work by Adil & Cengiz [54], which employed the Weighted Superposition
Attraction (WSA\) algorithm. While ESDA surpasses the best solution reported by WSA using a slightly higher number
of function evaluations, its mean result is marginally worse. This may be attributed to two reasons: (i) the number of
iterations, which is sufficient for convergence near the optimum since WSA uses only ten samples in its search
procedure, and (ii) the tendency of distribution-based algorithms, like ESDA, to exhibit greater variability when fewer
samples are used. Consequently, a higher number of function evaluations is necessary to improve the solution. To
validate this hypothesis, ESDA was executed again with an increased number of iterations and sample size, set to 150
and 200, respectively. The results revealed that the best and mean results were improved to 379.6151 and 379.6165 Ib,
respectively, indicating that ESDA can outperform WSA [54] when the sample size is doubled.

Table 8. Comparison of different designs for the 72-bar truss with continuous design variables (Case 2)

Variable Index Members GA[34] PSO[52] ACO[31] RO[56] CPA[57] oGMO [42] ESDA
1 1-4 0.161 0.1615 1.948 1.83649  1.8873 1.8515 1.882518
2 5-12 0.544 05092 0508 050209 05111 05124 051286
3 13-16 0379 0.4967 0101 0.100007 01 0.1000 0.100001
4 17,18 0521 0.5619 0.102 0.10039 01 0.1000 0.100002
5 19-22 0535 0.5142 1303 1252233  1.2554 1.2436 1.265879
6 23-30 0535 05464 0511 0503347 05141 05141 0.511689
7 31-34 0.103 0.1 0101 0.100179 01 0.1000 0.100001
8 35,36 0.111 0.1095 0.1 0.100151 0.1 0.1000 0.100000
9 37-40 131 1.3079 0561 0572989 05312 0.5169 0.522491
10 41-48 0.498 05193 0492 0549872 05174 0.5253 0516818
11 49-52 0.11 0.1 0.1 0.100445 0.1 0.1001 0.100000
12 53,54 0.103 0.1 0107  0.100102 0.1 0.1013 0.100004
13 55-58 191 1.7427 0156  0.157583  0.1564 0.1561 0.156411
14 59-66 0525 05185 055 052222 05443 0.5556 0547325
15 67-70 0.122 0.1 0.39 0435582  0.4106 0.4012 0.409439
16 71,72 0.103 0.1 0592 0597158 05717 05643 0.569885

Best(b) 38312 38191 380.24 380458  379.62 379.7234 379.6162
NFEs(b)  N/A N/A 18500 19084 23580 11750 15000

Table 9. Statistical comparison of results for the 72-bar truss problem with continuous design variables (Case 2)

Algorithm Best (Ib) Mean (Ib) Worst (Ib) SD (Ib) NFEs
HBB-BC [17] 379.66 381.85 N/A 1.201 13200
Multi-Phase BB-BC [32] 379.85 382.08 N/A 1.912 ~19621
ACO [31] 380.24 383.16 N/A 3.66 ~18500
GA [34] 383.12 N/A N/A N/A N/A
PSO [52] 381.91 N/A 384.62 N/A 8000
CBO [53] 379.6943 379.8961 N/A 0.0791 15600
WSA [54] 379.618 379.6201 N/A 0.0038 10000
SAHS [55] 380.62 382.42 383.89 1.38 13742
RO [56] 380.458 382.554 N/A 1.221 19084
CPA [57] 379.62 380.83 N/A 0.61 23580
CSP [58] 379.97 381.560 N/A 1.803 10500
ECBO [59] 379.77 380.39 N/A 0.810 20000
HTS [60] 379.73 382.26 N/A 1.94 13166
IGWO [61] 379.7615 380.6811 N/A 0.7315 11960
TLBO [62] 379.63 380.20 380.83 0.41 25000
ISRES [63] 379.98 N/A N/A N/A N/A
oGMO [42] 379.7234 380.5597 N/A 0.4557 15000
ACCS [64] 379.7512 379.81 N/A 0.148 12000
CBSO [65] 379.6585 379.7445 N/A 0.0684 50000
dDEmRao-DiC [66] 379.6506 379.882 380.4806 0.21203 7727
ESDA 379.6162 379.6210 379.646002 0.0059 15000
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3.3. Example 3: 117-Bar Cantilever Truss

The steel cantilever truss, consisting of 117 bars and 30 joints, is investigated by Azad & Hasancebi [67] as well as
Azad [68, 69]. A schematic of this truss is given in Figure 4. In this problem, the bars are treated as individual elements
without member grouping, resulting in 117 design variables, allowing for a comprehensive evaluation of the algorithm’s
capabilities in large design spaces [67]. The elastic modulus, yield strength, and density of steel are specified as 200
GPa, 248.2 MPa, and 7.85 ton/m?, respectively. The structure is subjected to multiple loading cases: (i) +15 kN applied
in the x-direction, (ii) +15 kN applied in the y-direction, and (iii) +15 kN applied in the z-direction to all unsupported
joints, as tabulated in Table 10. The displacement of each joint in all directions is limited to 4 cm, and the maximum
allowable stress in the bars is determined by the AISC-LRFD [26] provisions. The sizing variables are selected from a
predefined list of pipe sections provided in Table 11.

Figure 4. Schematic of the 117-bar cantilever truss

Table 10. Loads acting on the 117-bar cantilever truss

. Loads (kN)
Joint
X y z
Case 1 All unsupported 15.0 0.0 0.0
Case 2 All unsupported 0.0 15.0 0.0
Case 3 All unsupported 0.0 0.0 15.0

Table 11. Cross-sectional properties of the ready sections from AISC-LRFD [26] provisions

Number Ready Section  Area(cm?) Number Ready Section Area(cm?) Number Ready Section Area (cm?)

1 PIPE1/2STD 1.6129 14 PIPE3STD 14.3871 26 PIPE5XS 39.4193
2 PIPE1/2XS 2.0645 15 PIPE2-1/2XS 14,5161 27 PIPE4AXXS 52.258

3 PIPE3/4STD 2.1484 16 PIPE2XXS 17.1613 28 PIPE6XS 54.1934
4 PIPE3/4XS 2.7935 17 PIPE3-1/2STD 17.2903 29 PIPESSTD 54.1934
5 PIPELISTD 3.1871 18 PIPE3XS 19.4838 30 PIPESXXS 72.9031
6 PIPELXS 4.1226 19 PIPE4STD 20.4516 31 PIPE10STD 76.774

7 PIPE1-1/4STD 4.3161 20 PIPE3-1/2XS 23.7419 32 PIPE8XS 82.5805
8 PIPE1-1/2STD 5.1548 21 PIPE2-1/2XXS 25.9999 33 PIPE12STD 94.1934
9 PIPE1-1/4XS 5.6839 22 PIPESSTD 27.7419 34 PIPE6XXS 100.645
10 PIPE1-1/2XS 6.9032 23 PIPE4XS 28.4516 35 PIPE10XS 103.8708
11 PIPE2STD 6.9032 24 PIPE3XXS 35.2903 36 PIPE12XS 123.8707
12 PIPE2XS 9.5484 25 PIPE6STD 35.9999 37 PIPE8XXS 137.4191

13 PIPE2-1/2STD 10.9677

As mentioned earlier, the sizing optimization of 117-bar truss problems was previously studied using a variety of
metaheuristics, including Adaptive Dimensional Search, Big Bang Big Crunch, Guided Stochastic Search, and their
enhanced and hybridized versions [67—70]. In the implementation of ESDA, the maximum number of iterations is set to
250, with a population size of 200. As inferred in Table 12, reinforcing the distribution-based Exponential Big Bang—
Big Crunch algorithm with convergence-curve monitoring and guided stochastic search heuristics yields a notable
enhancement in performance. Nevertheless, owing to its intrinsically balanced distribution-oriented exploration
mechanism, ESDA consistently outperforms these reinforced variants as well as other metaheuristics, in terms of both
best and mean solutions, and attains the minimum structural weight. A new optimum design of 3,004.62 kg is attained
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through 50,000 structural analyses, improving the previously reported best design by 31 kg. Additionally, the mean
value of the designs obtained from independent runs of ESDA also surpasses the corresponding values reported by the
other methods. The best design obtained by ESDA is presented in the supplementary material.

Table 12. Comparison of different designs for the 117-bar steel cantilever truss

Algorithm Best (kg) Mean(kg) Worst(kg)  SD (kg) NFEs
PSO [67] 3476 3600.7 3828.2 141.1 25000
BB-BC [67] 3586.5 3855.9 4265.5 249.8 25000
EBB-BC [67] 3123.6 3209.9 32773 66.8 25000
MBB-BC [67] 3125.4 3205.8 32535 60.7 25000
GSSa [67] 3100.9 3112.3 31335 12.6 317
GSSg [67] 3072.2 3078.3 3085.9 6.6 317
ADS [68] 3078.02 3166.31 3297.07 64.64 50000
EBB-BC [68] 3041.17 3218.80 3692.74 199.30 50000
MBB-BC [68] 3154.90 3298.28 3417.87 90.74 50000
GADS [68] 3067.88 3139.71 3226.14 55.19 50000
GEBB [68] 3035.50 3075.87 3133.86 2735 50000
GMBB [68] 3058.77 3149.82 3320.91 75.62 50000
GADS_EBB [68] 3047.98 3108.81 3182.31 35.18 50000
GADS_MBB [68] 3069.09 3132.16 3201.15 42.43 50000
GADS_EBB_MBB [68]  3067.46 3128.74 3342.73 82.05 50000
MCC_ADS [69] 3077.79 3127.99 3186.25 2833 50000
MCC_EB [69] 3041.29 3075.87 3284.28 59.17 50000
MCC_MB [69] 3052.88 3098.57 3286.99 69.92 50000
CSAwm[70] 3628.64 3981.93 4242.35 14559 150000
ESDA 3004.62 3031.09 3051.29 13.40 50000

3.4. Example 4: 130-Bar Transmission Tower

The 130-bar transmission tower illustrated schematically in Figure 5, is composed of 33 joints and 130 bars. The
cross-sectional areas of the truss members are also selected from a discrete set given in Table 11. The material properties
and stress constraints are identical to those used in the 117-bar cantilever steel truss. All nodes are subjected to a
displacement constraint of 3 cm in all directions. A single loading case, detailed in Table 13, is applied to the structure.

3

23m

Figure 5. Schematic of the 130-bar transmission tower
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Table 13. Loads acting on the 130-bar transmission tower

Loads (kN)
Joint
X y z
29 100.0 0.0 0.0
30 100.0 0.0 0.0
31 0.0 25.0 0.0
32 0.0 25.0 0.0
33 0.0 0.0 50.0

The problem was previously addressed by Azad et al. [71], where a performance comparison was conducted among
the Guided Stochastic Search heuristic, Particle Swarm Optimization, and various versions of Big Bang-Big Crunch
algorithms. A summary of this comparison is provided in Table 14. In the implementation of ESDA for this example,
the maximum number of iterations is set to 250, with a population size of 200. The results reveal that, similar to the 117-
bar cantilever truss problem, ESDA delivers a superior solution, achieving a minimum weight of 5,586.72 kg, with the
design details provided in the supplementary material. This outcome corresponds to an improvement of approximately
3.7% over the best design reported in the literature. Moreover, with a standard deviation of only 36.05, ESDA also
exhibits the lowest variability, reflecting a level of robustness and reliability not observed in competing methods whose
deviations exceed 80-300. Collectively, these results highlight ESDA’s capacity to deliver the lightest and most stable
designs without incurring additional computational cost.

Table 14. Comparison of different designs for the 130-bar transmission tower

Algorithm Best (kg) Mean (kg) Worst(kg) SD(kg) NFEs

PSO [71] 6059.6 6364.3 6611.4 227.3 50000
BB-BC [71] 6427.8 7172.6 6742.9 303.8 50000
EBB-BC [71] 5973.5 6434.7 6144.5 188.9 50000
MBB-BC [71] 5853.9 6526.4 6059.5 240.4 50000
GSS [71] 5801.3 6118.5 6004.4 87.6 50000
ESDA 5586.72 5662.09 5760.89 36.05 50000

3.5. Example 5: 200-Bar Truss

The 200-bar benchmark truss, schematically illustrated in Figure 6, consists of 77 joints. The truss members are
grouped into 29 different sizing variables, which are selected from a discrete set, S =[0.1, 0.347, 0.44, 0.539, 0.954,
1.081, 1.174, 1.333, 1.488, 1.764, 2.142, 2.697, 2.8, 3.131, 3.565, 3.813,4.805, 5.952, 6.572, 7.192, 8.525, 9.3,
10.85, 13.33, 14.29, 17.17, 19.18, 23.68, 28.08, 33.7]. The three load cases applied to the truss are summarized
below:

(i) 1.0-kip load is applied to joints 1, 6, 15, 20, 29, 34, 43, 48, 57, 62, 71 in the positive x-direction.

(ii) 10.0-kip load is applied to joints 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 15, 16, 17, 18, 19, 20, 22, 24, 26, 28, 29, 30, 31, 32,
33, 34, 36, 38, 40, 42, 43, 44, 45, 46, 47, 48, 50, 52, 54, 56, 57, 58, 59, 60, 61, 62, 64, 66, 68, 70, 71, 72, 73, 74,
75 in the negative y-direction.

(iii) Both load cases (i) and (ii) are applied simultaneously.

This problem is governed solely by stress constraints, with the maximum allowable stress set at 10 ksi for both tensile
and compressive forces. The material properties include an elastic modulus of 30,000 ksi and a density of 0.283 Ib/in,
respectively.
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Figure 6. Schematic of the 200-bar truss

The 200-bar truss problem is a widely recognized benchmark example that has been studied using various
metaheuristics, including ADS [5], ESASS [72], IGA [73], HACOHS-T [74], FA and EFA [38], DE and aeDE [37],
BH, IBH, MV and IMV [75], DAJA [40], and HHS [18]. The best design of the structure attained from 30 independent
runs of ESDA is presented alongside the best designs reported by selected algorithms in Table 15, and a full statistical
comparison is carried out in Table 16. Accordingly, the best design achieved by ESDA, weighing 27,289.91 Ib, is slightly
higher than those obtained by HHS [18] and ADS [5], and very close to the results from IMV [75] and DAJA [40], yet
it offers a lighter solution than the remaining algorithms. On the other hand, ESDA delivers a lower mean weight with
a relatively smaller standard deviation compared to these algorithms, even though this example exhibits greater
variability in the optimum designs found, relative to other cases. While HHS [18] and ADS [5] require additional
iterations to refine their designs, IMV [75] exhibits significantly greater variability, and DAJA [40] demonstrates limited
convergence capability. Overall, although ESDA does not surpass the best design reported to date, it provides a
competitive solution by delivering a lower mean weight with reduced variability, achieving superior performance and
consistency compared to other algorithms.
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Table 15. Comparison of different designs for the 200-bar truss

Vlar:(ife?('e Members HHS[18] ESASS[72] ADS [5] ESDA
1 1,2,3,4 0.1 01 01 0.1
2 58,11, 14, 17 0.954 0.954 0.954 0.954
3 19,20, 21, 22, 23, 24 01 01 0.347 0.347
4 18, 25, 56, 63, 94, 101, 132, 139, 170, 177 01 01 01 0.1
5 26,29, 32, 35, 38 2.142 2142 2142 2142
6 6,7,9,10, 12, 13, 15, 16, 27, 28, 30, 31, 33, 34, 36, 37 0.347 0.347 0.347 0.347
7 39,40, 41, 42 01 01 01 0.1
8 43, 46, 49, 52, 55 3.131 3131 3131 3131
9 57,58, 59, 60, 61, 62 0.1 01 0.1 0.1
10 64, 67,70, 73, 76 4.805 4.805 4.805 4.805
11 44, 45, 47, 48, 50, 51, 53, 54, 65, 66, 68, 69, 71, 72, 74, 75 0.44 0.347 0.44 0.44
12 77,78, 79, 80 0.347 01 01 01
13 81,84, 87, 90, 93 5.952 5.952 5.952 5.952
14 95, 96, 97, 98, 99, 100 0.347 01 01 01
15 102, 105, 108, 111, 114 6.572 6572 6572 6.572
16 82, 83, 85, 86, 88, 89, 91, 92, 103, 104, 106, 107, 109, 110, 112, 113 0.954 0.44 0539 0539
17 115,116, 117, 118 0.347 0539 01 0.347
18 119, 122, 125, 128, 131 8.525 7192 8.525 8.525
19 133, 134, 135, 136, 137, 138 01 0.44 0539 0.347
20 140, 143, 146, 149, 152 9.3 8525 9.3 9.3
21 120, 121, 123, 124, 126, 127, 129, 130, 141, 142, 144, 145, 147, 148, 150, 151 1.081 0.954 0.954 0.954
22 153, 154, 155, 156 0.347 1174 01 0.954
23 157, 160, 163, 166, 169 13.33 10.85 10.85 10.85
24 171, 172, 173, 174, 175, 176 0.954 0.44 0.954 0.347
25 178, 181, 184, 187, 190 13.33 10.85 13.33 13.33
26 158, 159, 161, 162, 164, 165, 168, 179, 180, 182, 183, 185, 186, 188, 189 1.764 1.764 1333 1.488
27 191, 192, 193, 194 3.813 8525 7.192 6.572
28 195, 197, 198, 200 8.525 13.33 10.85 10.85
29 196, 199 17.17 13.33 14.29 14.29

Weight(lb) 2716390 2807549 2719049  27289.91
Number of structural analyses: 5000 11156 5000 6255

Table 16. Statistical comparison of results for the 200-bar benchmark truss

Algorithm Best (Ib) Mean (Ib)  Worst (Ib) SD (Ib) NFEs
ADS [5] 27190.49 28146.1 N/A 786.6 5000
ESASS [72] 28075.488 N/A N/A N/A 11156
IGA [73] 28544.014 N/A N/A N/A 51360
HACOHS-T [74]  28030.20 N/A N/A N/A N/A
FA [38] 28250570 29871.915 33726.494  481.590 > 20000
EFA [38] 27421.944 28434603 30180.343  749.0776 > 5000
DE [37] 27901583  28470.114  29652.891 457.467 45740
aeDE [37] 27858.500 28425.871  29415.000 481.590 11644
FWA [48] 27777.95 29077.12 N/A 708.69 10000
IFWA [48] 27449.25 27859.42 N/A 380.55 10000
BH [75] 30124.50  31375.009 N/A 865.909 15000
IBH [75] 27337.80 28780.12 N/A 745.376 15000
MV [75] 2909350  31140.377 N/A 1077.402 15000
IMV [75] 2728135  28771.426 N/A 624.026 15000
DAJA [40] 27282.57 27878.27 28108.61 282.88 > 10,783
HHS [18] 27163.59 28159.59 N/A 1149.91 5000
ESDA 27289.909 27833.746  28423.663  267.2697 10000
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3.6. Example 6: 354-Bar Dome Truss

The 354-bar steel dome truss is illustrated schematically in Figure 7. In this example, the bars are treated as individual
elements without grouping, resulting in 354 design variables. Material properties, stress constraints, and the section list
are identical to those used in the 117-bar cantilever truss and 130-bar transmission tower. The displacement of the dome
tip is limited to 2 cm. All unsupported joints are subjected to a 15 kN load in the negative z-direction, and an additional
100 kN load is applied to the topmost joint in the same direction.

(b) side view (c) top view

Figure 7. Schematics of the 354-bar dome truss, (a) 3D view, (b) side view, and (c) top view

This problem was previously investigated by Azad [68]. ESDA was implemented for this example with a population
size of 500 samples over 400 iterations. The findings in Table 17 offer clear evidence of the advantages of ESDA over
both classical and recently proposed metaheuristics. Despite being tested under the same computational budget of
200,000 NFEs, competing methods such as ADS, GEBB, and GADS [68] could only achieve best solutions between
13,614 and 13,967 kg, with average results typically above 14,000 kg and worst outcomes often exceeding 15,000 kg.
Even hybrid variants, including GADS_EBB and GADS_MBB [68], provided no tangible improvement and in fact
introduced considerable variability, as reflected in standard deviations well above 500 kg. ESDA, by contrast,
consistently delivered superior solutions: its best design of 13,471.86 kg improves upon the nearest competitor (GADS
[68]) by more than 140 kg, while its mean value (13,694.00 kg) and worst-case result (13,841.05 kg) remain lower than
the best solutions of all other algorithms. Importantly, ESDA achieved this with an exceptionally small standard
deviation of just 89.13, highlighting its ability to reproduce high-quality results reliably across independent trials. In
practical terms, these results illustrate that ESDA not only finds lighter designs but also does so with far greater stability
and predictability than its peers, which makes it a compelling framework for tackling larger-scale and complex structural
optimization problems.

Table 17. Statistical comparison of results for the 354-bar truss dome

Algorithm Best (kg) Mean (kg)  Worst (kg)  SD (kg) NFEs
ADS [68] 13945.55 14469.43 15072.98 339.01 200000
EBB-BC [68] 14021.88 14715.87 16059.02 561.71 200000
MBB-BC [68] 15279.94 16057.03 17137.68 580.64 200000
GADS [68] 13614.55 14064.70 14702.13 337.08 200000
GEBB [68] 13966.80 14426.17 14871.37 298.6 200000
GMBB [68] 14672.29 16929.17 19595.92  1601.22 200000

GADS_EBB [68] 13653.34 14249.88 15358.57 534.79 200000
GADS_MBB [68] 13954.33 14774.50 16227.15 776.90 200000
GADS_EBB_MBB [68] 13780.96 14712.15 15926.40 632.00 200000
ESDA 13471.86 13694.00 13841.05 89.13 200000
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3.7. Example 7: 942-Bar Tower Truss

The last design example in this study is the 26-story, 942-bar tower truss. As shown in Figure 8, the tower consists
of three sections, with a total of 59 member groups. These groups have continuous sizing variables ranging from 0.1 to
200 in?, The elastic modulus and material density for this problem are 10,000 ksi and 0.1 Ib/in?, respectively. The bars
are subjected to a maximum allowable stress of 25 ksi in both tension and compression, and the displacement of the
topmost four joints is limited to 15 inches in the X, y and z directions. The tower is symmetric around the x and y axes.
The loads applied in the X, y, and z directions are summarized as follows:

(i) In the x-direction:; +1.5 kips on the nodes located on the left side (including the center nodes) and +1.0 Kip on
the right side;

(ii) In the y-direction: +1.0 kip for all nodes;

(iii) In the z-direction: -3.0, -6.0, and -9.0 kips on the nodes located in the first, second, and third sections,
respectively.
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Figure 8. Schematic of the 942-bar tower truss, (a) 3D view, (b) side view, and (c) top view

Ambiguity in the description of the x-direction loads on the central nodes (x = 0) has resulted in varying treatments
of this problem in the literature, yet prior studies have compared optimum solutions without properly accounting for
these differences. To ensure a fair comparison, the reported optimum designs were reanalyzed using our structural
analysis code and only results corresponding to the specified load case are presented.

This problem has been previously studied using several algorithms, including AES [76], SA [77], JAY A [24], GNMS
[78], FFA [79], and MAISA [80]. ESDA was implemented for this example with a population size of 400 samples over
250 iterations. The reported best designs and statistical comparison of the solutions produced by various algorithms are
presented in Tables 18 and 19, respectively. Although Gandomi et al. [81] reported an optimum result of 134,119.6 Ib,
the problem was somewhat modified since the center joint (x=0) was subjected to a load of +1.0 kip, rather than +1.5
Kips as considered in this study. Among the six feasible results reported in the tables, the designs produced by ESDA
and JAY A [24] are the most competitive. JAY A shows evolutionary behavior, in which a higher number of iterations is
performed using a lower population size, whereas ESDA implements a higher number of structural analyses to ensure
convergence to the best available design. The results show that ESDA improves upon the best design of JAY A by more
than 120 1b. ESDA was also able to reach JAY A’s best solution in 113 iterations, indicating faster convergence compared
to JAYA. While ESDA slightly enhances the mean result achieved by JAYA, it exhibits a marginally higher standard
deviation due to the inherent characteristics of distribution-based algorithms.
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Table 18. Comparison of different designs for the 942-bar tower truss problem

Variable Index SA[771 GNMS[78] AES[76] JAYA[24] ESDA
1 1 2.7859 1.02 1.045258 1.004178
2 1 1.3572 1.037 1.00163 1.000709
3 3 5.0362 2.943 3.549999 3.246822
4 1 2.2398 1.92 1.92459 1.835223
5 1 1.2226 1.025 1.000032 1.000863
6 17 14.9575 14.961 15.33708 14.966988
7 3 2.9568 3.074 3.108905 3.071568
8 7 10.9038 6.78 6.589077 6.945463
9 20 14.4177 18.58 16.56966 17.292298
10 1 3.7090 2.415 2.553777 2.703624
11 8 5.7076 6.584 6.433946 6.099534
12 7 4.9264 6.291 5.812166 5.675526
13 19 14.1751 15.383 15.83688 15.490186
14 2 1.9043 21 2.196943 2.233097
15 5 2.8101 6.021 4.324553 4.317106
16 1 1.0000 1.022 1.000047 1.000823
17 22 18.8070 23.099 21.97377 21.995683
18 3 2.6151 2.889 2.674909 2.704847
19 9 12.5328 7.96 8.722646 8.302610
20 1 1.1314 1.008 1.000032 1.000700
21 34 30.5122 28.548 29.89861 29.400846
22 3 3.3460 3.349 3.249223 3.319940
23 19 17.0450 16.144 16.99562 16.477752
24 27 18.0785 24.822 25.51041 25.187918
25 42 39.2717 38.401 37.63407 37.336824
26 1 2.6062 3.787 1.220731 1.616201
27 12 9.8303 12.32 11.94408 11.823109
28 16 13.1126 17.036 16.515 16.451946
29 19 13.6897 14.733 14.82289 14.539647
30 14 16.9776 15.031 15.98357 15.717375
31 42 37.6006 38.597 38.51425 38.247991
32 4 3.0602 3.511 3.323571 3.279045
33 4 5.5106 2.997 3.189674 3.212573
34 4 1.8014 3.06 2.82237 2.707864
35 1 1.1568 1.086 1.001323 1.000178
36 1 1.2423 1.462 1.002606 1.000657
37 62 62.7741 59.433 59.53012 59.054679
38 3 3.3276 3.632 3.250054 3.293982
39 2 4.2369 1.887 2.068093 1.871094
40 4 1.7202 4.072 3.084539 3.193299
41 1 1.0148 1.595 1.000717 1.000245
42 2 5.4628 3.671 1.239938 1.935353
43 77 78.0094 79.511 79.89118 79.706585
44 3 3.2206 3.394 3.299488 3.286241
45 2 3.5934 1.581 1.964128 1.713053
46 3 4.7668 4.204 3.489718 3.481911
47 2 1.1531 1.329 1.000032 1.001021
48 3 2.1698 2.242 1.000032 1.001372
49 100 99.6406 96.886 97.18147 95.707246
50 4 4.1469 3.71 3.322281 3.377505
51 1 2.1600 1.055 1.002997 1.574221
52 4 4.1499 4.566 3.651629 3.787710
53 6 11.2070 9.606 7.226228 9.454469
54 3 11.0904 2.984 4.544599 7.083401
55 49 35.9499 45.917 41.41107 42.491303
56 1 2.1937 1 1.002207 1.000471
57 62 66.1705 62.426 64.80352 62.769092
58 1 3.3402 2.977 2.525618 3.873196
59 3 4.0525 1 1.000054 1.034346
Weight(Ib) 143436 142295.8 141241 137344.356  137222.24
Number of structural analyses: 39834 N/A 150000 58274 99801
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Table 19. Statistical comparison of results for the 942-bar tower truss problem

Algorithm Best (Ib) Mean (Ib) Worst (Ib) SD (Ib) NFEs
AES [76] 141241 N/A N/A N/A 150000
SA[77] 143436.02 N/A N/A N/A N/A
JAYA [24] 137344.356 137379.616 137420.440 38.346 ~70000
GNMS [78] 142295.75 N/A N/A N/A N/A
FFA [79] 138878 139682 142265 1098 50000
MAISA [80] 142287.47 142994.38 N/A 641.27 217500
ESDA 137222.24 137356.60 137581.43 91.13 100000

4. Conclusion

In the present study, the Elitist Stepped Distribution Algorithm (ESDA), a recently developed distribution-based
metaheuristic, is introduced, implemented, and rigorously evaluated for truss sizing optimization problems, marking its
first application in the structural optimization literature. The performance of ESDA in structural optimization was
investigated through a series of test problems: (i) 25-bar truss, (ii) 72-bar truss, (iii) 117-bar cantilever truss, (iv) 130-
bar transmission tower, (v) 200-bar truss, (vi) 354-bar dome truss, and (vii) 942-bar tower truss. These examples were
specifically selected to cover a broad spectrum of problem characteristics, including (i) both discrete and continuous
solution sets, (ii) grouped and ungrouped design variables, and (iii) single and multiple loading cases with both
displacement and stress constraints. This diverse selection of problems was intended to simulate real-world structural
design challenges, providing a robust evaluation of ESDA’s effectiveness across a wide range of optimization scenarios.

ESDA demonstrated a strong performance by achieving the previously reported optimum design weights for the 25-
bar and 72-bar benchmark trusses with fewer structural analyses and lower standard deviations compared to most
metaheuristics in the literature. Similarly, for the 200-bar benchmark truss, ESDA achieved the best mean weight and
standard deviation across 30 independent runs. The algorithm further demonstrated its efficacy on complex problems
with a large number of design variables, such as the 117-bar cantilever truss, 130-bar transmission tower, and 354-bar
dome truss, where it improved upon previously reported results. One-sided Welch’s t-tests with 95% confidence
intervals confirmed that ESDA achieved significantly lower mean weights than the compared algorithms on these
benchmarks, with all confidence intervals lying entirely in the negative domain. Notably, for the 942-bar tower truss
design problem involving numerous bars and grouped design variables, ESDA set a new optimum design, surpassing
the best existing solution. However, the statistical test indicates that the improvement over the literature-reported best
performance of JAY A was not statistically significant.

The solutions produced by ESDA underscore the algorithm's robustness and efficiency in truss sizing optimization
problems. Notably, as the number of design variables and the complexity of the solution set grow, ESDA has shown a
distinct advantage in enhancing solution quality compared to other metaheuristics applied to similar problems. Unlike
evolutionary algorithms, which heavily depend on numerous iterations to achieve optimal results, ESDA benefits from
a larger sample size within a moderate number of iterations as the problem's complexity increases. This approach
enhances the algorithm's exploration capability, enabling a more thorough search across the solution space. Nonetheless,
scaling ESDA to problems involving thousands of design variables and highly nonlinear constraints may present
challenges, particularly in terms of sampling efficiency, constraint-handling, and computational cost. Addressing these
aspects through adaptive sampling strategies, hybridization with local search, and adaptive or multi-objective
mechanisms could enhance its applicability to such large-scale settings. Taken together, these outcomes highlight
ESDA’s scalability while also indicating promising avenues, including its extension to truss layout and topology
optimization, as well as to alternative structural systems such as frames and shells, which would further broaden its
utility in structural design optimization.
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