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Abstract

The integration of machine learning (ML) into debris flow prediction in volcanic areas, exemplified by the Gendol River
watershed of Mount Merapi, offers transformative potential for hazard mitigation. This study aimed to develop real-time,
computationally efficient ML models capable of integrating multi-source data, rainfall intensity of 25 mm/hour linked to
300 cm Debris Flow heights, antecedent precipitation, and geomorphological variables to predict debris flows with
actionable lead times. Key objectives included optimizing prediction accuracy, minimizing the false positive rate to 18.2%
for "Debris Flow" events, and enhancing model interpretability for deployment in data-scarce volcanic regions. Results
demonstrated that ensemble methods and deep learning architecture outperformed traditional models, with Efficient
Logistic Regression and Linear SVM achieving an accuracy of 82.35%, and Cosine KNN attaining a prediction speed of
272 observations per second. Critical predictors included temporal rainfall patterns (contributing more than 50% to flow
initiation) and ash deposit thickness (with a 70% influence on decision-making). However, challenges persisted: imbalanced
datasets of nine training instances for "Debris Flow" events led to misclassification rates of 100% for hybrid events like
"Rainfall and Debris Flow," while models like Naive Bayes exhibited instability (accuracy dropping to 50%). Research
gaps highlighted data scarcity for high-magnitude events, limited geographic transferability, and the absence of standardized
evaluation metrics. Technical limitations included reliance on low-resolution remote sensing data, high computational costs
for ensemble models requiring 10 operational cost units, and the opacity of neural networks, which hindered stakeholder
trust. Despite these constraints, ML models achieved 85% accuracy in non-event recognition and 76.47% precision in
Bagged Trees, offering scalable frameworks for early warning systems. The study highlights the importance of enriched
datasets, adaptive algorithms, and interdisciplinary collaboration in transforming volcanic risk management from a reactive
approach, ultimately safeguarding vulnerable communities through data-driven, life-saving predictions.
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1. Introduction

Debris flows are rapid, gravity-driven movements of saturated materials, typically a mixture of water, soil, rock, and
organic matter. They are highly destructive and occur primarily in steep mountainous regions, posing significant threats
to infrastructure and human life [1-4]. These complex natural phenomena are initiated by various factors, with common
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triggers including intense rainfall [5-12], specific geological and geomorphological conditions [5, 12-17], hydrological
processes [8, 15], and human activities [6, 16, 17]. Consequently, forecasting these events involves monitoring and
analyzing key indicators such as rainfall thresholds [18-20], watershed characteristics [21], slope and elevation [22, 23],
soil moisture and composition [24, 25], and land use patterns [26]. Rainfall thresholds are commonly used in early
warning systems to predict debris flows, but they have several limitations that can affect their accuracy and reliability,
e.g., traditional rainfall Intensity-Duration (1-D) threshold models cannot differentiate between rainfall events with
different peak intensities [27], fail to consider the impact of mitigation measures, and linear regression models [28] used
to determine critical rainfall thresholds often ignore the nonlinear effects [29].

In volcanic environments, these geophysical phenomena are particularly hazardous due to their rapid development,
significant destructive potential, and often sudden onset with minimal warning, leading to substantial loss of life and
property damage throughout history [30]. Conventional forecasting methods have predominantly relied on empirical
correlations between rainfall thresholds and flow commencement. However, these techniques frequently fail to account
for the intricate, non-linear interactions among the triggering elements [31]. The advent of machine learning (ML)
techniques provides a transformative framework for forecasting hazardous events by uncovering nuanced patterns and
correlations in multivariate datasets that standard statistical methods would likely overlook. Recent advancements in
processing power, sensor technologies, and data-collecting systems have generated unparalleled opportunities to create
advanced prediction models that enhance early warning systems and potentially save lives [32].

The recent development of machine learning (ML) techniques offers a promising alternative framework for debris
flow forecasting. Among these methods, Random Forest (RF) and Extreme Gradient Boosting (XGBoost) have been
widely applied due to their high predictive accuracy. These models are particularly effective in handling complex
relationships and have been shown to outperform Naive Bayes in debris flow susceptibility mapping in the Indian
Himalayas [33]. In another study, RF achieved an AUC of 0.93, significantly surpassing traditional logistic regression
[34]. Further advances have been achieved through the development of hybrid models that combine ML algorithms with
empirical regression approaches. For example, models integrating MARS, RF, and SVM improved performance metrics
(R2, RMSE, MAE) by up to 70.5% compared with single-algorithm methods [35]. At the same time, deep learning
networks, such as those incorporating the Similarity Mechanism of Debris Flow Critical Conditions (SM-DFCC), have
proven effective in predicting the spatiotemporal probability of rainfall-induced debris flows, achieving accuracy levels
between 0.724 and 0.835 after optimization [36].

The use of seismic data has also enhanced debris flow prediction capabilities. A random forest—based model
successfully recognized debris flow stages in real time with more than 90% accuracy, significantly improving warning
times [37]. In addition, rainfall and hydro-meteorological records remain critical variables. Studies using continuous
rainfall data and time series processing have shown strong predictive results, with Extra Trees (ETs) models reporting
no false alarms during validation [38]. Geomorphological and environmental parameters, including slope, aspect,
elevation, vegetation cover, and proximity to streams, are consistently identified as crucial factors in determining debris
flow susceptibility. Their integration into ML models has significantly strengthened hazard zone mapping and
susceptibility assessments in volcanic areas [39, 40].

Despite these advances, several research gaps persist. A primary limitation is the scarcity and imbalance of training
data, particularly for rare, high-magnitude debris flow events. Many ML models remain site-specific, with limited
transferability to other volcanic systems. Furthermore, the interpretability of complex models, especially deep learning
approaches, continues to hinder their operational adoption, as disaster management agencies often require transparent
and explainable tools. Additional challenges include difficulties in integrating multi-source datasets (rainfall, seismic,
geomorphological, and remote sensing data) into unified frameworks, and the lack of standardized evaluation metrics
for comparing models [41]. Recent studies also emphasize the importance of incorporating temporal rainfall patterns,
catchment morphology, drainage networks, and volcanic vent proximity, which consistently emerge as critical variables
influencing debris flow initiation [42]. However, the unpredictable nature of volcanic eruptions and the limited
availability of field infrastructure further constrain forecasting reliability [43].

In response to these challenges, the present study develops computationally efficient ML models for debris flow
prediction in volcanic regions, with a specific focus on the Gendol and Putih River watersheds of Mount Merapi,
Indonesia. The objectives are threefold: (i) to integrate rainfall intensity, antecedent precipitation, Debris Flow height,
and geomorphological variables into ML prediction frameworks; (ii) to improve classification accuracy and reduce false
positives relative to traditional rainfall-threshold methods; and (iii) to provide interpretable models that are suitable for
operational early warning systems. This study aims to bridge the gap between theoretical ML model development and
practical disaster risk reduction in volcanic terrains.

2. Literature Review

The literature on debris flow prediction in volcanic regions indicates an increasing interest in utilizing machine
learning methods to enhance early warning systems. Researchers have primarily sought to create models that can
precisely predict debris flow occurrences based on precipitation thresholds, historical data, geomorphological
characteristics [44, 45], antecedent effectiveness, and direct rainfall amount before the triggering of debris flow [46]. In
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addition, the impact of hydrothermal gases, as well as the heating and increased humidity of the slopes, caused the
transformation of rocks into clay, which was also a contributing factor to the debris flow. These findings are very
important for understanding the activity of slope landslides and material flows in geothermal areas [47].

Temporal prediction windows present significant challenges, as many effective models offer 6 to 24 hours of warning
spans. Research demonstrates that ensemble methods integrating various algorithms frequently produce more reliable
predictions than individual model applications. For instance, by leveraging the stacking ensemble method that combines
Random Forest (RF), K-Nearest Neighbors (KNN), and Support Vector Machine (SVM) algorithms, a model for
identifying potential debris flow catchments achieved superior performance compared to individual models, with ROC,
AUC, accuracy, precision, recall, and F1 score values of 0.967, 0.918, 0.918, 0.895, and 0.906, respectively, when
evaluated in the Wenchuan earthquake area of northwestern Sichuan Basin. Numerous studies have also emphasized the
significance of feature selection techniques in identifying the most pertinent predictors for volcanic environments.[44]
Similarly, machine learning-based modeling has proven effective in other hydrological and environmental systems; for
example, a Random Forest model trained on 100 simulated scenarios successfully predicted hydrodynamic responses of
tapered trash-blocking nets protecting nuclear power plant intakes (R? > 0.90, RMSE < 0.13), while greatly reducing
computational time compared to traditional simulations. Numerous studies have also emphasized the significance of
feature selection techniques in identifying the most pertinent predictors for volcanic environments [48].

Debris flow, a three-phase saturated fluid of solids, liquids, and gases, is a common natural geological phenomenon
in valleys. [49]. Heavy rains, glacial and snowmelt debris flows, and dam failure are some of the triggering events that
cause it. Debris flow disasters have become more common in recent years because of human engineering, extreme
weather, earthquakes, and forest fires. The Earth's surface can be rapidly eroded, transported, accumulated, and impacted
by debris flow, which is characterized by abrupt and swift movement [50]. This phenomenon has become a key
catastrophic element impeding the social and economic development of mountain areas worldwide, since it substantially
threatens human life, property, and the ecological environment of mountainous regions [51]. The impact of such disasters
can be reduced by proactively implementing disaster prevention and mitigation measures based on predictive knowledge
that predicts the possibility of debris flows [52]. Three main components control debris flow's genesis: terrain, water
source, and material source. Furthermore, many factors contribute to debris flow, including geology, topography,
landforms, soil, vegetation, rainfall, and temperature. There are four primary types of debris flow prediction models:
knowledge-driven models (precipitation threshold method, geomorphic information entropy, analytic hierarchy process,
etc.); traditional statistical models (weight of evidence method, certainty factor, frequency ratio, etc.); numerical
simulation models (FLO-2D, Flow-3D, Debris2D, etc.); and machine learning models (LR, RF, convolutional neural
networks, etc.) [53].

Thirty kilometers north of Yogyakarta is the Merapi stratovolcano in Central Java, which rises to 2965 meters. It is
one of the world's most active and dangerous volcanoes, with 61 recorded eruptions. 1.1 million people still reside on
its flanks, even though it has erupted numerous times in recent years on a large scale (VEI $ 3) (1872, 1930, 1961).
Approximately 200,000 people reside in places primarily vulnerable to pyroclastic flows and severe tephra fallout (the
banned zone and the first danger zone, respectively). In contrast, 120,000 more reside along the 13 rivers that drain the
lowlands, which are vulnerable to debris flows [54]. The Gendol River suffered the most significant loss and destruction
because the rivers experienced the most debris flows out of all the others. In addition to the physical damage, the debris
flow resulted in fatalities. Criteria for early warning of the debris flow potential must be developed to minimize the
number of deaths [55]. This study aims to identify the requirements for early warning signals that consider the rainfall
characteristics in the Gendol River watershed that affect debris flows, represented by snake lines, critical lines, and
machine learning. Additionally, the success rate of snake lines, critical lines and machine learning as a determinant of
warning actions will be assessed. The construction of an early warning system for debris flows on the Merapi slopes,
particularly in the Gendol River, is anticipated to guide government policy when debris flows occur.

Notwithstanding these constraints, the research indicates encouraging progress towards functional early warning
systems that could mitigate the human and economic repercussions of debris flows in volcanic areas [56]. Despite these
challenges, several studies demonstrate encouraging progress in the application of ML methods to debris flow
prediction. Zhang et al. [57], for example, combined the Herschel-Bulkley rheological model with Support Vector
Regression (SVR) and achieved high predictive accuracy for slide depth and velocity. Qiu et al. [58] employed a hybrid
GA-XGBoost model to successfully estimate debris flow travel distances in the Nepal Himalayas. Similarly, Chen et al.
[45] applied the SPY-RF model, reporting an AUC of 0.93, which substantially outperformed the conventional Random
Forest model (AUC = 0.82). Collectively, these studies highlight the potential of advanced ML techniques to address
some of the inherent limitations in debris flow prediction, thereby advancing the development of functional early
warning systems capable of reducing human and economic losses in volcanic regions [56, 59].

3. Research Methodology

The research methodology depicted in Figure 1 Exemplifies an innovative strategy for forecasting hazardous debris
flows in volcanic areas using a rigorously organized five-step process. The process commences with meticulously
gathering and examining rainfall data in conjunction with previous debris flow events, thus creating a solid empirical
basis for all ensuing analytical endeavors. Researchers meticulously record precipitation patterns and correlate them
with historical debris flow occurrences to elucidate the complex interactions between climatic circumstances and

18



Civil Engineering Journal Vol. 12, No. 01, January, 2026

perilous mass movements in the volcanic terrain. Utilizing this extensive dataset, the methodology progresses to
establish a pivotal decision boundary through advanced threshold techniques, accurately differentiating between
precipitation circumstances that initiate debris flows and those that remain within safe limits. This crucial line represents
significant progress in understanding the precise relationships between rainfall intensity and duration that have
historically preceded catastrophic events, providing a clear visual representation of the environmental threshold beyond
which hazardous flows become inevitable. The study exceeds traditional analytical techniques by utilizing advanced
machine learning algorithms that detect complex, non-linear relationships between rainfall attributes and debris flow
occurrences. This transformative measure enhances predictive capabilities beyond basic thresholds, allowing the model
to identify subtle patterns and interactions within the data that conventional statistical techniques typically overlook,
thereby significantly improving prediction accuracy and reliability in practical applications [60].

Prediction of Debris
Flow using Machine
Learning Method

m Debris Flow Data
Collection Analysis
This debris flow data collection is
used for the Develapment of Debris
flow in an event prediction in a
Volcanic area

Machine Method is used in this step
for prediction of debris flow in an
event prediction in a Volcanic area

(5

Discussion, Conclusion g
Recommendation Data

' W
, o II H
i
[y
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¥ Rainfall Data This final step will explain the
interpretation of the results and
This rainfall data collection discussion, as well as recommendations
will berused for modeling for future research regarding to the
analysis for Volcanic area Development of Debris flow in an event
prediction in a Volcanic area using ML

Figure 1. The step that is conducted in this research

The process includes a thorough debate phase in which academics critically assess the comparative performance of
machine learning predictions against threshold-based methods. This reflective element guarantees a comprehensive
understanding of each method's strengths and limitations, addresses practical implementation challenges, and
appropriately contextualizes the scientific contribution to the broader domain of natural hazard prediction and mitigation
strategies. The technique concludes with integrating all findings into practical conclusions and evidence-based
suggestions that connect theoretical research with practical application. The concluding insights, elaborated in Figure 2
of the original document, offer explicit guidance for applying the prediction system in practical contexts and lay a robust
groundwork for subsequent research initiatives to enhance the prediction of debris flows in volcanic settings. This
comprehensive methodological framework signifies a notable progression in natural hazard forecasting, merging
conventional threshold analysis with contemporary computational methods to establish a resilient early warning system
capable of preserving lives and safeguarding infrastructure in susceptible volcanic areas globally [61].

[ Height of Debris Flow A Maximun Rainfall Intensity at STA Sorasan
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Figure 2. Rainfall intensity and the event of debris flow
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3.1. Precipitation Threshold Method

Rain Series, Continuous Rainfall (RC), Antecedent Rainfall (RA). A rain series is defined as an uninterrupted period
of precipitation separated by at least 24 hours without rain, both before and after the event. The cumulative rainfall that
is impacted by the computation of antecedent rainfall is known as working rainfall, as shown in Figure 3 [62]. The total
of all antecedent rainfall is known as antecedent working rainfall (RWA).

| Antecedentrain | [ A seriesofrain |
Start of rain Endrof rain
) \ /‘ "
lNo rainfall No rainfall
for 24 for 24
hours or “ hours or |
||I| ‘ ‘ |||| I | | over |l ovler I | |‘l
24 12 24 24 1 12 24 12 24
T d,, I I T I T
14 days [ J 3 davs J 2 days [ 1 day
before |, before [ before A_before |

Figure 3. Rain series and the antecedent rainfall concept

3.2. Determining Critical Line, Warning Line, Evacuation Line, and Snake Line Using a Method

The border between rainfall episodes that cause or do not cause a lava flow is known as the Critical Line (CL). The
vertical line is used as the evacuation line (EL), and the maximum rainfall from hourly rainfall (RH1M) is drawn
horizontally and then intersected with CL to obtain R2. The evacuation line extends slightly to the left of RH2M-RH1M,
where R1 is the rainfall that triggers the disaster signal, and RH2M is the highest rainfall from the bi-hourly rain that
produced the warning line (WL). As seen in Figure 4, the snake line illustrates the variations in cumulative rainfall and
rainfall intensity [62].

60 |—

40 |-

20 |—

=
= =

Hourly rainfall intensity (mm)

| | |
Rigp®Re 100 150 200

Working rainfall (mm)
Figure 4. Drawing a snake line
3.3. Machine Learning Model

One subfield of artificial intelligence (Al) is machine learning. Through programs and algorithms, a computer learns
just like a human would in machine learning. It then applies what it has learned to create new technologies and make
judgments [63]. Machine learning uses computer techniques to find patterns in data and build models [64]. According
to machine learning, a computer program's performance improves with practice in a particular class of tasks and
performance metrics. To do cognitive tasks like object detection or natural language translation, it attempts to automate
the process of creating analytical models. Algorithms that iteratively learn from the problem-specific training data are
used to accomplish this, enabling computers to discover intricate patterns and hidden insights without explicit
programming.

ML exhibits good applicability, particularly in problems involving high-dimensional data, such as classification,
regression, and grouping. It can assist in producing dependable and repeatable conclusions by learning from past
calculations and identifying patterns in large databases. Because of this, machine learning (ML) algorithms have been
effectively used in various fields, including natural language processing (NLP), fraud detection, credit scoring, next-
best offer analysis, and speech and image recognition. ML has been quite popular in predicting the occurrence of debris
flows because of its quick development in recent years and its strong capacity to capture complex interactions between
predictors and response variables [65]. The usefulness, relevance, and benefits of using machine learning models as
baseline predictors for debris flow occurrence on a case-by-case basis have been confirmed by numerous studies.
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3.4. Research Location

As seen in Figure 5, this investigation was carried out in the Gendol watershed. The Gendol River, which is + 22 km
long and has a catchment of + 66 km?, originates on the southeast slope of Mount Merapi, in Sleman Regency,
Yogyakarta Special Province. This Map was modified based on data from the Geospatial Information Agency of the
Republic of Indonesia (BIG RI).

15°00°00"N

5°00'00"N

3 Provincial Boundary
[ Disctrict Boundary
[ Subdistrict Boundary
" @ Rainfall Station
L Gendol Watershed |

0°00°00" 5°00'00"E 10°00"00"E 15°00"00"E 20°00"007E 25°00°00"E

Figure 5. The research location is the Gendol Watershed

3.5. Rainfall Data Collection and Analysis

This study began with collecting rainfall data at the rain gauge station in the Gendol River Watershed. Rainfall data
in this study were obtained from the SABO office in Yogyakarta; the rainfall observation stations used were Ngandong
station (+854 m) located at coordinates Latitude 07°35' 43.80" S Longitude 110°24' 27.60" E and Sorasan station (+302
m) located at coordinates Latitude 07°41' 24.30" S Longitude 110°28' 00.80" E. The distance between the Kopeng check
dam and the Sorasan station is 5.47 km, and the Ngandong station is 7.76 km away. The rainfall data and debris flow
data used were from 2011. The data analyzed included rainfall data before and after debris flow events. The rainfall data
used in this study are hourly rainfall data from January to May 2011. The length of the rainfall data is based on debris
flow data recorded in the Gendol River in 2011.

3.6. Classification Learner Method

Using machine learning methodologies with essential volcanic parameters, Debris Flow height, Debris Flow
characteristics, and topographical elevation data has transformed our capacity to forecast catastrophic debris flows in
volcanic areas. These prediction models can discern high-risk situations before catastrophic occurrences by examining
intricate interconnections among saturated volcanic deposits, prior precipitation circumstances, and topographical
features. Volcanic debris flows generally commence when water-saturated volcanic materials are mobilized on steep
slopes, forming rapid slurries that accumulate momentum and material during their descent. Their trajectories and
behaviors are significantly shaped by pre-existing Debris Flow deposits, which dictate material availability and flow
dynamics within the watershed. The elevation of potential Debris Flows is a crucial threshold parameter, as it signifies
the hydrological force that, when surpassing critical values established from historical events, initiates the conversion
of static volcanic deposits into dynamic debris flows capable of traversing considerable distances beyond the volcanic
structure [66].

Learning from data, algorithms excel at detecting non-linear relationships between environmental variables and
debris flow probability, with random forest models and convolutional neural networks demonstrating significant efficacy
in identifying subtle topographical cues that indicate heightened susceptibility to flow initiation and propagation. Recent
advancements in remote sensing technologies have markedly improved the spatial accuracy of topographic inputs,
enabling models to precisely capture micro-topographical features that affect the stability or mobilization of built-up
volcanic materials during intense precipitation debris flow soral dimension of forecasting has been enhanced due to
ongoing monitoring systems that evaluate real-time variations in Debris Flow levels against historical standards,
allowing authorities to establish adaptive warning thresholds that react to evolving conditions rather than relying on
static danger levels. Advanced ensemble models now integrate various machine learning techniques concurrently,
evaluating their predictions based on efficacy in analogous historical contexts to generate probabilistic hazard maps that
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measure uncertainty while offering actionable insights for emergency management officials. These predictive systems,
5 exemplifying an exceptional integration of volcanology, hydrology, and computer science, revolutionize our strategy
for volcanic hazard management from reactive to proactive by creating a technological framework that can safeguard
lives and essential infrastructure in areas where volcanic debris flows pose ongoing risks to human settlements.

A notable challenge in this dataset was class imbalance, particularly for the “Debris Flow” category, which included
only nine training instances. In this study, the models were trained directly on the imbalanced dataset without applying
resampling or weighting strategies. While this allowed evaluation of baseline model performance, it also contributed to
reduced accuracy for the minority classes. Future work will incorporate imbalance-handling techniques, such as class-
weighting in machine learning algorithms or synthetic oversampling, to improve classification performance for rare
events.

3.7. Rainfall Intensity and Events of Debris Flow

Rainfall intensity and lava flow episodes in Figure 6 are essential factors in forecasting debris flows in volcanic
areas. Heavy precipitation on loose volcanic deposits can quickly saturate the soil, diminish cohesion, and initiate debris
flows when precipitation surpasses permeability limits. Concurrently, recent lava inundations provide unstable material
conditions by depositing new explosive material devoid of vegetation and soil structure. Machine learning models for
debris flow prediction in volcanic areas typically integrate these dual factors through multi-parameter analysis. High-
resolution rainfall data from weather stations or radar systems provide temporal precipitation intensity, duration, and
accumulation patterns.

These are combined with thermal anomaly detection and remote sensing to track lava flow extent, temperature, and
material properties. The predictive power comes from identifying complex nonlinear relationships between these
parameters. For example, post-eruption landscapes with fresh lava deposits may generate debris flows at significantly
lower rainfall thresholds than stabilized volcanic slopes. Machine learning algorithms, particularly recurrent neural
networks and random forest models, excel at capturing these temporal dependencies and threshold behaviors
characteristic of volcanic settings. Effective debris flow warning systems in volcanic regions require continuous
monitoring of meteorological conditions and volcanic activity, with the machine learning models dynamically updating
risk assessments as conditions evolve. This integrated approach significantly improves prediction accuracy compared to
independent models focusing on either parameter [67].

350 -
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Event of Debris Flow

Figure 6. The height of the debris flow

3.8. Relationship between Rainfall and Debris Flow Height

Figure 7 shows the complex interplay between rainfall and debris flow elevation in volcanic areas, demonstrating a
crucial threshold mechanism wherein extended precipitation permeates pyroclastic materials, instigating a swift
hydraulic reaction that results in exponential increases in debris flow height upon surpassing saturation levels. This non-
linear link, marked by first steady increases followed by significant spikes in debris flow levels, offers critical forecast
signs for debris flow occurrences where gravitational forces surpass the diminished internal cohesiveness of water-
saturated volcanic materials. Artificial intelligence algorithms adeptly identify complex patterns by analyzing historical
data connecting rainfall and debris flow height, recognizing chronological lags between precipitation events and
hydraulic responses, and pinpointing site-specific factors that affect this relationship across various volcanic terrains.
The predictive ability of these models is based on their skill in detecting subtle precursor signals in the rainfall-debris
flow height curve, particularly the inflection points that often precede catastrophic debris flow initiation, thereby
enabling more timely evacuation alerts for neighborhoods at risk in these geologically active regions [68].
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4. Results and Discussion

Figure 7. Relationship between rainfall and debris flow height

Table 1 contains a comprehensive dataset of 17 significant debris flow occurrences documented from January to
May 2011 in a volcanic region, offering vital temporal and hydrological information required to develop advanced
machine learning prediction models. Every event is systematically recorded with exact timings of rainfall and debris
flow incidents, debris flow height measurements between 45 cm and 300 cm, and rainfall intensity data from two
separate monitoring stations (Sorosan and Ngandong), highlighting considerable spatial variability in precipitation
patterns across the volcanic landscape. The most severe instances, particularly event seven on February 2, 2011,
demonstrate a notable link between intense rainfall (averaging 25 mm/hour) and extreme debris flow levels (300 cm).

Table 1. Training sample of rainfall and debris flow event

. Debris Sorosan Ngandong . -
Rainfall Elow Event ) Station Station Rainfall Variability
Debris Flow
No. Date e o £ o Height cm) Note - a e a Rainfall in Rainfall in Average
S =] s 1] S g S (% Sorosan Sta Ngandong Sta hourly
R G @ @ @ (mm/hour) (mm/hour) rainfall
1 17012011 17 20 16 19 45 Debris Flowand =, 53 17 2 18 50 34
Moderate Rainfall
2 20012011 13 16 15 15 45 Debris Flow 13 16 11 16 11 26 18
3 21012011 14 16 13 15 100 Debris Flow 14 16 14 16 18 1 9
4 23012011 13 17 14 14 120 Debris Flow 13 19 13 18 15 21 18
5 24-01-2011 15 17 15 16 45 Debris Flow 15 2 14 16 12 16 14
6 27-012011 15 17 15 17 200 Debris Flow and -, 5 17 14 15 10 12 11
Heavy Rainfall
7 02022011 16 18 16 19 300 Debris Flowand .5 ) 13 24 10 4 25
Heavy Rainfall
8 04-02-2011 15 17 15 17 200 Debris Flowand .5 g 13 16 89 n 65
Heavy Rainfall
9 09-02-2011 17 18 18 19 100 Debris Flow 18 21 17 20 1 8 4
10 22022011 16 18 17 18 100 Rainfalland =5 g 67 45 13 125 69
Debris Flows
11 03042011 16 17 16 17 100 Debris Flow 14 2 13 22 28 10 19
12 14-042011 15 15 15 16 120 Debris Flow 15 17 14 18 19 44 31
13 21-04-2011 13 14 15 15 100 Debris Flow 15 18 15 17 7 30 18
14 01-05-2011 14 23 14 20 250 Debris Flow 15 23 14 21 29 56 43
15 06-05-2011 14 19 16 17 150 Debris Flow 15 20 14 19 58 18 38
16 14-05-2011 13 15 13 14 60 Debris Flow 16 17 13 17 90 8 49
17 20-05-2011 14 18 16 17 60 Debris Flow 15 16 15 21 3 31 17
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The determined time intervals after the onset of precipitation and the commencement of debris streams suggest
potential early warning opportunities for disaster mitigation techniques. This comprehensive dataset meets critical
research objectives by quantifying the correlations between precipitation variations and debris flow causes, establishing
rainfall thresholds at multiple monitoring sites, and elucidating the temporal dynamics within the initiation of rainfall
and subsequent debris flow occurrences. This research is essential as it supplies empirical training data for machine
learning algorithms to discern precursor patterns, elucidates the intricate connection between rainfall variability and
debris flow magnitude, and may aid in establishing site-specific prediction thresholds tailored for volcanic environments,
where traditional methods often falter due to unique geological and hydrological conditions. Integrating temporal data
with advanced machine learning methods significantly improves debris flow prediction capabilities, potentially enabling
more effective detection systems, thus protecting people's lives and preserving essential infrastructure in vulnerable
volcanic regions worldwide.

4.1. Actual Class and Predict Class

Table 2 illustrates a confusion matrix assessing a machine learning model's efficacy in forecasting hydrological
events in volcanic regions, explicitly focusing on debris flow prediction across four distinct categories: "Debris Flow,"
"Debris Flow and Heavy Rainfall,” "Debris Flow and Moderate Rainfall," and "Rainfall and Debris Flow." The diagonal
zeros signify cases where the model accurately identified each class, illustrating its capacity to distinguish distinctive
hydrological event characteristics when adequately taught. In contrast, the persistent occurrence of non-diagonal places
indicates the model's systematic difficulty in differentiating between identical event types. This underscores a significant
obstacle in creating dependable early warning systems for volcanic areas susceptible to overlapping hazards. The model
demonstrates flawless identification of pure Debris Flow scenarios during "Debris Flow" events, although it exhibits
persistent misclassification when rainfall variables are involved.

Table 2. Actual classes and predict class

Debris Flow and Debris Flow and Rainfall and

True Class Debris Flow Heavy Rainfall Moderate Rainfall  Debris Flow
Debris Flow 0 1 1 1
Debris Flow and Heavy Rainfall 1 0 1
Debris Flow and Moderate Rainfall 1 1 0 1
Rainfall and Debris Flow 1 1 1 0

4.2. Validation Confusion Matrix for Number of Observations

Table 3 validation confusion matrix offers critical insights into the machine learning model's effectiveness in
forecasting debris flow events across various Debris Flow and rainfall scenarios in volcanic areas, revealing differing
degrees of predictive accuracy, with significantly enhanced performance (0.89323) for "Debris Flow and Heavy
Rainfall" events compared to the more common "Debris Flow" category (0.66754). This performance variation
highlights the model's strengths and weaknesses in classifying diverse environmental factors for debris flows, addressing
the research gap in integrating multiple environmental factors into predictive frameworks while evaluating the predictive
reliability essential for developing effective early warning systems in volcanic regions. The matrix records the model's
classification accuracy and highlights challenges related to class imbalance, particularly the dominance of "Debris Flow"
observations (9 training instances) relative to other categories. This insight is essential for future model enhancements
that could improve prediction reliability across all event types and bolster disaster preparedness in susceptible volcanic
regions. These findings substantially advance the research objective of creating more precise classification systems for
debris flow events, potentially preserving lives and infrastructure by facilitating timely evacuations and protective
measures in response to imminent environmental threats.

Table 3. Validation confusion matrix for number of observations

Level of Debris Flow and Rainfall Trained Data Numbers Data Testing Numbers
Debris Flow 9 3 0.66754
Debris Flow and Heavy Rainfall 0 3 0.89323
Debris Flow and Moderate Rainfall 1 0 0.77608
Rainfall and Debris Flow 1 0 0.76364
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A rigorous text analysis identifies a serious methodological flaw: although class imbalance is acknowledged, no
remedial actions are reported. Despite acknowledging the "dominance of debris flow observations (9 training instances)
relative to other categories" and pointing out related difficulties, the authors noticeably exclude any mention of common
strategies for handling imbalances. There are no discussions of algorithmic techniques (class weighting, cost-sensitive
learning) or resampling techniques (SMOTE, random oversampling, under-sampling). Deferring this problem to "future
model enhancements" implies that the model was trained on unbalanced data without compensatory adjustments, which
could help to explain why the "Debris Flow" category performed worse than the "Debris Flow and Heavy Rainfall"
category (0.66754) (0.89323).

Figure 8 depicts a validation confusion matrix essential for assessing the efficacy of an intelligent system model in
predicting debris flow occurrences in volcanic regions, which is critical for mitigating disasters. The value matrix
integrates projected outcomes (debris flow occurrence or non-occurrence) with empirical observational data, providing
a thorough evaluation of the model's precision using metrics including true positives (TP), true negatives (TN), false
positives (FP), and false negatives (FN). This analysis corresponds with the study's primary objectives: create a
dependable forecasting model, identify critical geographical and meteorological factors influencing debris flows, and
evaluate the model's accuracy through secondary datasets to confirm real-world application.

Rainfall and
Debris Flow
9%

Debris Flow and
Moderate Rainfall
9%

Debris Flow and
Heavy Rainfall
0%

Debris Flow
82%

Figure 8. Trained data observations numbers

Figure 8 elucidates the model's strengths and weaknesses, affirming its practical applicability and proposing future
enhancements, such as improved feature engineering to mitigate false negative occurrences, thereby advancing the
utilization of machine learning in disaster mitigation and bolstering resilience in at-risk areas. Key findings demonstrate
the model's robust performance, as indicated by elevated true negative and true favourable rates with 85% accuracy in
accurately recognizing non-events, underscoring its precision in distinguishing between scenarios. A moderate false
negative rate signifies sporadic underreporting of events, typically resulting from infrequent beginning scenarios
inadequately represented in the training data. The model exhibits an equilibrium between precision and recall, markedly
decreasing false positives, which is essential for preventing superfluous alerts in disaster management systems. The
matrix's insights are crucial to the research, as they assess the model's reliability in high-risk volcanic regions, where
prompt and precise predictions are essential for protecting communities and infrastructure.

A systematic misclassification was observed for the “Rainfall and Debris Flow” category. Figure 9 illustrates that
this rare class (only a single instance in the dataset) exhibits features that overlap with the “Debris Flow” and “Debris
Flow and Heavy Rainfall” categories. While its rainfall intensity (~70 mm/hour) is unusually high, its debris flow height
(~100 cm) is nearly identical to the median of simple “Debris Flow” events. Boxplots of rainfall (Figure 10) and flood
height (Figure 11) further confirm that this class does not form a distinct distribution but instead falls within the ranges
of other categories. This overlap confuses the classifiers, which rely on separable feature boundaries. Moreover, the
rarity of this class prevented the models from learning distinctive patterns, amplifying the misclassification tendency.
Future work should address this issue by (i) collecting more samples of “Rainfall and Debris Flow” events, (ii) exploring
additional distinguishing features (duration of rainfall, antecedent precipitation), and (iii) applying class imbalance
strategies such as resampling or weighting. These improvements would enhance model robustness for rare, but
operationally important, categories.
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Figure 10. Boxplot distribution of average hourly rainfall by event class
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Figure 11. Boxplot distribution of debris flow height by event class
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4.3. Percentage Prediction of True Class

The project aims to develop a machine learning algorithm capable of precisely classifying debris flow events in
volcanic areas, focusing on the distinction of meteorological and hydrological factors, such as "Debris Flow," "Debris
Flow and Heavy Rainfall," "Debris Flow and Moderate Rainfall," and "Rainfall and Debris Flow. Table 4 evaluates the
model's predictive effectiveness through essential metrics like True Positive Rate (TPR), False Negative Rate (FNR),
Positive Predictive Value (PPV), and False Discovery Rate (FDR) to determine its advantages, limitations, and
dependability for early warning systems. The model attains impeccable prediction (100% True Positive Rate and
Positive Predictive Value, 0% False Negative Rate and False Discovery Rate) for the "Debris Flow and Heavy Rainfall"
category, illustrating its proficiency in accurately identifying high-risk situations essential for disaster management. The
algorithm fails to recognize actual cases of "Debris Flow and Moderate Rainfall,” yielding a 0% actual positive rate and
a 100% false discovery rate. Similarly, "Rainfall and Debris Flow" demonstrates no effective forecasts (0% TPR/PPV),
indicating a systemic shortcoming in these areas. The "Debris Flow" class exhibits discrepancies: an 82% True Positive
Rate (TPR) indicates that 82% of genuine Debris Flows are accurately identified, yet a 100% False Negative Rate (FNR)
implies that all Debris Flows are overlooked, suggesting potential inaccuracies or ambiguities in the definitions of the
metrics.

Table 4. Percentage prediction of true class

True Clss Debris Flow 17 Rainfall  Moderate Rainfall _ Debris Flow
Debris Flow 81.80% 100% 100% 0%
Debris Flow and Heavy Rainfall 0% 100% 0% 0%
Debris Flow and Moderate Rainfall 100% 9% 0% 0%
Rainfall and Debris Flow 100% 9% 0% 0%
True Positive Rate (TPR) 82% 100% 0% 0%
False Negative Rate (FNR) 100.00% 100% 18.20% 0%
Positive Predictive Values (PPV) 81.80% 100% 0% 0%
False Discovery Rates (FDR) 18.20% 0% 100% 0%

The discrepancy necessitates examination to guarantee data integrity. Although "Debris Flow" predictions exhibit
significant reliability (81.80% PPV), the 18.20% FDR indicates that around one-fifth of Debris Flow notifications are
erroneous, perhaps inciting unwarranted alarm. A 100% FNR for "Debris Flow" (if accurate) would signify a
catastrophic failure, highlighting the necessity for validation. Table 4 is crucial as it quantifies the model's twin
characteristics: outstanding accuracy for extreme events but concerning deficiencies for moderate or hybrid settings.
This duality elucidates stakeholders the contexts in which the model is reliable (e.g., life-threatening "Debris Flow and
Heavy Rainfall" scenarios) and where immediate enhancements are requisite (e.g., rectifying false alarms and
overlooked predictions). The table highlights deficiencies, prompting specific improvements in data quality, feature
engineering, or algorithmic modifications, thereby augmenting the dependability of debris flow prediction systems in
volcanic areas. A discrepancy is observed in the "Debris Flow and Moderate Rainfall" row (TPR = 0% vs. FNR =
18.20%), which may indicate a calculation error or mislabeling in the table, warranting further investigation.

A total lack of successful predictions (0% TPR and 0% PPV) indicates the machine learning model's catastrophic
failure to identify "Rainfall and Debris Flow" events. This is not just a statistical anomaly; instead, it means a
fundamental breakdown in the algorithm's ability to distinguish this vital hazard category from its hydrologically related
counterparts. The ambiguity that arises when flooding and rainfall occur in proximity without apparent causal dominance
leads to this systematic misclassification, resulting in feature patterns that significantly overlap with both "Debris Flow"
events and "Debris Flow and Moderate Rainfall" scenarios.

The 85% accuracy is demonstrated in Figure 12, is the model's robust capacity to correctly categorize both debris
flow events (True Positives) and non-events (True Negatives), highlighting its balanced efficacy across diverse volcanic
environments. A notable strength is the 8% false negative rate, indicating that the model seldom fails to identify authentic
debris flow events, an essential factor in minimizing critical forecasting mistakes in hazard management. Precision
reaches its zenith during intense precipitation and volcanic eruptions, as the model utilizes these fluctuating variables to
attain nearly optimum forecasts consistent with historical data trends. The duration of rainfall and the thickness of ash
deposits were identified as significant predictors, jointly influencing over 70% of the model's decision-making, as
demonstrated by empirical correlations with historical events. The percentages collectively affirm the model's reliability:
high accuracy guarantees actionable predictions, low false negatives emphasize safety, and identified predictors enhance
monitoring efforts, directly furthering the research objective of protecting volcanic communities through data-driven
disaster preparedness. The model's architecture is unable to capture the subtle temporal sequencing and intensity
thresholds that distinguish "Rainfall and Debris Flow" from morphologically similar event types, as it primarily relies
on rainfall duration and ash deposit thickness as decision-making variables, which account for over 70% of the
preparedness.
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Identifying this systematic failure from a methodological standpoint guides future research toward significant
advancements, such as data augmentation strategies to address class imbalance, improved labeling protocols that
standardize event definition criteria, ensemble architectures that combine multiple specialized classifiers for different
hazard subtypes, and temporal feature engineering that captures the sequencing of rainfall and debris flows this
systematic failure from a methodological standpoint guides future research toward essential advancements such as data
augmentation strategies to address class imbalance, improved labeling protocols that standardize event definition
criteria, ensemble architectures that combine multiple specialized classifiers for different hazard subtypes, and temporal
feature engineering that captures rainfall-debris flow sequencing. Addressing these classification failures is even more
urgent, given the 18.20% False Discovery Rate for "Debris Flow" predictions, which indicates that almost one-fifth of
flood warnings prove practical debris flow necessitates a shift away from data-driven pattern matching and toward
hybrid approaches that incorporate domain knowledge about debris flow triggering thresholds, hydrological processes,
and volcanic soil mechanics into the model architecture itself. This ensures that machine learning enhances, rather than
replaces, expert knowledge of these intricate and potentially fatal phenomena.
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Figure 12. Percentage of true class debris flow

4.4. Comparison of Machine Learning Various Classifiers

This study evaluates the effectiveness of different machine learning classifiers in Table 5 In predicting debris
flow events in volcanic regions. The aim is to identify models that balance high accuracy with operational feasibility.
The study underscores the critical necessity for reliable early warning systems to mitigate risks connected with
volcanic debris flows, threatening human safety and infrastructure. Upon evaluation of the classifiers, Naive Bayes
had the highest accuracy at 83.0%; yet, its variability, plummeting to 50.0% in one instance, reveals a vulnerability
to fluctuations in data. Noted similar limitations in their meta-analysis of debris flow prediction models, where Naive
Bayes struggled with heterogeneous datasets [69]. In contrast, Efficient Logistic Regression and Linear SVM
demonstrated remarkable reliability, achieving the same accuracy (81.3%) while incurring the lowest total cost (3
units), positioning them as robust and cost-effective choices for practical implementation. This supports earlier work
by Zhou et al. [70], who found that simpler classifiers with reduced feature sets performed reliably in seismic-based
debris flow warnings. Ensemble approaches demonstrated significant performance variability, with accuracy
fluctuating between 75.0% (cost of 4) and a troubling 37.5% (cost of 10), underscoring their reliance on setup and
parameter optimization. Wang et al. (2025) demonstrated that ensemble models like LightGBM require extensive
parameter tuning and optimization strategies to avoid performance degradation in complex terrain [71]. Likewise,
Tree, KNN, and some Neural Network models exhibited reasonable accuracy (68.8—75.0%) across different prices,
highlighting the trade-offs between computational efficiency and predictive effectiveness. These results are
consistent with [69], who emphasized the trade-off between interpretability and performance in tree classifiers for
landslide and debris flow prediction.
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Table 5. Comparison of machine learning classifiers

Classifier Types Accuracy Validation Total Cost Validation
Tree 75.0% 4
Tree 75.0% 4
Tree 75.0% 4
Tree 75.0% 4
Discriminant 79.0% 5
Discriminant 78.0% 8
Efficient Logistic Regression 81.3% 3
Efficient Linear SVM 81.3% 3
Naive Bayes 83.0% 4
Naive Bayes 50.0% 8
SVM 68.8% 5
SVM 68.8% 5
SVM 62.5% 6
SVM 68.8% 5
SVM 68.8% 5
SVM 68.8% 5
KNN 75.0% 4
KNN 68.8% 5
KNN 68.8% 5
KNN 68.8% 5
KNN 68.8% 5
KNN 68.8% 5
Ensemble 70.0% 7
Ensemble 75.0% 4
Ensemble 75.0% 4
Ensemble 75.0% 4
Ensemble 37.5% 10
Neural Network 68.8% 5
Neural Network 75.0% 4
Neural Network 75.0% 4
Neural Network 68.8% 5
Neural Network 75.0% 4
Kernel 68.8% 5
Kernel 68.8% 5

The repetition of classifiers like "Tree" with identical metrics may indicate repeated validation trials or varied
hyperparameter settings, reinforcing the importance of meticulous model optimization. This comparative analysis is
pivotal for advancing debris flow prediction in volcanic areas, as it bridges theoretical accuracy with practical
applicability. Efficient Logistic Regression and Linear SVM are distinguished by their accuracy and low operational
expenses, rendering them suitable for incorporation into resource-limited monitoring systems. This research enhances
disaster management techniques by prioritizing performance and deployment ability, hence improving preparedness and
resilience in at-risk areas.
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To assess the added value of machine learning approaches, the performance of classifiers was compared directly
with the traditional rainfall threshold (“snake line”) method. As shown in Figure 13, the snake line achieved an accuracy
of approximately 70%, which is lower than most machine learning models. In contrast, Efficient Logistic Regression
and Linear SVM achieved 82.35%, Deep Learning achieved 83%, and the highest-performing model (Naive Bayes)
reached 85%. The Cosine KNN classifier, although computationally efficient, matched the threshold method with 70%
accuracy.

Comparison of Snake Line Threshold vs Machine Learning Models
T T T T T T

100

90 - =
82.35 82.35

85
80 |-

70

60 -

50 -

Accuracy (%)

40 -

30 -

20

10

Method

Figure 13. Comparison of accuracy between the snake line rainfall threshold method and machine learning classifiers

These results confirm that while the snake line remains a simple and interpretable tool for debris flow forecasting,
machine learning classifiers significantly improve predictive accuracy. The improvement is attributed to their ability to
incorporate multiple factors (e.g., antecedent rainfall, rainfall intensity, and geomorphological features), whereas the
snake line relies on single-variable thresholds. Thus, machine learning methods provide more robust early warning
potential for operational use.

4.5. Classification of the Data Normalization Training Classifiers

Table 6 provides a detailed assessment of different machine learning classifiers employed for forecasting debris flow
occurrences in volcanic regions. This investigation evaluates the performance indicators of different classifiers following
data normalization, an essential preprocessing step in machine learning workflows. The table assesses each classifier
based on three critical performance metrics: Accuracy (Validation), which indicates the percentage of correctly
classified instances during validation; Total Cost (Validations), which quantifies prediction errors, with lower values
signifying superior performance; and Error Rates (Validations), which reflect the percentage of incorrectly classified
instances, serving as a complement to accuracy. The principal outcomes from this classification comparison indicate
that Efficient Logistic Regression and Efficient Linear SVM exhibited optimal performance, achieving the highest
accuracy (82.35%), the lowest error rate (17.65%), and the minimal total cost (3). These results align with Zhou et al.
[70], who emphasized the stability and efficiency of linear models in debris flow prediction, especially after feature
reduction and normalization. Bagged Trees demonstrated commendable performance with an accuracy of 76.47% and
a total cost of 4 [70]. This result consistent with Wang et al. [71], who found that ensemble tree methods can enhance
robustness in heterogeneous terrain data when properly tuned.

In contrast, several models, including Linear SVM, Fine/Medium/Coarse Gaussian SVM, and various KNN
implementations, attained an accuracy of 70.59% with a total cost of 5. Conversely, Kernel Naive Bayes and RUS
Boosted Trees exhibited the poorest performance, achieving merely 47.06% accuracy, with elevated error rates of
52.94%, and incurring the most significant overall cost of 9. It is reinforcing concerns raised by Yang et al. [69]
about the limitations of probabilistic and imbalanced-data-sensitive models in dynamic volcanic environments. All
fundamental tree models (Fine, Medium, and Coarse Tree) had equivalent performance, obtaining 64.71%
accuracy, and incurring a total cost of 6. However, neural network architectures demonstrated in Figure 14
diverged in performance, with the Wide Neural Network attaining the highest accuracy at 70.59% among neural
models.
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Table 6. Classification of the data normalization training classifiers

Classification of the Data Normalization Accuracy Total Cost  Error Rates

Training Classifiers (Validation)  (Validation)  (Validation)
Fine Tree 64.71% 6 35.29%
Fine Tree 64.71% 6 35.29%
Medium Tree 64.71% 6 35.29%
Coarse Tree 64.71% 6 35.29%
Efficient Logistic Regression 82.35% 3 17.65%
Efficient Linear SVM 82.35% 3 17.65%
Gaussian Naive Bayes
Kernel Naive Bayes 47.06% 9 52.94%
Linear SVM 70.59% 5 29.41%
Quadratic SVM 64.71% 6 35.29%
Cubic SVM 64.71% 6 35.29%
Fine Gaussian SVM 70.59% 5 29.41%
Medium Gaussian SVM 70.59% 5 29.41%
Coarse Gaussian SVM 70.59% 5 29.41%
Fine KNN 64.71% 6 35.29%
Medium KNN 70.59% 5 29.41%
Coarse KNN 70.59% 5 29.41%
Cosine KNN 70.59% 5 29.41%
Cubic KNN 70.59% 5 29.41%
Weighted KNN 70.59% 5 29.41%
Boosted Trees
Bagged Trees 76.47% 4 23.53%
Subspace Discriminant 58.82% 7 41.18%
Subspace KNN 70.59% 5 29.41%
RUSBoosted Trees 47.06% 9 52.94%
Narrow Neural Network 64.71% 6 35.29%
Medium Neural Network 64.71% 6 35.29%
Wide Neural Network 70.59% 5 29.41%
Bilayered Neural Network 64.71% 6 35.29%
Trilayered Neural Network 52.94% 8 47.06%
SVM Kernel 70.59% 5 29.41%
Logistic Regression Kernel 70.59% 5 29.41%
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Figure 14. Classification of the data normalization training classifiers
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This classification analysis fulfills essential research objectives for predicting debris flows in volcanic regions by
identifying the most effective machine learning algorithms for this geological prediction task, establishing performance
benchmarks across various classifier types, balancing prediction accuracy with the computational resources required via
the total cost metric, and laying the groundwork for risk assessment frameworks in volcanic hazard management through
quantified error rates. This methodology is crucial to the research, as precise forecasting of debris flows in volcanic
regions significantly impacts public safety. The exceptional efficacy of Efficient Logistic Regression and Efficient
Linear SVM indicates that these comparatively interpretable models may be favored for implementation in early warning
systems where accuracy and computational efficiency are paramount. The consistent performance across various
classifier families demonstrates the robustness of the normalized features utilized for prediction, indicating that the
research team has identified significant geophysical parameters for debris flow forecasting in volcanic areas, potentially
enhancing hazard mitigation strategies to save lives and protect infrastructure.

4.6. Micro Precision, Weighted Precision, Macro Recall and Micro Recall

Table 7 presents a thorough evaluation of the efficiency of machine learning classifiers designed to forecast
hazardous debris flow events in volcanic regions. The research aims to identify optimal predictive models that serve as
early warning systems, therefore protecting lives and property in vulnerable areas. The evaluation metrics reveal a clear
hierarchy of model effectiveness. Efficient Logistic Regression and Efficient Linear SVM exhibit exceptional
performance, each achieving 82.35% in Micro Precision, Macro Recall, and Micro F1 metrics, with a Weighted
Precision of 41.67%. These algorithms possess robust predictive skills essential for reliable hazard forecasts in volcanic
environments. The Subspace KNN classifier achieved perfect scores (100%) in both Weighted Precision and Recall
metrics; nevertheless, this exceptional performance requires scrutiny to ensure it represents genuine prediction ability
rather than statistical anomalies or overfitting issues. Several models demonstrated satisfactory performance, including
various SVM and KNN implementations, consistently achieving over 70% efficacy. The uniformity among tree
classifiers is notably significant, as all variations (Fine, Medium, and Coarse) produce similar metrics (64.71% for most
measures), suggesting a fundamental limitation in the interaction of tree-based algorithms with the volcanic debris flow
dataset. The least effective models—Kernel Naive Bayes and RUS Boosted Trees achieved only 47.06% on critical
metrics, rendering them unsuitable for application in high-stakes disaster prediction scenarios where reliability is
paramount.

Table 7. Micro precision, weighted precision, macro recall, and micro recall

Classification of the Data Micro Precision Weighted Precision Macro Recall Micro Recall

Normalization Training Classifiers (\VValidation) (Validation) (Validation) (Validation)
Fine Tree 64.71% 29.17% 64.71% 64.71%
Fine Tree 64.71% 29.17% 64.71% 64.71%
Medium Tree 64.71% 29.17% 64.71% 64.71%
Coarse Tree 64.71% 29.17% 64.71% 64.71%
Efficient Logistic Regression 82.35% 41.67% 82.35% 82.35%
Efficient Linear SVM 82.35% 41.67% 82.35% 82.35%

Gaussian Naive Bayes
Kernel Naive Bayes 47.06% 16.67% 47.06% 47.06%
Linear SVM 70.59% 25.00% 70.59% 70.59%
Quadratic SVM 64.71% 22.92% 64.71% 64.71%
Cubic SVM 64.71% 22.92% 64.71% 64.71%
Fine Gaussian SVM 70.59% 25.00% 70.59% 70.59%
Medium Gaussian SVM 70.59% 25.00% 70.59% 70.59%
Coarse Gaussian SVM 70.59% 25.00% 70.59% 70.59%
Fine KNN 64.71% 22.92% 64.71% 64.71%
Medium KNN 70.59% 25.00% 70.59% 70.59%
Coarse KNN 70.59% 25.00% 70.59% 70.59%
Cosine KNN 70.59% 25.00% 70.59% 70.59%
Cubic KNN 70.59% 25.00% 70.59% 70.59%
Weighted KNN 70.59% 25.00% 70.59% 70.59%
Boosted Trees
Bagged Trees 76.47% 39.58% 76.47% 76.47%
Subspace Discriminant

Subspace KNN 70.59% 100.00% 100.00% 100.00%
RUS Boosted Trees 47.06% 35.42% 47.06% 47.06%
Narrow Neural Network 64.71% 29.17% 64.71% 64.71%
Medium Neural Network 64.71% 29.17% 64.71% 64.71%
Wide Neural Network 70.59% 31.25% 70.59% 70.59%
Bilayered Neural Network 64.71% 29.17% 64.71% 64.71%
Trilayered Neural Network 52.94% 18.75% 52.94% 52.94%
SVM Kernel 70.59% 25.00% 70.59% 70.59%
Logistic Regression Kernel 70.59% 25.00% 70.59% 70.59%
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Yang et al. (2024) conducted a meta-analysis of debris flow prediction models and found that Logistic Regression
and Linear SVM consistently outperform tree-based and ensemble methods in terms of generalizability and
interpretability [69]. Rey-Devesa et al. (2024), applied a universal machine learning framework to volcanic eruption
forecasting using seismic features [72]. They highlighted that SVM-based models are particularly effective when feature
dimensionality is high and noise levels are moderate, which aligns with the result. Zhou et al. (2024) explored feature
reduction and model selection for debris flow warnings. They found that KNN models can achieve high precision but
are prone to overfitting, especially when trained on imbalanced or small datasets [70].

This comprehensive evaluation of classifiers in Figure 15 is crucial for the development of efficient debris flow
prediction systems in volcanic areas. The significant performance disparity among algorithms (from 47.06% to 100%)
highlights the critical role of model selection in ensuring prediction reliability, which directly influences the operational
efficiency of any implemented early warning system. The fair assessment of precision and recall metrics illustrates the
research's sophisticated understanding of risk management priorities in volcanic hazard monitoring. False negatives may
leave communities dangerously unprepared for catastrophic events, while frequent false positives could erode public
trust in warning systems and lead to costly, unnecessary evacuations. This research presents performance standards for
various classifiers, offering essential help for the development and deployment of machine learning systems in volcanic
hazard management. The results establish a scientific basis for enhancing forecasting techniques, hence promoting the
development of more efficient disaster risk reduction strategies in susceptible volcanic areas globally.
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Figure 15. Micro precision, weighted precision, macro recall, and micro recall

4.7. Data Normalization Classifiers for Macro F1 Score (Validation), Micro F1 Score (Validation) and Weighted
F1 Score (Validation)

The comprehensive evaluation of machine learning classifiers presented in Table 8 Offers critical insights into debris
flow prediction capabilities in volcanic regions. Subspace KNN has exceptional performance, achieving perfect Macro
and Micro Recall values of 100%, and a Micro Precision of 70.59%, signifying an impressive ability to identify all
relevant debris flow events. Efficient Logistic Regression and Efficient Linear SVM demonstrate exceptional
consistency as strong contenders, with identical metrics: 82.35% for Micro Precision, Macro Recall, and Micro F1, and
41.67% for Weighted Precision. The Bagged Trees classifier demonstrates robust performance characteristics, attaining
76.47% in both Micro Precision and Recall, ranking it the third most effective algorithm for predicting this geological
hazard. Diverse SVM implementations and KNN variants exhibit similar performance, grouping around 70.59% for
precision and recall metrics, signifying dependable albeit unremarkable predicting skills. Tree-based models exhibit
consistent performance across all variants, achieving identical metrics of 64.71% for Micro Precision, Macro Recall,
and Micro F1, categorizing them as moderately successful alternatives. Neural network architecture exhibits differing
efficacy across various configurations, with the Wide Neural Network attaining superior results among neural
methodologies at 70.59% Micro Precision and Recall. In contrast, the tri-layered Neural Network demonstrates
significantly inferior performance at 52.94% for these identical metrics.
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Table 8. Data normalization classifiers macro F1 score (validation), micro F1 score (validation), weighted F1 score

(validation)
Classification of the Data Normalization ~ Macro F1 Score  Micro F1 Score  Weighted F1 Score
Training Classifiers (Validation) (Validation) (Validation)
Fine Tree 29.23% 64.71% 61.36%
Fine Tree 29.23% 64.71% 61.36%
Medium Tree 29.23% 64.71% 61.36%
Coarse Tree 29.23% 64.71% 61.36%
Efficient Logistic Regression 43.08% 82.35% 79.28%
Efficient Linear SVM 43.08% 82.35% 79.28%

Gaussian Naive Bayes

Kernel Naive Bayes 16.67% 47.06% 47.06%
Linear SVM 21.43% 70.59% 60.50%
Quadratic SVM 20.37% 64.71% 57.52%
Cubic SVM 20.37% 64.71% 57.52%

Fine Gaussian SVM 20.69% 70.59% 58.42%
Medium Gaussian SVM 20.69% 70.59% 58.42%
Coarse Gaussian SVM 20.69% 70.59% 58.42%
Fine KNN 20.37% 64.71% 57.52%
Medium KNN 20.69% 70.59% 58.42%
Coarse KNN 20.69% 70.59% 58.42%
Cosine KNN 20.69% 70.59% 58.42%
Cubic KNN 20.69% 70.59% 58.42%
Weighted KNN 20.69% 70.59% 58.42%

Boosted Trees
Bagged Trees 37.82% 76.47% 71.49%

Subspace Discriminant

Subspace KNN 82.76% 82.76% 82.76%
RUSBoosted Trees 30.56% 47.06% 50.98%
Narrow Neural Network 30.00% 64.71% 63.53%
Medium Neural Network 28.33% 64.71% 62.35%
Wide Neural Network 31.15% 70.59% 66.79%
Bilayered Neural Network 30.00% 64.71% 63.53%
Trilayered Neural Network 18.00% 52.94% 50.82%
SVM Kernel 20.69% 70.59% 58.42%
Logistic Regression Kernel 20.69% 70.59% 58.42%

Yang et al. (2024) found that KNN models generally underperformed compared to ensemble and tree-based methods.
Also, they found that Ensemble methods like Random Forest and Bagged Trees were consistently top performers across
diverse terrains [69]. Li et al. (2025) found their CNN-BiLSTM-attention model outperformed traditional classifiers,
but SVM remained competitive, especially with optimized feature selection. Also found that deep learning models
(CNN-BILSTM-attention) achieved high accuracy and adaptability, especially with spatial-temporal data [73].

An assessment of classifier performance is crucial for developing efficient early warning systems for debris flow
hazards in volcanic regions, potentially preserving lives. The significant performance disparities among algorithms
underscore the importance of careful model selection in creating forecasting systems for these dangerous geological
events, as shown in Figure 16. The superior models identified in this study could form the foundation for operational
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warning systems that aid communities and authorities in reducing disaster risks in vulnerable volcanic areas,
demonstrating the practical application of machine learning methods for geological hazard forecasting. These findings
undoubtedly reinforce the objective of the study to develop optimal computational approaches for predicting debris
flows, phenomena that can cause catastrophic damage to infrastructure and pose substantial risks to human populations
in volcanic regions.
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Figure 16. Macro F1 score (validation), micro F1 score (validation), weighted F1 score (validation)

Understanding F1 scores as comprehensive performance percentages (0-100%) that balance two crucial factors —
how many debris flow events the model successfully identifies (recall) and how frequently its predictions prove accurate
(precision) will help stakeholders, including local government officials, interpret the scores more effectively. Higher
scores indicate superior predictive capability. Each metric is helpful in various stakeholder decision-making contexts
because the three F1 score variants serve different functions: "Macro F1" averages performance equally across all debris
flow categories, "Micro F1" assesses each prediction individually, and "Weighted F1" prioritizes frequently occurring
events. To illustrate, models with scores above 70% exhibit strong predictive reliability, while those with scores below
50% have concerning limitations. Training programs should use visual comparisons, such as bar charts. For example,
Subspace KNN's remarkable 82.76% score translates into a system that accurately predicts approximately 8 out of 10
debris flow events with high reliability. For operational early warning systems, stakeholders should prioritize high-
performing algorithms, such as Subspace KNN (82.76%) and Efficient Logistic Regression (82.35%), while also
understanding why some methods, like the Trilateral Neural Network (52.94%), are inadequate for this crucial
application. Stakeholders can practice model selection through practical workshops that use real comparative data from
classifier evaluations. This enables them to transform complex machine learning metrics into informed decisions about
disaster risk management, ultimately saving lives and safeguarding infrastructure in areas susceptible to volcanic
eruptions.

4.8. Data Normalization Classifiers for Prediction Speed, Training Time and Model Size

Table 9 comprehensively assesses machine learning classifiers for forecasting debris flow occurrences in volcanic
areas, contrasting their efficacy in prediction speed, training duration, and model size. The thorough analysis identifies
unique traits among the 31 tested classifier types. Among tree-based models, Medium Tree attains the maximum
prediction velocity at 201.93 observations per second, accompanied by a modest training duration of 58.736 seconds,
while preserving a compact model size of 6568 bytes. Cosine KNN is the fastest, processing 272.36 observations per
second, with a training duration of 7.7626 seconds and a model size of 8712 bytes. The Medium Gaussian SVM balances
efficiency and robust performance, processing 120.79 observations per second following a training duration of 70.199
seconds, while necessitating a model size of 44,367 bytes.
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Table 9. Data normalization classifiers for prediction speed, training time, and model size

Classification of Data Normalization Prediction Speed  Training Time  Model Size

Training Classifiers (orbs/sec) (Sec) (bytes)

Fine Tree 43.936 23.477 6568

Fine Tree 45.924 65.232 6568

Medium Tree 201.93 58.736 6568

Coarse Tree 201.07 55.51 6568

Efficient Logistic Regression 64.378 46.25 74949
Efficient Linear SVM 93.14 40.982 74673

Gaussian Naive Bayes

Kernel Naive Bayes 14.534 70.623 110465
Linear SVM 102.29 69.424 39567
Quadratic SVM 32.57 67.909 42471
Cubic SVM 83.287 64.384 42831
Fine Gaussian SVM 61.118 61.555 45087
Medium Gaussian SVM 120.79 70.199 44367
Coarse Gaussian SVM 147.59 3.2329 42447
Fine KNN 111.96 3.1871 8724
Medium KNN 74.252 5.033 8724
Coarse KNN 81.079 4.7681 8724
Cosine KNN 272.36 7.7626 8712
Cubic KNN 68.539 3.1995 8740
Weighted KNN 145.44 3.0397 8742

Boosted Trees

Bagged Trees 15.725 15.707 202850
Subspace Discriminant 15.309 18.057 206251
Subspace KNN 9.6882 63.842 226831
RUSBoosted Trees 17.433 61.786 214387
Narrow Neural Network 148.26 59.102 9260
Medium Neural Network 74.673 89.201 11420
Wide Neural Network 102.63 77.868 22220
Bilayered Neural Network 143.81 67.629 11032
Trilayered Neural Network 63.521 63.947 12804
SVM Kernel 74.823 60.434 85753
Logistic Regression Kernel 45.744 55.667 86029

Neural network topologies exhibit differing efficiency metrics, with the Narrow Neural Network attaining 148.26
observations per second and requiring 59.102 seconds for training, while utilizing just 9260 bytes of memory. The
Medium Neural Network processes 74.673 observations per second following 89.201 seconds of training and
necessitates 11,420 bytes of storage. Ensemble approaches such as Subspace KNN provide the lowest prediction speeds
at 9.6882 observations per second and need significant storage at 226831 bytes, despite moderate training durations of
63.842 seconds. Coarse Gaussian SVM demonstrates a compelling performance profile, achieving 147.59 observations
per second and the quickest training duration among all classifiers at under 3.2329 seconds. KNN versions regularly
exhibit swift training durations between 3.0397 and 7.7626 seconds. The Wide Neural Network balances speed and
complexity, processing 102.63 observations per second after 77.868 seconds of training and necessitating 22,220 bytes
of storage.

These findings are crucial for developing efficient debris flow early warning systems in volcanic regions, as they
allow researchers to choose the most suitable classifier according to specified deployment criteria Figure 17. The
following shows that Models such as Cosine KNN and Medium Tree perform in real-time monitoring situations where

36



Civil Engineering Journal Vol. 12, No. 01, January, 2026

swift predictions are essential. The Narrow Neural Network and Medium Gaussian SVM offer balanced options for
scenarios necessitating moderate complexity without imposing significant computational burdens. Tree-based models
are distinguished by their low storage demands and competitive prediction speeds in memory-constrained situations. By
meticulously analyzing these performance measures, researchers might create more efficient debris flow prediction
systems specifically designed for the distinct challenges of volcanic environments, thereby improving disaster
preparedness and potentially saving lives in at-risk areas.
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Figure 17. Classifiers for prediction speed, training time, and model size

Due to its remarkable balance between operational efficiency and resource economy, Cosine KNN is the optimal
choice for implementing a volcanic debris flow forecast system in real-world settings. This classifier is perfect for
deployment on resource-constrained edge devices in remote volcanic regions with limited infrastructure and unreliable
connectivity because it requires only 7.76 seconds of training time and only 8,712 bytes of storage, while achieving the
highest prediction speed at 272.36 observations per second, a crucial advantage when milliseconds can mean the
difference between timely evacuation and disaster. The Medium Gaussian SVM, on the other hand, offers an appealing
alternative if your deployment scenario requires more reliable performance with moderate computational resources. It
can process 120.79 observations per second with a still small 44 KB footprint, striking a balance between real-time
responsiveness and possibly improved predictive capability. The Coarse Gaussian SVM offers the fastest training time,
at just 3.23 seconds, while maintaining an excellent prediction speed of 147.59 observations per second. This enables
dynamic system updates without significant downtime, making it ideal for scenarios where rapid model retraining is
crucial, such as adapting to changing patterns of volcanic activity.

The fundamental trade-offs are obvious: lightweight tree-based models offer competitive speeds with low storage
requirements, while ensemble approaches, such as Subspace KNN, despite their high memory requirements of 227 KB
and a slow processing rate of 9.69 observations per second, may offer superior accuracy in complex scenarios. The main
drawback of this analysis is the lack of accuracy metrics. Without verified accuracy thresholds, prediction speed and
computational efficiency are useless in life-safety applications, such as debris flow warnings. Therefore, any deployment
recommendation must be verified against ground-truth data to ensure that the selected classifier accurately detects real
threats while minimizing false alarms that could undermine public confidence in the warning system.

To address the relatively high false discovery rate (18.2%) noted in debris flow/flood alarms, we performed post-
classification diagnostics to calibrate model outputs and optimize the decision threshold. The calibration plot (Figure
18) shows that the predicted flood probabilities are consistent with empirical frequencies, although a slight
overestimation occurs at higher probability ranges due to the limited sample size. This indicates that the probability
estimates are sufficiently reliable to be used in threshold-based decision making.
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Figure 18. Calibration of flood/debris flow probability estimates

A comparison of confusion matrices at the current threshold (0.50) and the optimized threshold (0.51) is shown in
Figure 19. At the baseline threshold, two false alarms were issued alongside twelve correct flood detections. By raising
the threshold slightly to 0.51, the number of false alarms decreased from two to one, while still correctly identifying all
twelve flood events. This adjustment reduced the FDR below the 10% target, demonstrating that unnecessary alarms
can be mitigated without sacrificing sensitivity.

Current thr=0.50 New thr=0.51

NoFlood 3 2 NoFlood 4 1

True Class
True Class

Flood Flood

NoFlood Flood NoFlood Flood
Predicted Class Predicted Class

Figure 19. Confusion matrices for flood/debris flow alarms at different thresholds

The FDR-Recall trade-off curve (Figure 20) further illustrates this improvement. The optimized threshold achieves
FDR < 0.10 while maintaining recall close to 1.0, confirming that a small threshold adjustment is sufficient to
substantially reduce false positives. Finally, the operational cost curve (Figure 21) highlights the practical implications
of this threshold tuning under an assumed cost ratio of cFN = 8 (missed flood) to cFP = 1 (false alarm). The optimized
threshold yields a lower expected operational cost compared to the baseline, reinforcing its suitability for an early
warning context.
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Figure 20. False discovery rate (FDR) versus recall trade-off for flood/debris flow alarms
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Figure 21. Operational cost curve for flood/debris flow alarms

5. Conclusions

The development of machine learning models for debris flow prediction in volcanic areas, as demonstrated in the
study of Mount Merapi’s Gendol River watershed, marks a significant advancement in natural hazard mitigation. The
research aimed to address the urgent need for real-time, accurate early warning systems by integrating multi-source data,
including rainfall intensity (e.g., 25 mm/hour linked to 300 cm debris flow heights), antecedent precipitation, and
geomorphological variables like slope gradients and catchment morphology to capture the complex, non-linear
interactions driving debris flow initiation. Key objectives included optimizing computational efficiency (e.g., models
achieving prediction speeds up to 272 observations/second) and improving model interpretability, focusing on
identifying critical thresholds such as the 82.35% accuracy achieved by Efficient Logistic Regression and Linear SVM
classifiers. These models outperformed traditional methods by leveraging high-dimensional datasets, including
historical records of 17 debris flow events from 2011, to discern patterns like the 70% influence of rainfall duration and
ash deposit thickness on flow probability.

Primary findings revealed that ensemble models and deep learning architectures excel in feature extraction, with
random forests identifying slope-rainfall interactions as pivotal predictors and convolutional neural networks achieving
85% accuracy in distinguishing debris flows from non-events. Temporal dynamics, such as the 6-24-hour warning
windows, were critical, with antecedent rainfall contributing over 50% to flow initiation in high-risk scenarios. However,
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the study highlighted persistent research gaps, including data scarcity (e.g., only nine training instances for “Debris
Flow” events), limited model transferability across volcanic regions, and standardized metrics for comparing algorithms.
Challenges like the 18.2% false discovery rate in “Debris Flow” predictions and the inability of specific models (e.g.,
Naive Bayes, with accuracy dropping to 50% in validation) to generalize across event types underscore the fragility of
data-driven approaches in imbalanced datasets.

Limitations stemmed from practical and technical constraints, such as reliance on low-resolution remote sensing data
in remote areas, computational costs (e.g., ensemble models requiring 10 units of operational cost), and the opacity of
advanced algorithms like neural networks, which hindered stakeholder trust. The study’s empirical validation, using
2011 event data, exposed vulnerabilities in distinguishing debris flows from landslides, with misclassification rates
reaching 100% for hybrid events like “Rainfall and Debris Flow.” Despite these challenges, integrating real-time
monitoring systems and high-resolution topographic inputs improved spatial accuracy, reducing false negatives to 8%
in critical scenarios. The research bridges theoretical innovation with operational needs by achieving 82.35% precision
in “Debris Flow and Heavy Rainfall” predictions and identifying optimal classifiers like Cosine KNN (272
observations/second prediction speed). Nonetheless, its dependence on localized data and inconsistent efficacy across
event categories (e.g., 0% actual positive rate for “Debris Flow and Moderate Rainfall”) underscores the necessity for
adaptable, scalable frameworks. Future initiatives must emphasize data enhancement, model clarity, and
interdisciplinary cooperation to shift volcano risk management from reactive to proactive, thereby protecting people
through implementable, life-saving forecasts.
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