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Abstract

Flash floods cause severe environmental and socio-economic impacts in arid and semi-arid regions. This study aims to improve
the accuracy of flash flood susceptibility mapping in southwestern Morocco’s Assaka watershed by using an ensemble of
machine learning models. Four models, Logistic Regression (LR), Multivariate Discriminant Analysis (MDA), Naive Bayes
(NB), and Multilayer Perceptron (MLP), were trained on a flood inventory of over 1.5 million data points and 14
environmental factors (e.g., altitude, slope, land surface temperature, soil moisture index). Each model produced a
susceptibility map, and a voting ensemble of the top-performing models (all above 80% accuracy) further improved reliability.
The MLP achieved the highest predictive performance, followed closely by LR and MDA. Sensitivity analysis identified
altitude, topographic position index, land surface temperature, and soil moisture index as the most influential factors. The
ensemble susceptibility map highlights densely populated areas near the city of Guelmim and infrastructure along major rivers
as most prone to flash flooding. These findings enable practical mitigation measures such as improved drainage, early warning
systems, and better land-use planning in high-risk zones. Integrating multiple models in an ensemble is a novel approach that
reduces uncertainty and provides a more robust tool for flash flood risk prediction.
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1. Introduction

Flash floods are globally recognized as among the most destructive natural disasters, and their severity is escalating

due to climate change, rapid urbanization, and land-use alterations. These sudden flood events cause profound ecological
disruption, infrastructure damage, agricultural losses, and tragic human fatalities [1]. In Morocco, floods account for
about 70% of officially recognized natural disasters [2]. The semi-arid Guelmim-Oued Noun region in southern Morocco
has experienced recurrent catastrophic flash floods, notably in 1968, 1985, 1989, 2002, 2010, and most severely in 2014
(Figures 1 and 2) [3]. The 2014 event alone killed at least 32 people (including 24 in the Guelmim area) and left several
missing [3], while destroying around 100 mud-brick homes and cutting off 100+ roads (including major highways) in
the region [1]. This devastation underscored the urgent need for improved flash flood prediction and risk reduction
strategies in the region.
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Figure 2. Effects of flooding within the ASSAKA watershed (23 November 2014) (Said Amouch)

The Assaka watershed, the focus of this study, is one of the largest and most flood-prone basins in southwestern
Morocco. Covering approximately 6,862 km? with terrain ranging from Atlantic coastal plains to mountains over
1,100 m high, the watershed features complex geomorphology and steep gradients that accelerate runoff. The climate is
arid to semi-arid with sparse, erratic rainfall averaging ~145 mm annually [2]. Wide alluvial valleys and flat depressions
(300—600 m elevation) dominate the landscape, but soils of predominantly low permeability (e.g., clay-rich siltstones
and shales) severely limit infiltration. Consequently, intense rainstorms generate rapid surface runoff and overflow,
causing frequent flash flooding. Historically, these floods have repeatedly impacted communities. For example,
Guelmim city was officially declared a disaster zone after the 2014 floods due to extensive infrastructure destruction
and loss of life [3]. Such events highlight the need for precise, data-driven flood susceptibility mapping to support early
warnings and land-use planning.

Traditionally, flood susceptibility in regions like Assaka has been assessed using Geographic Information System
(GIS) analyses combined with expert-based multi-criteria methods. For instance, analytical hierarchy process (AHP)
and fuzzy logic approaches have been applied to integrate various flood factors with expert judgment [4]. Khaddari et
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al. (2023) [4] produced flood susceptibility maps for the Assaka watershed using a Fuzzy-AHP method, achieving an
accuracy around 89-90% (AUC) [4]. While such GIS-based techniques are useful, they inherently rely on subjective
weighting of factors, introducing uncertainty and potential bias. In recent years, data-driven machine learning (ML)
models have gained traction for flood risk mappin [5]. Supervised ML algorithms like logistic regression, decision trees,
random forests, support vector machines, and neural networks can objectively learn complex relationships from
historical flood data and environmental predictors. Several studies have demonstrated the promise of ML in improving
flood prediction accuracy [5]. For example, Razali et al. (2020) [6] and El-Haddad et al. (2021) [7] applied algorithms
such as Naive Bayes (NB), Logistic Regression (LR), Multivariate Discriminant Analysis (MDA), and Artificial Neural
Networks (ANN) to model flood-prone areas, yielding better objectivity than expert scoring methods. However,
standalone ML models also have limitations; each algorithm has different predictive biases and may perform
inconsistently under varying conditions. Individual models can be sensitive to training data idiosyncrasies, suffer
generalization issues, or provide limited interpretability of physical flood driver [5].

To address these gaps, this study proposes a novel ensemble machine learning framework for flash flood
susceptibility mapping in the Assaka watershed. Ensemble learning theory suggests that combining multiple diverse
models can reduce individual errors and yield more robust predictions. By integrating the outputs of several high-
performing classifiers, the ensemble approach can capitalize on their complementary strengths while mitigating
weaknesses of any single model [5]. In this research, we develop an ensemble voting model that merges four algorithms,
LR, MDA, NB, and a multi-layer perceptron (MLP) neural network, to improve flash flood susceptibility estimation.
These particular algorithms were chosen based on preliminary tests indicating each achieved over 80% predictive
accuracy individually, ensuring that only strong learners contribute to the final ensemble. The theoretical premise is that
their combination will provide a more reliable and generalized tool for spatial flood risk prediction than any stand-alone
model [5]. This approach is relatively new in the context of Moroccan watersheds; to our knowledge, no prior study in
Morocco’s semi-arid regions has integrated multiple ML models into an ensemble for flood mapping. Singha et al.
(2022) [8], for example, applied single ML algorithms to map flood zones in the Ourika watershed, but did not explore
an ensemble strategy.

Our objectives are (1) to improve flash flood susceptibility mapping accuracy through an ensemble of ML models,
(2) to quantify the influence of various environmental factors (altitude, slope, land use, soil moisture, lithology, etc.) on
flood occurrence, and (3) to pinpoint the most vulnerable areas within the Assaka watershed for targeted risk mitigation.
By analyzing model outputs and conducting sensitivity tests (e.g., Jackknife analysis), we identify which conditioning
factors most strongly control flash flood potential in this basin. The central hypothesis is that the ensemble model will
outperform the individual classifiers in predictive capability, thereby providing a more robust and trustworthy flood
susceptibility map. This integrated modeling approach is expected to reduce the uncertainty associated with any one
method and yield clearer insights into flash flood dynamics. In doing so, the study fills a key knowledge gap regarding
effective ensemble flood modeling in semi-arid environments. The resulting susceptibility map highlights priority zones
(e.g., densely populated lowlands around Guelmim and infrastructure along Wadi Essayed and Oum Laachar) that are
most prone to flash flooding. These findings can directly inform practical measures such as engineered drainage
improvements, community early-warning systems, and land-use planning policies to minimize future flood damage.

The remainder of this article is organized as follows. Section 2 describes the study area and outlines the data and
methodology, including the preparation of a flash flood inventory and the development of the four ML models and their
ensemble integration. Section 3 presents the results and discussion, comparing the performance of individual models
and the ensemble, analyzing the spatial patterns of flood susceptibility, and examining the importance of each predictor
variable (with a theoretical discussion of the ensemble’s advantages). Section 4 concludes the paper with key findings,
practical recommendations for flood risk management, and suggestions for future research.

2. Materials and Methods
2.1. The Study Area

In southern Morocco, the Assaka watershed lies within the Guelmim-Oued Noun administrative region and is
managed by the Souss Massa Hydraulic Basin Agency (ABHSM). It encompasses roughly 6,862 km?, with a perimeter
of about 597 km. The landscape is diverse, transitioning from Atlantic coastal plains to rugged mountains in the
northeast, with elevations ranging from sea level along the coast to over 1,100 m in the highlands. The climate is arid to
semi-arid desert, characterized by an average annual temperature of ~19°C and low, irregular precipitation on the order
of 145 mm per year [9].

As of the 2014 census, the Assaka watershed’s population was on the order of tens of thousands (exceeding 18,000
inhabitants). This population has been steadily increasing in recent decades, contributing to accelerated urban expansion
and agricultural development in the region. For example, the city of Guelmim (the regional capital) grew from roughly
95,700 residents in 2004 to about 118,300 in 2014 [10]. By 2024, Guelmim’s population reached approximately 126,700,
underscoring the consistent demographic growth in the area [11]. Such growth has expanded urban and farming areas,
thereby increasing the region’s vulnerability to flooding.
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Historically, the Assaka watershed has experienced multiple major floods, notably in 1968, 1985, 1989, 2002, and
2010, with the most catastrophic events occurring in late 2014. In that November 2014 flood, torrential rains generated
severe flash floods that devastated the Guelmim area: at least 24 people were killed near the city of Guelmim alone [12],
and the destruction of infrastructure (roads, bridges, homes, etc.) was so widespread that authorities officially declared
the Guelmim region a disaster area [13]. These floods caused profound socio-economic disruptions and highlighted the
urgent need for improved flood management.

Hydrologically, the Assaka watershed is drained by two main rivers, Oum Laachar and Essayed (also spelled El
Sayed), which converge before flowing into the Atlantic Ocean. The terrain includes broad valleys and extensive
depressions with flat bottoms primarily at 300—600 m elevation [9]. Gently sloping plateaus around 350400 m,
interspersed with sharper topographical gradients, strongly influence how water runs off and accumulates. The basin’s
slope generally decreases from northeast to southwest, resulting in large areas with moderate slopes (under ~11°) [9].
Morphometric analyses have noted that the wide valleys and tableland regions with gentle grades serve as natural flow
pathways, affecting flood patterns in the region.

Overall, flood susceptibility in the Assaka watershed is exacerbated by a combination of factors: steep upstream
gradients, insufficient drainage infrastructure, and soils with low permeability that hinder the absorption of heavy
rainfall. As a result, intense rain events can rapidly produce flash floods along rivers like Oum Laachar and Essayed,
frequently causing severe damage to roads, bridges, dwellings, and agricultural lands in their path. Such recurring flood
events pose significant long-term risks to local economic stability and livelihoods, underscoring the need for precise,
detailed flood risk assessments to inform better preparedness and mitigation planning in the future.

2.2. Methodology

The methodology employed in this study is summarized in the flowchart shown in Figure 3. The main steps include:
(a) exporting a flash flood target map, (b) preprocessing the conditioning factors, (c¢) predicting flash flood susceptibility
using MDA, LR, NB, and MLP algorithms, (d) assessing model performance (accuracy threshold > 80%), (e) generating
susceptibility maps, and (f) producing a composite ensemble map.
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Figure 3. Prediction of sudden flood risk applying MDA, LR, NB, and MLP algorithms
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A binary flood-inventory (target) was derived from the FAHP susceptibility map of the study by Talha et al. (2019)
[14] (Figure 4-0). The Assaka watershed (=6,800 km?) was rasterized to the analysis grid, yielding >8 million spatial
samples (cells) (Figure 4-0). Cells in the FAHP High and Highest classes were coded as flood-prone (positive); all others
were coded as non-flood (negative). This procedure produced 1,514,434 positive cells, with the remaining cells forming
the negative class. The complete labeled grid was used for model development. The dataset was randomly partitioned
into training (70%) and testing (30%) subsets using train_test split (without replacement, class proportions preserved)

to ensure unbiased evaluation.
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Figure 4. Flash flood predictors: (a) altitude; (b) land surface temperature (LST); (c) soil moisture index (SMI); (d) soil type; (e)
slope; (f) lithology; (j) topographic wetness index (TWI); (h) aspect; (i) land use and land cover (LU/LC); (g) curvature; (k) drainage
density (DD); (1) topographic position index (TPI); (m) flow accumulation (FA); (n) stream power index (SPI); (o) target.

2.2.2. Determinants of Flash Flood Susceptibility

Predictor variables. Building on prior analyses and geospatial data from the Assaka watershed, fourteen conditioning
variables commonly linked to flash-flood susceptibility were assembled [15, 16] (Figure 4). These span environmental,
geological, and hydrological domains: soil type, land-use/land-cover (LULC), lithology, land surface temperature
(LST), soil moisture index (SMI), elevation, slope, aspect, curvature, drainage density, flow accumulation (FA), stream
power index (SPI), topographic wetness index (TWI), and topographic position index (TPI) [17]. Each variable
represents a distinct physical control on runoff generation and concentration: soil, LULC, and lithology regulate
infiltration and initial abstraction; LST and SMI indicate antecedent moisture conditions; terrain metrics (elevation,
slope, aspect, curvature) govern hydraulic gradients and flow routing; and hydrologic indices (drainage density, FA,
SPI, TWI, TPI) capture channelization, flow energy, convergence/saturation tendencies, and valley—ridge position [18,
19]. Collectively, these predictors provide a coherent, data-driven basis for delineating flash-flood susceptibility and for
guiding targeted mitigation

2.2.2.1. Altitude

Altitude (Figure 4-a), commonly referred to as elevation, serves as a foundational parameter in understanding the
Earth’s topographic features. It significantly impacts hydrological dynamics, making it a critical variable in flash flood
risk assessments. Lower elevation areas often experience higher frequencies of flash floods, as water tends to flow and
accumulate in these regions more rapidly. Conversely, higher elevation zones may contribute to the speed and volume
of runoff, thereby indirectly influencing downstream flood conditions [20, 21]. In this particular case study, elevation
data was sourced from the Global Data Explorer, with a spatial resolution of 30 by 30 meters. The study area exhibits a
wide range of elevations, from a minimum of 17 meters above sea level to peaks exceeding 1000 meters. This
topographic variation is instrumental in examining the relationships between terrain, water flow patterns, and flood
vulnerability. By incorporating elevation data, researchers gain deeper insights into both the direct and indirect effects
of topography on flood events, supporting more precise flood modeling and risk mitigation strategies.

2.2.2.2. Soil Type

Soil (Figure 4-d) is a heterogeneous and porous medium composed of water, air, and minerals, playing a vital role
in the hydrological cycle and serving as a habitat for diverse microorganisms and macro-organisms from both the plant
and animal kingdoms. Its ability to retain and absorb water significantly influences surface runoff and infiltration,
making it a key factor in flood dynamics. Insufficient water absorption increases runoff, contributing to flash floods
[22].

Understanding the spatial distribution and classification of soil types is essential for flood risk assessment, as
different soils exhibit varying hydraulic properties that determine their capacity to retain moisture and regulate water
flow. Soil classification is typically conducted using data from the Food and Agriculture Organization (FAO), which
provides standardized mapping methodologies [23, 24].

In this study, a detailed soil map was developed to categorize the different soil types based on their physical and
chemical properties. The soils were ranked according to their susceptibility to flooding, with Calcaric Fluvisols (Jc)
being the most flood-prone (very high susceptibility), followed by Chromic Luvisols (Lc) (high susceptibility), Haplic
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Yermosols (Yh) (moderate susceptibility), Yermosols (Y) (low susceptibility), and Lithosols (I) (very low
susceptibility). Each of these soil types plays a distinct role in water retention and runoff, directly influencing the flash
flood susceptibility of an area.

2.2.2.3. Land Surface Temperature (LST)

The widespread presence of impermeable surfaces, such as concrete and asphalt, significantly contributes to
increased land surface temperatures (LST) (Figure 4-b) in urban and developed areas. These surfaces prevent water
infiltration, leading to higher runoff volumes and an increased risk of flooding, especially during heavy rainfall. The
elevated LST further exacerbates evaporation rates and can alter regional weather patterns, potentially intensifying
precipitation events and leading to even heavier downpours [25, 26].

In contrast, areas with abundant vegetation and natural water bodies tend to maintain lower land surface temperatures
due to their ability to absorb and retain moisture. Vegetation and soil function as natural flood control systems, capturing
rainfall and gradually releasing it, which helps mitigate flood risks. Additionally, tree canopies provide shade and
facilitate evapotranspiration, which further cools the surrounding environment [15].

Urbanized regions, characterized by extensive impermeable surfaces, not only experience greater runoff but also
reduced natural water absorption, making them more susceptible to both flash floods and prolonged flooding events. As
cities continue to expand, incorporating eco-friendly solutions like porous pavements, rooftop gardens, and urban
greenery may assist in counteracting these effects by improving water retention, lowering land surface temperatures,
and strengthening overall climate resilience.

2.2.2.4. Drainage Density

In watershed environments, drainage density (Figure 4-k) plays a critical role in regulating water circulation during
rainfall events. This factor is essential for predicting the likelihood and severity of flash floods, as areas with higher
drainage density facilitate faster water movement, whereas lower drainage density can contribute to water stagnation
and prolonged flooding. Insufficient drainage networks may lead to watershed overflow, increased surface runoff, and
localized flooding, particularly in low-lying or urbanized areas [9, 14].

Given the crucial role of drainage density in influencing surface water behavior, obtaining precise measurements is
essential for assessing flood hazards and managing water resources effectively. In this research, the spatial distribution
of drainage density was derived using the Line Density function within the QGIS environment, allowing for detailed
evaluation of the hydrographic network [27, 28]. The analysis generated a drainage density map specific to the study
area, with values ranging from 0 to more than 2.30 kilometers per square kilometer, based on a grid resolution of 30 x
30 meters. This geospatial output offers important insights into zones more prone to rapid surface runoff and flood risks,
thereby supporting the planning of resilient water resource strategies and targeted flood mitigation interventions.

2.2.2.5. Soil Moisture Index (SMI)

Soil moisture (SM) (Figure 4-c) is a key physiographic variable widely utilized in hydrological studies and models.
It serves not only as an essential parameter for understanding watershed behavior but also as a valuable early warning
indicator for flash floods. The Soil Moisture Index (SMI) quantifies the soil’s water retention capacity, shedding light
on the relationship between soil conditions and flooding risk [9, 29].

Areas with a low SMI are characterized by limited moisture-holding ability, making them more susceptible to rapid
runoff and flash flooding during intense precipitation events. Conversely, regions with a higher SMI are more adept at
absorbing and retaining water, reducing the likelihood of flash flood occurrences. This dual behavior highlights the
importance of soil moisture conditions in assessing regional flood vulnerability [14, 30].

This research utilized Landsat-8 OLI satellite data to generate SMI maps, employing a spatial grid of 30 meters for
detailed analysis. The generated maps revealed spatial variability in SMI values, with particularly high SMI observed
in mountainous regions. These elevated SMI levels in mountainous terrains suggest that such areas may have enhanced
moisture storage capacity, playing a pivotal role in moderating runoff and mitigating flood risks. Integrating soil
moisture dynamics into flood risk evaluation enhances the interpretation of hydrological behavior and contributes
essential guidance for planning emergency response strategies and sustainable resource allocation.

2.2.2.6. Aspect

The slope aspect (Figure 4-h) refers to the orientation or direction in which the terrain’s steepest gradient occurs. It
serves as a critical parameter for understanding hydrological processes and plays an important role in flood susceptibility
analysis [18, 31]. By determining the aspect, researchers can assess how topography influences the flow of surface water,
the exposure of slopes to sunlight and wind, and the potential for runoff concentration in specific directions. This
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information is particularly valuable in flood risk studies, as certain slope orientations may channel water more rapidly
into streams or low-lying areas, increasing the likelihood of flash flooding [32].

In this study, the aspect map was produced using data from a Digital Elevation Model (DEM) and processed in
QGIS. By identifying the dominant aspect of the slopes, the analysis provides insight into how terrain characteristics
contribute to water movement and flood risk.

2.2.2.7. Land Use Land Cover (LULC)

This factor (Figure 4-1), especially at finer spatial scales, provides resource managers with critical insights derived
from satellite imagery, supporting more informed decision-making and tailored resource management. In this study,
land use was identified as a crucial factor influencing runoff velocity, prompting its inclusion in the flood vulnerability
analysis. The susceptibility of different land cover types to flooding varies based on their unique hydrological
characteristics. Urban areas, for example, are typically dominated by impermeable surfaces such as concrete and asphalt
[33]. These surfaces prevent water absorption, leading to higher runoff and a greater likelihood of flooding during heavy
rainfall. In contrast, bodies of water, while essential for natural hydrological balance, pose a flooding risk to nearby
regions when heavy precipitation or upstream inflows occur [34].

Vegetated areas, on the other hand, tend to have better water retention capabilities. Plants not only absorb water,
reducing runoff, but also stabilize the soil, thus lowering the risk of erosion and subsequent flooding. Similarly,
agricultural lands present a mixed picture: well-managed fields that use sustainable soil practices can enhance water
infiltration, while poorly managed or compacted fields are more vulnerable to surface runoff and flooding. Lastly, bare
ground or areas with no vegetation often have low water absorption capacity, making them particularly flood-prone [35].
These variations underline the importance of understanding LULC in flood risk assessments. For this study, a detailed
LULC map was generated using Landsat 8 OLI satellite imagery at a spatial resolution of 30 meters, categorizing the
area into five main classes: built-up areas, water bodies, vegetation, agricultural lands, and bare soil. This classification
provides a foundational understanding of how different land cover types interact with hydrological processes, enabling
more effective flood risk mitigation and land-use planning strategies.

2.2.2.8. Slope

Flash floods are strongly influenced by the slope of the terrain (Figure 4-¢), making it a crucial morphological
parameter in flood susceptibility assessments. Steeper slopes accelerate surface runoff, which can lead to a more rapid
accumulation of water in lower areas, increasing the likelihood and intensity of flash floods. Conversely, flatter arcas
tend to slow down water flow, allowing more time for infiltration and reducing flood potential [16, 36]. In this study, a
detailed slope degree map was generated using a Digital Elevation Model (DEM) in QGIS, with a spatial resolution of
30 meters. The slope values in the study area range from flat or nearly level surfaces (0 degrees) to very steep inclines
exceeding 64 degrees. This variation highlights the importance of slope analysis in understanding hydrological behavior,
as regions with high slope values often correspond to zones of greater flash flood risk.

2.2.2.9. Topographic Wetness Index (TWI)

This factor (Figure 4-j), created by Kirkby and Beven in 1979, serves as a spatial metric to assess how water tends
to accumulate across different terrain areas. It estimates moisture concentration by incorporating two key topographic
parameters: the upstream catchment area and the slope angle at a given location within the watershed [6]. The index is
mathematically defined as:

A
TWi=In (tan B) (1)
In this equation, A represents the specific catchment area (measured in square meters per meter), which is essentially
the amount of land upslope that contributes to runoff at a given point. B is the local slope gradient in radians, which
reflects how steep the terrain is. Higher TWI values typically correspond to areas where water is more likely to collect
and remain, indicating greater soil moisture potential [9, 37].

In this study, TWI was calculated using GIS software, which allowed for a detailed spatial analysis of moisture
distribution. The resulting TWI maps highlight regions with high moisture retention, which are often more susceptible
to flooding. By identifying these wet areas, TWI not only aids in flood risk assessments but also helps inform land
management practices, soil conservation efforts, and the planning of drainage or flood control infrastructure.

2.2.2.10. Curvature

Curvature (Figure 4-g), derived from a Digital Elevation Model (DEM) using QGIS, serves as an important factor
in evaluating flood susceptibility. It describes the shape of the terrain’s surface and is typically classified into three
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categories: concave, convex, and flat. Each of these surface types influences water movement differently, making
curvature a key parameter in hydrological studies [38, 39]. Concave surfaces tend to collect and channel runoff,
potentially increasing flood risk in those areas. Convex surfaces, on the other hand, promote water dispersion and may
reduce localized flooding. Flat surfaces can lead to water pooling, prolonging saturation, and increasing the likelihood
of surface water accumulation. By analyzing curvature, researchers can gain valuable insights into the dynamics of
runoff flow, helping to identify areas more vulnerable to flooding and guide more effective land management practices
[40].

2.2.2.11. Topographic Position Index (TPI)

This factor (Figure 4-/) represents a terrain analysis metric computed from a Digital Elevation Model (DEM). It is
commonly used to determine the relative location of a given point in relation to its surrounding landscape. Specifically,
it calculates the elevation difference between a central grid cell and the mean elevation of neighboring cells within a
designated radius [41, 42]. The index is formulated as follows:

TPI = M, — Eitn @)

where M, represents the altitude at the center point, M,, is the elevation of surrounding grid points, and n denotes the
total number of those surrounding points. By analyzing local elevation variations, TPI effectively distinguishes terrain
features such as ridges, valleys, slopes, and plains. Typically, TPI values are classified into five distinct categories using
the natural breaks classification method (Jenks method), facilitating the interpretation of terrain morphology [43].

Furthermore, TPI is instrumental in evaluating flood susceptibility, as it identifies areas more likely to experience
water accumulation during flooding events. Cells characterized by negative TPI values typically correspond to
depressions or valleys, which naturally collect runoff and are consequently more vulnerable to flooding. Conversely,
positive TPI values indicate elevated terrains such as ridges or hills, which are generally less susceptible to flooding.
Integrating TPI into flood-risk modeling supports effective spatial planning and flood mitigation strategies by
pinpointing zones that require targeted preventive measures [44].

2.2.2.12. Stream Power Index (SPI)

This factor (Figure 4-n) is an indicator used to assess the potential energy of a watercourse to cause erosion and
influence flood susceptibility. It is calculated based on terrain slope and flow accumulation within a watershed [45],
using the formula:

SPI = a X tan(B) 3)

where a represents the catchment area, and [ is the slope. This analysis relies on spatial and hydrological data,
producing results in raster format with a 30-meter resolution.

The SPI is widely used in geomorphology, natural hazard management, and hydrology to identify areas vulnerable
to both water erosion processes and flood events [46]. A high SPI value typically indicates locations where water has a
strong sediment transport capacity, increasing the risks of erosion and flash flooding. As a result, this index serves as a
valuable tool for environmental planning, watershed management, and mitigating the impacts of extreme hydrological
events [47].

2.2.2.13. Flow Accumulation (FA)

This factor (Figure 4-m) is a crucial hydrological parameter derived from a Digital Elevation Model (DEM) that
helps in identifying water flow patterns within a landscape. It represents the total contribution of upstream cells directing
water into each downslope cell in a raster output. FA is a key indicator for analyzing surface runoff, drainage networks,
and potential flood-prone areas [48, 49].

Regions located near major flow accumulation paths, especially those with high upstream water contribution, are
significantly more susceptible to flooding. Cells with high flow accumulation indicate areas where water converges,
forming natural drainage channels, streams, or river networks. These areas are critical for hydrological modeling, flood
risk assessment, and watershed management, as they help predict areas of excessive runoff and potential inundation
during heavy rainfall or storm events [50, 51].

Conversely, cells with zero flow accumulation correspond to elevated landforms such as ridges, peaks, or watershed
divides, which naturally separate different drainage basins. Identifying these high points is essential for terrain analysis,
erosion control planning, and designing effective flood mitigation strategies [45].
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2.2.2.14. Lithology

Lithology (Figure 4-f) plays a crucial role in flood formation by influencing the permeability, water infiltration
capacity, and surface runoff characteristics of the terrain. The ability of different rock types to absorb or retain water
directly affects how water moves through the landscape, shaping the watershed’s hydrological response [19, 52]. In the
ASSAKA watershed, the lithological distribution map classifies the region based on rock permeability, providing
essential insights into flood susceptibility. In this classification, lower values correspond to highly permeable areas,
where water infiltration is more efficient, reducing runoff and flood risk. In contrast, higher values indicate less
permeable zones, where water infiltration is limited, increasing the likelihood of surface water accumulation and
potential flooding.

The lithological analysis of the region reveals a diverse geological composition, including shales, limestones,
sandstones, and quartzites, spanning from the Precambrian to the Quaternary periods. This variability directly influences
flood dynamics, as highly permeable formations (such as sandstones and fractured limestones) facilitate rapid water
absorption, reducing the volume of surface runoff.

2.2.3. Data Preprocessing

Fourteen raster images (Figure 4) were processed within a GIS environment and converted into numerical data using
Python libraries, notably Pandas and NumPy. Each pixel in the resulting dataset was associated with its precise X and
Y coordinates, along with numeric values representing various flood conditioning factors [53]. Ensuring the high quality
and accuracy of this dataset was essential, as data quality significantly impacts the reliability of subsequent analyses and
modeling results [54]. Therefore, thorough data preprocessing was conducted, which included steps such as checking
for missing values, verifying consistency, and eliminating irrelevant or incorrect entries. A critical stage in this
preprocessing was the identification and removal of outliers values that deviate considerably from typical observations
and potentially distort model outcomes. Detecting these anomalous data points remains challenging due to the absence
of universally established statistical guidelines for identifying outliers. Consequently, effective outlier management
depends heavily on domain expertise, familiarity with the characteristics of the data, and a clear understanding of the
data collection methodologies used during the study [55].

2.2.4. Random Partition

To train and evaluate a model effectively (Figure 3-a), it is important to divide the dataset into two subsets: a training
set and a testing set. A commonly recommended approach is to use 70% of the data for training and reserve 30% for
testing. This ensures the model has enough data to learn patterns and can be properly evaluated on unseen examples.
Using a fixed random seed during this process also helps maintain consistency and reproducibility of results [56].

Selecting the right proportion of data for testing is crucial. In most cases, it is advisable to dedicate 20-40% of the
dataset for testing. Allocating more than 40% may leave insufficient data for training, which can negatively impact the
model’s performance. Conversely, less than 20% may be acceptable for very large datasets, but staying within the 20-
40% range usually provides more reliable and representative outcomes [57].

The separation of data into training and testing sets is typically done through random splitting, commonly referred
to as the "holdout method." This method ensures the data is divided in a way that maintains the characteristics of the
original dataset. For instance, specifying that 30% of the data should be used for testing and 70% for training ensures
that the resulting subsets reflect the overall distribution of the data. While this process doesn’t rely on a precise
mathematical formula, it is guided by statistical reasoning to produce balanced and meaningful subsets [9, 56].

2.2.5. Data Standardization

Standardizing data is a crucial preprocessing step in many machine learning workflows. It involves transforming
dataset features so they are centered around zero and scaled to have a unit variance. This ensures that all features
contribute equally to the learning process, preventing models from being biased by features measured on different scales
[58]. Standardization is typically performed after splitting the data into training and testing subsets to avoid data leakage.

The mathematical procedure for data standardization includes the following steps:

Step 1: Compute the Mean (k). The mean of each feature is calculated as:
k=—%m x 4)

where (x;) represents individual values and (m) is the total number of samples.

Step 2: Compute the Standard Deviation (w) the standard deviation, which reflects the dispersion of the values
around the mean, is given by:
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w= J%Zﬁl(xi —k)? (5)

Step 3: Standardize the Feature Values Each value is then transformed into its standardized form:

x—k
Xstandardisé = "o (6)

Following this procedure results in a dataset where each feature has a mean of zero and a standard deviation of one.
Such normalization facilitates fair comparisons between features and often enhances the performance of various machine
learning algorithms [59].

2.2.6. Flash Flood Vulnerability Modelling

In this study, four machine learning algorithms (MDA, LR, NB, and MLP) were applied to predict the flash flood
susceptibility map.

2.2.6.1. Multivariate Discriminant Analysis (MDA)

Multivariate Discriminant Analysis (MDA) is an advanced statistical technique derived from Linear Discriminant
Analysis (LDA), widely utilized for classification and pattern recognition purposes. Unlike LDA, which assigns data
points to groups based on the assumption of a common normal distribution with identical variance and correlation
structure across classes, MDA introduces enhanced flexibility by permitting each class to exhibit multiple normal
distributions. This characteristic makes MDA particularly effective in addressing complex datasets characterized by
varied internal structures and interactions among variables [60, 61].

The fundamental principle of MDA involves determining linear combinations of independent variables that optimize
the separation between classes [7, 62]. Mathematically, this relationship is represented by the following equation:

A=X,B +X,B, +--X,B, @)

In this equation, A denotes the discriminant score used to classify observations, X; (i = 1,2,3,...,n) represent
discriminant weights derived from the data, and B;(i = 1,2,3, ..., n) correspond to the independent predictive variables.

Due to its robustness and accuracy, MDA has become a critical analytical tool across diverse scientific and practical
domains, such as hydrological modeling, flood susceptibility analysis, environmental risk assessment, ecological
studies, and predictive analytics. The method's capability to manage complex interactions among multiple spatial and
environmental variables significantly enhances its efficacy in identifying and interpreting nuanced patterns and
relationships within data, thereby improving decision-making and resource management [61, 62].

2.2.6.2. Multilayer Perceptron (MLP)

The Multilayer Perceptron (MLP) is a fundamental type of Artificial Neural Network (ANN), inspired by the
structure and function of the human brain. An MLP comprises multiple layers: an input layer that receives the input
features, one or more hidden layers composed of interconnected nodes (neurons), and an output layer that delivers the
final prediction or classification result [63, 64].

Each neuron in the network computes a weighted sum of its inputs, adds a bias term, and passes the result through a
non-linear activation function. Mathematically, the operation of a neuron in layer [ can be represented as:

O _ o -1 ®
z; =YWy a; + b ®)
l (O]
o = f(z") ©)
where:
z].(l) is the linear combination of inputs to neuron j in layer [,

Wi(].l)is the weight connecting neuron i in layer [ — 1 to neuron j in layer [,
bj(l) is the bias term for neuron j,

al.(l_l) is the activation from the previous layer,

f is the activation function (e.g., ReLU, sigmoid, or tanh),

a]@ is the resulting activation of the neuron.
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The MLP is trained using backpropagation, a supervised learning algorithm that minimizes the error between the
predicted output ¥ and the true label y.The error is often computed using a loss function £;, such as mean squared error
(MSE) or cross-entropy loss, and the weights are updated using gradient descent:

W, 0 9L
Wi e Wi =1 w® (10)

where:
n is the learning rate,
(z) is the gradient of the loss with respect to the weight.
Thls iterative optimization process allows the MLP to learn complex, nonlinear mappings between inputs and
outputs, making it a powerful model for classification and regression tasks [65, 66].
2.2.6.3. Logistic Regression (LR)

Logistic Regression (LR) is a supervised learning algorithm predominantly employed for binary classification tasks,
where the dependent variable typically takes two possible outcomes. It effectively accommodates both continuous and
categorical input variables. The algorithm leverages a sigmoid (logistic) function to map input data to probabilities
ranging between 0 and 1, providing a clear interpretation of how predictor variables influence the likelihood of a
particular outcome [67, 68].

Formally, the logistic regression model estimates the probability P(Y = 1) of an event occurring (binary outcome)
based on predictor variables using the logistic (sigmoid) function:

1
1+e—(Bo+B1x1+B2Xx2++Bnxn) (11)

P(Y =1]X) =

where:
P(Y = 1|X) is the predicted probability of the positive class given the features X = (xy, x5, ..., X;,)
B, is the intercept term (bias).
B, B, -, B are the coefficients representing the effect of each predictor variable x;.
e is Euler’s constant (approximately equal to 2.71828).

The expression (S, + B1x; + B,x, + -+ + B,x,)is the linear combination of input features, often referred to as the
logit or log-odds function:

logit(P(Y = 1)) = In(—2=2) = B + Bux; + Byxy + - + Bun (12)

1-P(Y=1)

LR functions as a probabilistic model by quantifying the relationship between independent predictors and a binary
response variable, thereby enabling classification and predictive modeling. Its underlying approach relies on estimating
the parameters 8 that best describe the relationship between inputs and outcomes through maximum likelihood
estimation [69, 70].
2.2.6.4. Naive bayes (NB)

Naive Bayes (NB) is a supervised probabilistic classification method rooted in Bayes' theorem, a mathematical
framework used for calculating conditional probabilities. The term "naive" arises from its fundamental assumption of
feature independence, meaning that it presumes all predictor variables independently contribute to the probability of the
outcome, without interactions between them [8, 71].

Formally, the Naive Bayes classifier predicts the class Cj, for a given instance X = (x4, X5, ..., X,,), composed of n
independent features, using the following formula derived from Bayes’ theorem:

P(X|Cg).P(C
P(Cy|X) = 220 (13)

Here:
P(C,|X) is the posterior probability of class C,, given the features X.

P(X|C,) is the likelihood, calculated based on the independence assumption as:
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PX|C) = [1iz1 P(x;1Cy) (14)

P(Cy) is the prior probability of class C,,.

P(X) is the evidence (normalization factor), given by:
P(X) =Y, P(x|c).P(C) (15)

As a simplified version of more complex Bayesian networks, Naive Bayes models consist of a single attribute node
representing the dependent variable and multiple independent feature nodes representing predictor variables. Despite its
simplicity and assumption of independence, which may not always hold true, Naive Bayes performs remarkably well,
particularly with large datasets [72].

2.2.6.5. Ensemble Flash Flood Susceptibility Map

To generate the ensemble flash flood susceptibility map (Figure 5-e), individual susceptibility maps obtained from
four predictive algorithms, namely Logistic Regression (LR), the Naive Bayes classifier (NB), Multivariate Discriminant
Analysis (MDA), and Multi-Layer Perceptron (MLP) were integrated using a Voting Classifier approach that aggregates
their predictions into a unified risk assessment [5, 43]. Each algorithm was initially trained on the same dataset
containing key predictive factors such as topography, soil properties, and land cover, ensuring consistency across the
individual susceptibility maps. After validating the performance of each model, the outputs were combined using either
hard voting or soft voting. In hard voting, each model provides a discrete prediction, and the final class is determined
by the majority vote, which can be expressed as:

y =mode {9, 2, .. Jn} (16)

where ¥; Is the prediction from the i*"* model. In contrast, soft voting involves averaging the predicted probabilities. For
each class, with the final prediction given by:

§ = argmax, 3L, Pi(c)) (17)

where P;(c) represents the probability of a class ¢ from the i*" model and 7 is the number of models. This ensemble
strategy capitalizes on the strengths of each algorithm, mitigating individual uncertainties and variabilities, and
ultimately produces a more robust and reliable flash flood susceptibility map that clearly delineates high-risk zones [73].

2.2.7. Assessing the Models’ Accuracy

In the context of flood classification, each pixel is categorized as either flood-prone (positive) or not flood-prone
(negative). Pixels correctly identified are termed true positives (TP) or true negatives (TN). Conversely,
misclassification leads to false positives (FP) when non-flood pixels are labeled as flood, and false negatives (FN) when
flood pixels are overlooked and marked as non-flood. An essential metric for assessing classification performance is the
Area Under the Curve (AUC), which originates from the Receiver Operating Characteristic (ROC) analysis. It is
computed as:

AyuC = ST (18)
(P+N)

In this equation, P indicates the total count of flood pixels, and N corresponds to non-flood pixels. AUC values span
from 0 to 1, with scores near 0 reflecting poor classification capability and values near 1 denoting excellent model
discrimination. Typically, values under 0.6 are considered inadequate, 0.6—0.7 imply fair classification, 0.7-0.8 denote
good accuracy, and scores beyond 0.8 suggest highly reliable performance.

To illustrate the models’ classification capabilities, ROC curves were plotted using Python-based tools. Moreover,
Mean Squared Error (MSE) was included as an additional indicator to compare prediction accuracy [74], computed as
follows:

MSE =S, (x; — 2)? (19)

Here, q is the quantity of samples, x; are the actual values, and X; the ones that were predicted.

Besides AUC and MSE, several other metrics are used to thoroughly evaluate model performance [74], including
Precision, Recall, F1 Score, Kappa Index, and overall Accuracy.
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Precision (Pr) quantifies the accuracy of positive predictions:

pr=—T" 0)

T TP+FP

Recall (Re) reflects the rate at which actual positives are correctly identified:

Re =" e

~ TP+FN

Accuracy (Ac) measures the proportion of all correctly classified pixels:

TP+TN

Ac = ——— (22)
TP+FP+FN+TN
The F1-score (Fs), which harmonizes Precision and Recall, is defined as:
Fs = 2XPrXRe (23)
Pr+Re

This score is especially useful when there is an imbalance between positive and negative cases, as it balances the
contributions of Precision and Recall.

The Kappa Index (Ka) measures the agreement between observed and predicted classifications while accounting
for chance agreement. It is defined as:

_ Ac—pe

Ka 1-Pe (24)
The expected agreement by chance Pe is given by:
Pe = (p1 X piyrea) + (P2 X P2prea) (25)

Here, p; and p, represent the proportions of true labels in classes one and two, respectively, and p; preq and p; preq
are the percentages of predicted instances in those same classes.

2.2.8. Sensitivity of Flash Flood Predictor Features

In this study, the Jackknife test was applied to assess the sensitivity and relative significance of each flood
conditioning factor [75]. The Jackknife method is a robust statistical technique widely used to measure the influence of
individual variables in predictive modeling contexts [76]. To quantify the contribution of each factor, the percentage of
relative decrease (PRD) of the AUC was calculated according to the following equation:

AUCq—AUC;
AUCqpp

PRD; =100 X (26)
where AUC,); denotes the AUC obtained using all conditioning factors together, and AUC; represents the AUC computed
after removing the (" factor from the model. Thus, PRD; indicates the percentage decline in model performance
resulting from the exclusion of each specific factor. Higher PRD values indicate greater importance of that particular
factor in accurately predicting flood susceptibility [75, 76].

3. Results and Discussion
3.1. Flash Flood Susceptibility Patterns and Model Comparisons

The flash-flood susceptibility maps produced by the five models (Figures 5-a to 5-¢) show broadly similar patterns,
with the lowest-elevation and central channels consistently flagged as high-risk. All models identify the lower Assaka
basin, especially the downstream outlet region and the main wadis (e.g., Oued Essayed and Oued Oum el Aachar), as
prone to flooding. The logistic regression (LR) map (Figure 5-a) highlights moderate-to-high susceptibility in the
Guelmim city area and along the main drainage lines, tapering to mostly low risk in the uplands east of the watershed.
The multivariate discriminant analysis (MDA) map (Figure 5-b) is more aggressive, extending “high” and “very high”
zones farther downslope and across a larger area around the principal streams. The multilayer perceptron (MLP) neural
network (Figure 5-c) yields the most extensive very-high-risk (red) coverage, essentially saturating much of the central
and western sub-watersheds (including around Guelmim and south toward Targa Wassay). In contrast, the Naive Bayes
(NB) map (Figure 5-d) is conservative: it classifies most of the domain as low or moderate risk, with only a few patches
of high risk near urban centers and channel inlets. The ensemble map (Figure 5-¢) — derived by combining the above
classifiers falls between these extremes, marking the key flood-prone corridors (through Guelmim and toward Targa
Wassay) as “high” or “very high” while omitting many spurious high-risk areas seen in MLP/MDA.
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Figure 5. Flash flood susceptibility maps: (a) logistic regression (LR); (b) multivariate discriminant analysis (MDA); (c)
multilayer perceptron (MLP); (d) naive bayes (NB); (e) ensemble

All models consistently converge on the urban flood hotspots. Guelmim city and its immediate surroundings are
flagged as high susceptibility by every model, though with varying severity: MLP and ensemble even classify most of
Guelmim as “very high”, whereas NB labels it merely high (orange), and LR yields a mix of moderate/high. Similarly,
the village of Targa Wassay (northeast of Guelmim) emerges as high-risk in the MDA, MLP, NB, and ensemble maps
(Figures 5b to Se), reflecting its location on an alluvial plain near the confluence of wadis. LR shows Targa Wassay at
moderate risk. These urban areas lie in low-lying parts of the Assaka basin that were heavily flooded in past events [13,
14], so their consistent classification underscores model realism. Notably, NB under-predicts in fringe zones: it fails to
mark some Guelmim suburbs and Targa Wassay as “very high” as other models do. Conversely, MLP and (to a lesser
extent) MDA extend high-susceptibility classifications into some marginal hillslope areas, which may reflect model
over-sensitivity to conditioning factors.
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The three statistical/machine-learning classifiers differ in tendencies. LR produces a balanced map: it picks out the
main floodways but avoids excessive spread of extreme classes. MDA, which also assumes linear factor combinations,
behaves similarly to LR in broad pattern but with more “very high” zones (suggesting a bias toward risk). The NB
classifier, which treats factors as independent, yields a markedly less severe map, probably underestimating
susceptibility where factors interact (a known NB limitation in flood modeling). By contrast, the MLP neural network
appears to over-generalize high risk: it classifies large continuous areas (especially to the south and west) as very high,
perhaps because its non-linear structure captures subtle relationships but also amplifies them. These behaviors echo
findings in other studies: for example, in a Moroccan flood study, RF and ANN outperformed simpler models, whereas
NB often lagged behind [77], and in Tetouan, LR and SVM were among the top performers [78]. Here, MLP’s expansive
very-high zones suggest high sensitivity (and potential false positives), while NB’s sparseness suggests high specificity
(and potential false negatives).

The ensemble map mitigates these extremes and shows greater overall reliability. It retains the core high-risk areas
(e.g. Guelmim, Targa Wassay, wadi mouths) identified by all models but omits many peripheral red zones seen in
MLP/MDA. This consensus approach is in line with recent work showing that ensemble or hybrid models (e.g. random
forest, XGBoost, or ANN+ensemble) achieve higher accuracy and stability in semi-arid flood mapping [77, 79]. In our
case the ensemble’s very-high class occupies a moderate fraction of the basin, similar to published results e.g. Bammou
et al. (2024) [79] found ~10-22% of semi-arid Moroccan plains as very-high risk). By aggregating predictions, the
ensemble balances over-prediction (MLP) and under-prediction (NB). This convergence is especially evident along
principal drainages and floodplains: nearly all models agree that areas near the main rivers and outlets are most
susceptible, reflecting the critical role of hydrologic-topographic factors (distance to river, low elevation, gentle slopes)
in flash-flood dynamics [14, 79].

The results broadly agree with previous studies of the region. The FAHP-based mapping by Talha et al. (2019) [14]
for the Guelmim watershed (the same study area) identified the lowest-elevation outlet and adjoining wadi confluences
as high-susceptibility zones [9, 14] consistent with the clusters of high risk seen in our LR/MDA/ensemble outputs. On
the modeling side, our findings align with the literature that neural-network models (like MLP) often capture complex
flood patterns but may produce more extensive vulnerable areas unless constrained [80], while simpler statistical models
like LR can give robust but somewhat conservative maps [78]. For example, Mekkaoui et al. (2025) [78] found LR and
SVM gave balanced flood-risk delineations in Guelmim, and Talha et al. (2025) [9] found RF (an ensemble tree model)
had top AUC. Our ensemble’s performance is therefore expected to be superior to any single model.

In detail, where models diverge provides insight: MLP and MDA tend to identify broader tracts as “very high” that
LR and ensemble do not. These extra areas often correspond to broad, gentle floodplain zones, which are potentially
true positives but also at risk of false alarms. NB’s high-class areas are far fewer, indicating it underestimates
susceptibility in known flood spots. For example, certain lower-lying agricultural flats northeast of the main channels
are marked “high” by LR/ensemble but only “moderate” by NB. This suggests NB’s conditional independence
assumption may miss the compound effect of overlapping factors there. In effect, the ensemble’s intermediate map can
serve as a reliability check: areas flagged by all models (e.g., central floodplain) are very likely real hotspots, whereas
model disagreement (e.g., outer highlands) advises caution.

Finally, the importance of topographic, hydrologic, and land-use factors is evident across models. The high-risk
zones correspond to low-elevation reaches with high drainage density and, in places, high soil moisture or alluvial cover.
Many studies note that elevation and proximity to streams dominate flood susceptibility in semi-arid basins [14, 79].
Although not quantified here, it is likely that factors such as soil moisture index and rainfall (given high FAHP weights
in Talha et al. (2019) [14], as well as land cover (urban and irrigated fields), amplify risk in the urban sections. Indeed,
Guelmim’s historic inundation was linked to impermeable surfaces and clogged wadis [13], factors that all models
presumably capture to differing extents. Overall, the consistency of core patterns with past results combined with the
ensemble’s agreement across methodologies suggests our flood-susceptibility maps are robust. They highlight priority
areas (particularly urban fringes and outlet plains) for flood management, in line with what multi-criteria and machine-
learning studies in Morocco and elsewhere have found [14, 77].

3.2. Assessment of Flash Flood Susceptibility Through Predictive Factors Across Machine Learning Models

The comparative interpretation of flash flood susceptibility across various models (NB, MLP, MDA, LR, and
ensemble methods) (Figures 4 and 5) reveals consistent patterns in relation to key predictive factors [7, 15]. Altitude
shows a clear correlation with high susceptibility in lower regions across all models, particularly in the expansive zones
highlighted by MDA and the ensemble method. Higher Land Surface Temperature (LST) values align with very high
susceptibility areas, especially in MLP and MDA predictions, reflecting urban and barren areas' vulnerability due to
increased runoff. The Soil Moisture Index (SMI) shows that areas with elevated moisture levels coincide with high-risk
zones, notably in MLP and ensemble outputs, emphasizing saturation and reduced infiltration. Soil types like Chromic
Luvisols and Lithosols are strongly associated with high susceptibility in NB and MDA results, indicating poor
infiltration and greater runoff potential. Slope plays a critical role, with steep upstream areas contributing to rapid runoff,
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clearly mirrored in the MLP and ensemble maps. Lithology further influences susceptibility, as impermeable formations
correspond with high-risk areas in MDA results. The Topographic Wetness Index (TWI) aligns with very high
susceptibility zones in MLP and ensemble predictions, underlining its effectiveness in indicating moisture accumulation.
Aspect and curvature, especially concave landforms that guide runoff, are highlighted in MDA and NB models as key
flood-prone areas. High drainage density areas, consistently marked as susceptible by NB and ensemble methods,
reinforce their role in channeling floodwaters. The Topographic Position Index (TPI) shows that valleys and depressions
match high-risk zones, especially in MDA and ensemble models, pointing to their function as runoff convergence points.
Flow accumulation is a strong predictor, with high values aligning with risk areas across all models, particularly in LR
and ensemble outputs, indicating the significance of cumulative runoff. Lastly, the Stream Power Index (SPI) reveals
that zones with higher SPI values correspond to high susceptibility areas in MDA and MLP maps, identifying regions
prone to intense runoff and erosion.

Models consistently identify low-lying areas, such as valleys and flat plains, as highly susceptible to flash flooding.
In general, flood risk increases as elevation decreases, since water naturally converges and accumulates in lower terrain
where drainage is limited. Conversely, very high altitudes (e.g., above ~5000 m) tend to contribute little to flood risk.
In this study, all applied models (NB, MLP, MDA, LR, and the ensemble approach) highlight pronounced “hotspots” of
high flood susceptibility within extensive lowland areas, which aligns well with widely recognized relationships between
elevation and flood occurrence reported in the literature [81, 82].

Areas with high LST usually correspond to urbanized or barren surfaces, which our models also identify as very
high-risk zones. This makes sense because impervious urban/bare surfaces heat up more and cannot absorb rain, leading
to rapid runoff. For instance, Islam et al. (2025) [83] highlight that impervious surfaces “reduce infiltration and increase
runoff, leading to flooding”. finding that warm, built-up zones (often with high LST) align with flood-susceptible areas
echoes many urban flood studies showing that intense land heating and urbanization heighten runoff and flood impact
[83, 84].

Zones of high soil moisture are flagged as high-risk in models. This is expected since saturated soils cannot absorb
more rain, so additional precipitation runs off directly into streams. Talha et al. (2019) [14] likewise found the soil
moisture index to be the top factor (37% weight) in flash flood susceptibility mapping. In other words, when our models
highlight very moist areas as flood-prone, they are echoing established knowledge that wet soils and pre-saturated
catchments are prime locations for flash floods [14].

Certain soil classes with low permeability (high clay content or very shallow layers) show high susceptibility. For
example, Chromic Luvisols (fine-textured soils) and shallow Lithosols (highly rocky, shallow soils) were associated
with the high-risk zones. This fits the idea that soils that “convey water quickly” or have poor infiltration generate more
runoff. Supporting this, Ogato et al. (2020) [85] classified Chromic Luvisols as moderately flood-susceptible and
shallow Leptosols (similar to lithosols) as highly susceptible, due to their low permeability. In short, our observation
that impermeable or rocky substrata coincide with flood zones agrees with prior studies emphasizing geology:
impermeable strata limit infiltration and thus promote flooding [83, 86].

Steep slopes tend to coincide with high flood risk in the MLP and ensemble maps. This is because steep upstream
terrains generate very rapid runoff (water flows down faster on steep slopes). Mountain flood reviews note that “steep
slopes, shallow soils...reduce the land’s ability to retain water, increasing surface runoff”’, which leads to sudden floods
[87]. In line with this, steep upland catchments in this study are marked as highly susceptible, mirroring findings in
mountainous flood literature [87]. (In contrast, some plains-flood studies might emphasize flat areas for slower drainage,
but here, rapid mountain runoff dominates our flash-flood pattern.).

The shape of the terrain also plays an important role in flood susceptibility. In particular, concave landforms, such
as valley bottoms and hollows, are consistently identified as flood-prone by several models. Concave slopes tend to
function like funnels, slowing down water movement and promoting ponding. This behavior is clearly reflected in our
results, where the MDA and NB models classify concave (negative-curvature) areas as high-risk zones, consistent with
the expectation that such landforms concentrate surface runoff. Areas with nearly flat curvature also appear vulnerable,
which agrees with the understanding that flat valley floors often trap and retain water [81, 86]. Aspect shows a weaker
influence in this study; however, in certain locations, slope orientation and shadowing effects may slightly affect flood
accumulation, as noted in local geomorphological analyses [81].

Interestingly, the NB and ensemble outputs flag regions with high drainage density (many small channels per area)
as susceptible. Intuitively, one might think more channels should help drain water, but high drainage density usually
means a landscape carved by many waterways that rapidly carry water downstream. Ogden et al. (2011) [88] specifically
note that basins with high drainage density are strongly linked to high flood potential. In our context, that means areas
where streams are densely packed can conduct floodwaters quickly, leading to severe floods, consistent with the
literature [89].

Low TPI values (valleys/depressions) coincide with high susceptibility in MDA and ensemble predictions. In other
words, river valleys and basin bottoms are hotspots. This matches the idea of TPI: negative or low TPI marks valley
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bottoms. Li et al. (2025) [90] found that negative-to-low TPI ranges (valley positions) significantly contribute to flash
flood occurrence. Our models likewise show valleys (low TPI) overlapping with flood-prone zones.

Areas with high flow accumulation (representing large upstream catchments feeding a point) are strong risk signals
in all models, especially LR and ensemble. This measure is directly related to how much water will flow through a given
point. In practical terms, places that collect runoff from a large area (high FA) line up with where our susceptibility
maps peak.

High SPI values also align with flood-susceptible zones in MDA and MLP maps. SPI combines flow accumulation
with slope to estimate the erosive power of flowing water. Intuitively, areas with high SPI are steep and carry much
water, making them prone to strong, erosive floods. This fits general geomorphology: mountain watersheds with high
stream power are known to generate intense flash floods [87, 91]. Thus, zones of intense channel flow (high SPI) in our
results correspond to rapidly eroding, flood-prone headwaters, as expected from theory and other studies.

The factor-wise findings largely agree with the literature. For instance, the strong role of soil moisture in our models
agrees with Talha et al.’s (2019) [14] Moroccan study, which gave SMI the highest influence (37%) in flash-flood
mapping. Likewise, the emphasis on impervious or low-infiltration ground (high LST urban areas or rocky soils) echoes
broad reviews that urbanization and impervious geology “substantially increase runoff” and flood risk [83, 86]. The
linkage between valley locations (low TPI) and flooding matches Li et al. (2025) [90], who found TPI ranges around
1.5 to 0.6 (valleys) dominated flood susceptibility patterns. High drainage density and flow accumulation as predictors
in our study also align with Ogden et al. (2011) [88] and others, who note that basins with dense channel networks and
large contributing areas tend to flood more easily [84, 89]. In summary, our models reinforce established insights: low-
lying, poorly drained areas (moist soils, built surfaces) and steep, converging catchments (high slopes, SPI, drainage)
are flood hotspots. Any differences (for example, some flat areas being very high risk here) can often be traced to local
geography and land use. Overall, the patterns in our output agree closely with previous flood-susceptibility research [81,
83], validating that the key factors identified (slope, moisture, LST, soils, drainage indices) have been similarly
highlighted by earlier studies.

3.3. Analysis of Flash Flood-Prone Areas and Susceptibility Classifications

The susceptibility maps (Figure 5) exhibit systematic yet model-specific differences in class distributions (Figure 6).
Logistic Regression (LR) assigns the largest share of the watershed to the low class (74.08%), with very high coverage
of 12.29%. Multivariate Discriminant Analysis (MDA) yields a nearly identical low footprint (74.32%) but a slightly
larger very high share (12.70%). Multilayer Perceptron (MLP) shows a more polarized pattern: a very large low share
(83.74%) alongside the highest very high proportion among the four single models (13.42%), and comparatively little
area in the moderate (1.21%) and high (1.63%) classes. Naive Bayes (NB) is the most conservative regarding extremes:
it maps 80.54% as low and only 4.22% as very high. By contrast, the Ensemble (voting) model distributes area more
evenly across classes, low 66.34%, moderate 14.77%, high 8.40%, very high 10.50%—thus reducing the dominance of
a single class.
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Figure 6. Percentage (%) of the ASSAKA watershed area (km?) identified in each flash flood susceptibility class by model

When aggregating the high and very high categories, the total susceptible footprint is 19.86% for MDA, 18.90% for
the Ensemble, 17.77% for LR, 15.05% for MLP, and 13.15% for NB (Figures 5 and 6). Taken together, the models
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consistently delineate corridors along the principal wadis and their confluences as susceptible, with spatial emphasis
near Guelmim, where exposure is greatest. The Ensemble map, by tempering over- and under-prediction from individual
learners, provides a balanced and management-ready depiction of risk tiers.

NB’s small very high footprint (4.22%) likely reflects its conditional-independence assumption, which can smooth
extremes and reduce sharply peaked probabilities. This produces conservative very high estimates but may
underestimate localized hotspots.

MLP’s polarized distribution (very large low plus notable very high with minimal moderate/high) is typical of non-
linear decision boundaries that separate feature space into broad “safe” regions and compact high-risk clusters. This can
be advantageous for flagging “critical” cells but may compress intermediate classes.

LR and MDA deliver stable mid-range behavior, with broadly similar low shares (~74%) and very high around 12—
13%. Their linear (or linear-in-transformed-space) structure often yields smoother gradients across classes.

The Ensemble integrates these behaviors: it reduces the oversized low area of LR/MDA/MLP, recovers moderate
areas that single models largely miss (14.77% vs. 1.21% for MLP), and preserves a realistic high/very high footprint
(18.90%) without the contraction seen in NB. For planning, this translates into clearer prioritization: (i) very high for
immediate structural and non-structural measures; (ii) high for near-term mitigation; (iii) moderate for preventive
zoning, maintenance, and monitoring.

Across models, very high and high classes cluster along main channels, confluences, and low-lying outlets, with
enlargements near urbanized/bare zones around Guelmim. This pattern is consistent with hydrological controls
(convergence of flow, high drainage density, large flow accumulation) and land-surface constraints (impervious cover,
compacted soils) that accelerate runoff and limit infiltration. The Ensemble strengthens this coherence—reducing
scattered false positives while retaining continuous high-risk corridors that are operationally meaningful (e.g., for road
crossings, bridges, culverts, and urban drainage bottlenecks).

Talha et al. (2019) [14] (FAHP-GIS) emphasized soil moisture, rainfall, and drainage density as dominant drivers
and identified the watershed outlet and main tributaries as the most susceptible zones. The present ML/ensemble maps
reproduce these corridors and their downstream expansions, especially where low elevation and high flow convergence
coincide.

Talha et al. [9], (Assaka, ML—GIS, subsequent study) similarly reported pronounced susceptibility along principal
wadis and near built-up areas, attributing risk to combinations of topography (elevation, slope, TWI), hydrography
(drainage density/flow accumulation), and surface condition (LST/SMI, soil/lithology). Our Ensemble map echoes this
integrated control: very high/high belts track channel networks and urban fringes, while uplands and well-drained
surfaces fall predominantly into low.

Other Moroccan case studies (e.g., High Atlas watersheds using AHP/fuzzy or RF/XGBoost) [92] likewise show
distance to channels, flow accumulation, drainage density, and elevation as recurrent top predictors, with high-risk
swaths concentrated along river corridors and at confluences. The relative share of high/very high area in our Ensemble
(=19%) is within the range reported in those studies when robust validation and multi-factor conditioning are applied,
whereas methods that (i) down-weight independence assumptions or (ii) up-weight uncertainty (e.g., fuzzy operators)
can yield broader high-risk extents. In short, our class proportions and spatial patterns fit well within the Moroccan
literature and strengthen confidence in the mapped priorities.

3.4. Evaluation of the Sudden Flood Susceptibility Maps

The evaluation of sudden flood susceptibility models utilized various indicators of predictive ability, such as Recall,
F1 Score, Precision, Accuracy, Kappa statistic, Surface under the ROC curve (AUC), and Mean Squared Error (MSE)
(Figure 7 to 9) [93, 94]. These metrics collectively offer a thorough understanding of the classification accuracy,
robustness, and generalization capabilities of the models.
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Figure 9. Comparison of mean square error (MSE) among models

The Artificial Neural Network (MLP Classifier) exhibited perfect predictive performance, achieving ideal scores
across all evaluated metrics (F1 Score= 1.0, Recall = 1.0, Accuracy = 1.0, Kappa= 1.0, AUC = 1.0, MSE = 0.0, Precision
= 1.0). The absence of errors confirms the model's exceptional consistency and reliability in predicting flash flood
susceptibility.

Similarly, the Ensemble model (Voting Classifier) delivered outstanding performance, characterized by a near-
perfect Precision (0.9679), Recall (0.9667), Accuracy (0.9667), and F1 Score (0.9646). The high Kappa statistic
(0.8387), perfect AUC (1.0), and zero MSE further illustrate the robust and reliable predictive capacity of this ensemble
approach.

The Logistic Regression (LR) model demonstrated commendable predictive ability with an impressive AUC score
of 0.9808, signifying strong discriminative capability. However, it showed somewhat lower Precision (0.9103), Recall
(0.9), Accuracy (0.9), and F1 Score (0.8727). A notably lower Kappa statistic (0.3662) and arelatively small MSE (0.02)
suggest some inconsistencies and reduced agreement between predicted and actual classifications.

The Multivariate Discriminant Analysis (MDA) model provided solid performance metrics (Recall = 0.8667,
Accuracy = 0.8667, F1 Score = 0.8773, Precision = 0.8972), coupled with a strong AUC score of 0.9615 and a relatively
low MSE (0.04). However, its Kappa statistic (0.5238) indicates moderate agreement, revealing room for improvement
in predictive stability.

In contrast, the Naive Bayes (Gaussian NB) model registered the lowest overall performance, characterized by the
lowest AUC score of 0.8173, despite relatively high Precision (0.9381) and Recall (0.9333). The accuracy (0.9333), F1
score (0.9235), and notably higher MSE (0.19) underscore moderate performance and significant inconsistencies in
predictive agreement, as also reflected by the lower Kappa statistic (0.6341).

Overall, considering all performance indicators, the Artificial Neural Network (MLP Classifier) and the Ensemble
(Voting Classifier) models distinctly outperformed the other evaluated models, demonstrating exceptional accuracy,
reliability, and robustness. These attributes confirm their suitability as highly effective methodologies for accurate flash
flood susceptibility assessment within the study area:

3.5. Jackknife Sensitivity Test for Flood Susceptibility Factor Evaluation

Choosing suitable conditioning factors is essential for accurate flash flood vulnerability modeling. This study
conducted a Sensitivity assessment of 14 predictor factors using the Jackknife test [75, 76] to evaluate their relative
importance across five different models: Naive Bayes (Gaussian NB), Logistic Regression (LR), Artificial Neural
Network (MLP Classifier), Multivariate Discriminant Analysis (MDA), and Ensemble (Voting Classifier) (see
Figure 10).
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Figure 10. Sensitivity analysis results from the jackknife test

The analysis revealed notable variations in factor importance among these models. Digital Elevation Model (DEM)
emerged consistently as the most influential factor across four models (NB, LR, MLP, and Ensemble). Specifically,
DEM recorded high Partial Derivative Response (PDR) values of approximately 0.075 for NB, 0.08 for LR, 0.22 for
MLP, and 0.15 for the Ensemble model. Within the NB (Figure 10a) model, the next most influential factors were
Topographic Position Index (TPI) and Slope, both showing modest influence (PDR ~0.015 and 0.01, respectively), with
all other factors contributing minimally.

For the LR (Figure 10-b) model, while DEM showed significant importance, other factors like Aspect
(approximately 0.005) played minor positive roles, whereas Soil and TPI displayed negative importance (around -0.02).
In contrast, the MLP (Figure 10-c) model placed additional weight on Land Surface Temperature (LST, ~0.07) and Soil
Moisture Index (SMI, ~0.03), alongside DEM.

The MDA (Figure 10-d) model uniquely identified Soil Moisture Index (SMI) as the most critical determinant,
showing the highest influence (PDR = 0.38), followed by Land Surface Temperature (LST, =0.30), DEM (=0.20), and
Topographic Wetness Index (TWI, =0.02). Other parameters, including Soil and Land Use/Land Cover (LULC),
exhibited minimal importance (<0.01).

The Ensemble model (Figure 10e¢) consolidated the importance of DEM, followed by TPI, LST, and SMI,
emphasizing the consistent yet varied roles these factors play in flood susceptibility. Overall, the findings underscore
DEM's central role as a critical determinant in flood susceptibility across most modeling approaches, while also
highlighting the contextual importance of other parameters such as SMI, LST, TPI, and Soil, depending on the specific
modeling method utilized.

3.6. Correlation of Flash Flood Predictor Factors

For this study case, the correlation heatmap (Figure 11) distinctly illustrates the interactions and relationships among
various predictor variables associated with flash flood susceptibility [95-97]. As expected, the diagonal line, showing
perfect positive correlation, indicates each variable's self-correlation. Key groups of positively correlated factors are
clearly visible, notably among Flow Accumulation (FA), Drainage Density (DD), Topographic Position Index (TPI),
and Slope, reflecting their integrated influence on runoff generation and water flow dynamics. Additionally, Curvature
presents notable negative correlations with Stream Power Index (SPI) and Digital Elevation Model (DEM), highlighting
an inverse relationship wherein areas with higher curvature typically correspond to lower stream power and elevation.
Moreover, Lithology, Soil, and Land Use/Land Cover (LULC) exhibit strong positive correlations, indicating their
interconnected roles in controlling infiltration, runoff, and land stability. Overall, the moderate-to-low correlations
observed among the remaining predictor variables emphasize their suitability for inclusion as independent factors,
effectively limiting potential multicollinearity issues and enhancing the reliability of the flash flood susceptibility
modeling process.
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Figure 11. Correlation heatmap of flash flood predictor variables

The primary goal of conducting this correlation analysis is to evaluate and manage relationships among predictor
variables to strengthen predictive modeling by minimizing multicollinearity. This ensures optimal model performance,
accurate interpretation, and reliable prediction outcomes. In this particular study case, the correlation structure is
suitable, demonstrating predominantly moderate-to-low correlations among variables. Thus, it effectively supports
robust flash flood susceptibility predictions, enhancing the overall accuracy and reliability of the modeling results.

3.7. Importance of Flash Flood Predictor Factors Across Machine Learning Algorithms

An integrated evaluation of the feature-importance charts reveals both consistent trends and model-specific
variations in determining flash flood susceptibility [98, 99]. In (Figure 12-a), the Artificial Neural Network (MLP)
clearly prioritizes the Soil Moisture Index (SMI) as the most critical predictor, with the Land Surface Temperature (LST)
and altitude also playing significant roles. (Figure 12-b) illustrates that the Naive Bayes (Gaussian NB) model similarly
emphasizes DEM, while also highlighting the importance of the Topographic Position Index (TPI) and Slope, with
moderate contributions from LST, Stream Power Index (SPI), and Soil. In (Figure 12-c), the Logistic Regression (LR)
model shows a dominant influence of DEM, with Soil and TPI emerging as secondary factors, and smaller yet notable
contributions from Slope, LST, and Lithology. Conversely, (Figure 12-d) demonstrates that the Multivariate
Discriminant Analysis (MDA) model places the greatest emphasis on SMI, followed by LST and then DEM, indicating
a stronger focus on soil saturation and temperature conditions, with Soil and Slope also being significant. Finally, as
seen in (Figure 12¢), the Ensemble Voting Classifier synthesizes the insights from the individual models by ranking
DEM first, followed by SMI, LST, and Soil, while also attributing considerable weight to Slope and TPI. Overall, these
figures collectively underscore that areas with low elevation, high soil moisture, elevated surface temperatures, and
distinct terrain features are critical for flash flood susceptibility, thereby emphasizing the importance of these factors in
flood risk mitigation strategies.
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(d) Feature Importances for Multivariate Discriminant Analysis (MDA)
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Figure 12. Ensemble feature importance for flash flood susceptibility mapping

3.8. Multi-model Analysis of Soil Permeability and Flood Susceptibility Interrelationships

A comparative examination of the permeability map (Figure 13) against each model’s flood susceptibility output
(Figure 14) reveals a clear spatial relationship between areas of low infiltration capacity and high flood risk [100-102].
In all five correlation maps, zones characterized by lower permeability (classified as low to moderate) overlap

consistently with the regions.

3250000

3220000

Wadi Assaka

319?000

_ Labyar
0

Aferkat
.

Tiglit
O

31 6?000

400000
N

450000
N

_ Tioughza
.

_ Lakhsas
1,1

Jabal Taissa

20

 Tighirt
.

Assa
®

40
Km

500I000
o
(=
8
r3
B
(=3
8
'S
&
8
Legend: -8
® Outlet &
&? Guelmim Limits
@© City
= Hydrographic Networks
Permeability:
® Very High
% High §
Moderate B
- Low 3

T
400000

450000

T
500000

Figure 13. Spatial distribution of soil permeability in the study area

4950




3160000

3190000

3160000

Civil Engineering Journal

Vol. 11, No. 12, December, 2025

400000 450000 500000 400000 450000 500000
 Tarsouat  Tarsount
g
LS
]
8
LS
8
s
‘Wadi Assaka
8
-1
Labyar e Labyar
& Legend: z &
Wadi Essayed ® ouet Wadi Essayed ® o:..m
* City % City
Aterkat Guelmim Limits Aerkat Opclmin Lim b
% [ lydrographic Networks * == Hydrographic Networks
/'/ P-crmnbimy and NB Correlation: o s /'/ ".""::;"""V LR Corletion:
Low E=3 k=3
",(T'“"‘ Aouint Lahna =1 Moderate g 21 ",(T'g“‘ Aouint Lahna £ Moderate
: 5 5 1 High
0 5 10 20 (1 High 0 5 10 20 =
i W Very high = ry hig
400000 450000 500000 400000 450000 500000
400000 450000 500000 400000 450000 500000
 Tarsouat  Tarsount
Wadi Oum Laac a Wadi Oum Laachar a
Tighirt 3 Tighirt
* FS *
S
8
g
rs
S
‘Wadi Assaka Wadi Assaka
8 8
g g
e g
, Labyar Legend: b3 s , Labvar Legend:
B ® ouller B ® Outlct
Wadi Essayed * City Wadi Essayed DI % ity
Aferkat Guelmim Limits Froah = Guelmim Limits
% = Hydrographic Networks % éi / e [Tydrographic Networks
- Permeabilty and LR Correlation: Permeability and MDA Correlation:
Z ™ Low 8 8 B . Low
T Aoutne Latna =1 Moderste § 8 o Aoutne Lanna £ Moderate
. - 1 High 5 5 . - 1 High
P = Very high P ] . Very high
400000 450000 500000 400000 450000 500000
400000 450000 500000
i Tarsouat
e (©) TR s
Tighirt -3
* H
8
s s
g 2
g g
g e
8 8
8 8
8 8
Wadi Assaka
8 8
84 =1
H 2
a b3
Wadi Essayed @ Outlet
# City
Aferkat Guelmim Limits
* = Hydrographic Networks
v Permeability and Ensemble Correlation:
g . Low g
8 W Aouint Lahna [ Moderate re
° L) . Hioh ”
L —L ) M Very high
400000 450000 500000

Figure 14. Multi-model correlation analysis of soil permeability and flood susceptibility ((a) naive bayes; (b) logistic
regression; (¢) multivariate discriminant analysis; (d) multi-layer perceptron; (e) ensemble voting classifier)

identified by the algorithms as highly susceptible to flooding. For instance, the Naive Bayes correlation map (Figure
14-a) highlights that areas in the southwestern portion of the study region where soils are less permeable coincide with
elevated flood susceptibility. A similar pattern emerges in the MLP correlation map (Figure 14-b), where the distribution
of low-permeability surfaces closely aligns with high-risk flood zones. In the Logistic Regression correlation map
(Figure 14-c), moderately permeable zones throughout the central and eastern sections of the area likewise exhibit an

appreciable tendency toward flood occurrence.

Meanwhile, the MDA correlation map (Figure 14-d) underscores the relationship between limited infiltration
capacity and flood susceptibility, particularly around Wadi Essayed. Finally, the Ensemble correlation map (Figure 14-
e) integrates these findings, reinforcing that low-permeability landscapes consistently correspond to higher susceptibility
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levels. Collectively, these correlations emphasize that soil permeability is a critical determinant of flash flood
vulnerability, underscoring the importance of infiltration capacity in effective flood hazard assessment.

According to Figure 4-b and Figure 5, alluvium et recent reg deposits (Upper Proterozoic & Cambrian Lower)
typically characterize areas with low flood susceptibility, prominently observed in the northeastern regions. Their high
permeability facilitates effective infiltration and significantly reduces surface runoff, making these areas highly suitable
for sustainable agricultural practices and safe urban expansion.

Terraces, old alluvial cones, scree, and lacustrine limestone formations (Cambrian Lower, Eocene, Ordovician)
predominantly correlate with moderate flood susceptibility areas. These lithologies possess intermediate permeability,
allowing partial infiltration but rapidly becoming saturated during intense rainfall, thereby generating potential surface
runoff. Spatial analysis confirms their clear association with moderately susceptible flood zones.

Geological formations comprising tuffs, alluvial cones, fractured limestones, and shales (Pleistocene, Silurian,
Proterozoic, Ordovician, Cambrian, Eocene) significantly overlap moderate to high susceptibility areas. Although
fractures impart partial permeability, they typically facilitate rapid runoff rather than deep infiltration. This condition
notably aligns with flood-prone regions in western and central watershed areas, particularly near Wadi Assaka and Wadi
Essayed.

Lithologies consisting of limestone, siltstone, dolomite, shale, and sandstone with clay intercalations (Pliocene,
Upper Proterozoic, Cambrian, Ordovician, Pleistocene) consistently exhibit high flood susceptibility. Clay-rich layers
drastically reduce permeability, promoting rapid runoff during heavy rainfall events. The flood susceptibility maps
highlight these geological units in the western-central watershed as critical, indicating an urgent need for targeted flood
mitigation measures.

Sandstone and massive quartzite formations (Eocene, Cambrian, Holocene Fluviatile, Pleistocene) strongly correlate
with regions classified as very high flood susceptibility, especially around Guelmim city. Their extremely low
permeability causes rapid surface runoff, substantially increasing flood hazards, particularly in urbanized regions and
near major river channels.

This integrated analysis highlights the clear spatial relationships between lithological characteristics and flood
susceptibility, emphasizing the influential role of lithology in flood dynamics within the watershed. Critical zones
include sandstone and massive quartzite-dominated areas near Guelmim, requiring immediate flood intervention
measures. Moderate to high-risk areas, characterized by fractured limestones, shales, and clay-rich formations,
necessitate integrated flood management strategies such as improved drainage systems and strategic land-use planning.
Conversely, lower-risk regions dominated by alluvial and recent reg deposits represent safer zones suitable for
sustainable urban growth and agricultural development, although continued monitoring is essential to prevent
vulnerability escalation.

3.9. Extended Comparison with Previous Studies

The maps and metrics align closely with recent work in the Assaka watershed using expert-based and machine-
learning approaches. For example, a comparative AHP vs fuzzy-logic study for Assaka reported that the fuzzy SUM
operator mapped ~67% of the basin as high—very high susceptibility, while AHP mapped ~30%, underscoring how
method choice and thresholds expand or contract the “high” footprint. Our ensemble (~18.9% high+very high) sits
between these extremes, offering a more conservative, operationally focused footprint for prioritizing interventions [4].

Machine-learning applications in and around Assaka echo our factor rankings and spatial hotspots. A Random Forest
case study centered on Assaka likewise highlighted corridors along Wadi Essayed and Oum Laachar, with susceptibility
reinforced by LST, soil moisture, drainage characteristics, and local geology—converging with our ensemble and MLP
interpretations. In other Moroccan basins, ML/ensemble models consistently outperform linear baselines (LR/MDA) in
AUC and F1 [9]. For instance, Islam et al. (2021) [103] showed advanced ensembles (Dagging/Random Subspace +
ANN) surpassing single models; Pham et al. (2021) [104] likewise improved performance using Bagging/Decorate
hybrids; more recently, ensembles in the Houz/High Atlas and other regions reaffirmed superior skill (e.g.,
RF/XGBoost/stacking) [79]. These findings mirror our results where MLP and the voting ensemble dominate
LR/MDA/NB across all metrics [103, 104].

Regarding drivers, prior work repeatedly elevates topography (DEM/TPI) and drainage convergence (flow
accumulation, drainage density, SPI), alongside surface conditions (SMI, LST/LULC) and substrate permeability—the
same physical controls our jackknife and feature-importance analyses identify. In Assaka’s expert-based mapping, high
weights assigned to SMI and drainage metrics sharpened flood belts along the main wadis; our models quantify the same
pattern, but with tighter urban-fringe hotspots around Guelmim [4, 14].
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Spatially, our ensemble’s emphasis on Essayed—Oum Laachar corridors and the Guelmim fringe is consistent with
mapped hotspots and with the documented 2014 disaster, when southern Morocco—especially the Guelmim region—
suffered substantial losses (national toll ~31-36; ~24 fatalities near Guelmim alone). This historical context validates
why our highest classes cluster along valley bottoms and urbanized channels, and why drainage upgrades and land-use
control there are critical.

Beyond Assaka, Moroccan ML studies (e.g., Tetouan, Houz plain) using GEE/ANN/RF families also report
ANN/ensemble superiority and highlight SMI/LST + DEM/TPI as recurrent predictors—directly consistent with our
MLP/ensemble dominance and factor rankings [79, 105].

Why our results differ from some expert-based outputs: (i) criterion weighting & membership functions can inflate
high-risk extents (e.g., fuzzy SUM = 67% vs AHP = 30%); (ii) threshold selection for class breaks varies by study; (iii)
inventory & sampling and event chronology influence learned decision boundaries (e.g., wetter antecedent conditions
favoring SMI). Our ensemble uses out-of-sample validation to balance omission/commission, yielding a compact yet
defensible ~19% high-risk footprint that concentrates on corridors already validated by previous studies and historical
impacts [4].

4. Conclusions

This study successfully demonstrated the effectiveness of an integrated ensemble modeling approach, utilizing Naive
Bayes (NB), Multivariate Discriminant Analysis (MDA), Multilayer Perceptron (MLP), and Logistic Regression (LR),
in generating an accurate and robust flash flood susceptibility map for the Assaka watershed in southern Morocco. The
ensemble method enhanced predictive accuracy by synthesizing the strengths of individual algorithms, significantly
improving reliability in flood risk assessment.

Key insights revealed the critical influence of terrain elevation and configuration, with the Digital Elevation Model
(DEM) emerging as the dominant predictor. Other influential variables identified include Land Surface Temperature
(LST), Topographic Position Index (TPI), Soil Moisture Index (SMI), and soil type, underscoring their importance
within varying modeling contexts. Comparative susceptibility maps highlighted distinct differences among modeling
techniques, emphasizing the ensemble method’s balanced and comprehensive representation of flood risk. Specifically,
susceptibility class distributions varied notably, with Logistic Regression (LR) and Multivariate Discriminant Analysis
(MDA) classifying approximately 74% of the area as low susceptibility primarily in the northeastern and eastern regions,
and very high susceptibility covering around 12.29% and 12.70%, respectively, mainly in southwestern areas. The
Multilayer Perceptron (MLP) model identified the largest low susceptibility area at 83.74% predominantly in
northeastern regions, and 13.42% as very high susceptibility largely in the southwestern areas. Naive Bayes (NB)
indicated the smallest very high susceptibility at 4.22%, concentrated in southwestern regions, with low susceptibility
covering 80.54%, mainly in the north and east. The Ensemble method provided a balanced distribution: low
susceptibility (66.34%, predominantly northeast), moderate susceptibility (14.77%, central areas), high susceptibility
(8.40%, southwest-central areas), and very high susceptibility (10.50%, southwestern areas).

The spatial correlation between soil permeability and flood susceptibility demonstrated the crucial role of infiltration
capacity, reinforcing the direct relationship between geological formations and flood risks. Specifically, alluvium and
recent reg deposits (Upper Proterozoic & Lower Cambrian) exhibited low susceptibility due to their high permeability,
whereas sandstone and massive quartzite formations (Eocene, Cambrian, Holocene Fluviatile, and Pleistocene) indicated
very high susceptibility owing to their low infiltration capacity. Terraces, old alluvial cones, scree, and lacustrine
limestone formations (Cambrian Lower, Eocene, and Ordovician) predominantly correlated with moderate
susceptibility, possessing intermediate permeability but becoming quickly saturated. Geological formations comprising
tuffs, alluvial cones, fractured limestones, and shales (Pleistocene, Silurian, Proterozoic, Ordovician, Cambrian, Eocene)
significantly overlapped moderate to high susceptibility areas due to rapid runoff facilitated by fractures. Lithologies
consisting of limestone, siltstone, dolomite, shale, and sandstone with clay intercalations (Pliocene, Upper Proterozoic,
Cambrian, Ordovician, Pleistocene) consistently exhibited high flood susceptibility because clay-rich layers drastically
reduced permeability.

This integrated lithological and modeling analysis effectively identified critical areas around Guelmim city,
particularly sandstone and quartzite-dominated regions, highlighting urgent flood management and infrastructure
intervention needs. Additionally, moderate- to high-risk zones require integrated flood management strategies involving
improved drainage and strategic land-use planning, whereas low-risk alluvial zones are recommended for sustainable
urban and agricultural expansion.

The originality of this research lies in its methodological advancement and practical application, addressing
significant knowledge gaps in integrated flood modeling within semi-arid regions. The findings and developed
methodology contribute valuable insights for global flood risk mitigation, informed urban planning, and resilience
enhancement, providing a robust and replicable framework for future studies in similarly vulnerable areas.
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