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Abstract 

The dynamic modulus is a fundamental characteristic of asphalt concrete and expresses the stiffness properties of a hot 

mix asphalt mixture as a function of temperature and loading rate. This study used artificial neural network modeling and 

genetic algorithms to evaluate the asphalt concrete dynamic modulus. The experimental database was collected from LTPP 

DATA that used in the ANN and genetic algorithm development and modeling. The output for the two models was the 

asphalt concrete dynamic modulus. Moreover, mathematical models were employed to predict the dynamic modulus of 

asphalt concrete with different parameters. Following the establishment of the model designs, the deficiencies and strengths 

of the proposed models are evaluated using determination coefficient (R2) values. The evaluation was performed by 

comparing the dynamic modulus of asphalt concrete predicted from four models with the dynamic modulus obtained from 

the experimental testing. Notably, the neural network models achieved precise calculations for models 1 and 2, with R2 

values of 0.96 and 0.93, respectively. The genetic algorithm models achieved R2 values of 0.73 for model 1 and 0.64 for 

model 2. The two models, the genetic algorithm model and the artificial neural network model, contributed to the generation 

of two new empirical equations. 
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1. Introduction 

The dynamic modulus, or |𝐸∗|, is a function of temperature, loading rate, and material parameters that can be used 

to characterize the stress-strain relationship for asphalt mixtures under sinusoidal loading. One of the most important 

parameters used to assess rutting and fatigue cracking distress predictions in the Mechanistic-Empirical Pavement 

Design Guide (MEPDG) [1, 2] is the dynamic modulus, which is also one of the main design inputs in Pavement 

Mechanistic-Empirical (M-E) Design to characterize the basic linear viscoelastic material properties. Much work has 

been done to predict |𝐸∗| from hot mix asphalt (HMA) material parameters, even though |𝐸∗| plays a key role in pavement 

design and the related test process is time-consuming and expensive [3, 4]. In the design of flexible pavements, the 

dynamic modulus is a crucial parameter. According to Harran & Shalaby's 2009 report, "the dynamic modulus (|E*|) is 

the ratio of stress to strain under vibratory conditions, calculated from data obtained from either free or forced vibration 
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tests in shear, compression, or elongation". Predictive modeling is the practice of estimating outcomes from several 

predictor variables utilizing data mining techniques and probability theory. An initial model can be created using either 

a basic linear equation or a more sophisticated structure generated by a complex optimization technique [5]. 

There are various well-known predictive models for dynamic modulus; some are regression models, while others 

involve Artificial Neural Networks (ANN) and genetic programming [6]. Andrei et al. [7] employed 205 mixes and 

2750 data points to improve the original Witczak model, which has since been reformed to use binder shear modulus 

rather than binder viscosity [8]. Christensen et al. [9] proposed a new predictive model for |𝐸∗| that utilizes the law of 

mixtures. The data base for training the model included 206 |𝐸∗| measurements from 18 different HMA combinations. 

Jamrah et al. [10] aimed to enhance predictive models for HMA in Michigan. They found a considerable divergence 

between measured and calculated |𝐸∗| values, particularly at high temperatures and low frequencies. Al-khateeb et al. 

[11] created a novel predictive model based on the law of mixtures that may be employed across a wider range of 

temperature and loading frequencies, including higher temperatures and lower frequencies. The predictor variables in 

the model were voids in mineral aggregate and binder shear modulus.  

Sakhaeifar et al. [12] created separate temperature-based models to estimate dynamic modulus throughout a large 

temperature range. The predictor variables utilized in the model included aggregate gradation, VMA, Voids Filled with 

Asphalt, air void, effective binder content, and bind er phase angel. Sakhaeifar et al. [12] suggested a modeling approach 

for estimating the dynamic modulus (|𝐸∗|) of asphalt mixtures using artificial neural networks (ANN). The accuracy of 

the ANN's predictions is greatly influenced by its design. The optimal architecture and effective variables were found 

using the Grey Wolf Optimizer (GWO). A huge dataset was used to create predictive models, including aggregate 

gradation, volumetric parameters, binder properties, test circumstances, and reclaimed asphalt pavement content. The 

results suggest that a hybrid ANN and GWO can provide a framework for estimating |𝐸∗| with a Pearson correlation 

coefficient over 0.98. For pavement engineers, an intuitive graphical user interface was also created. 

Zhang et al. [13] developed a dynamic modulus predictive model using smart rock sensing data in pavement 

engineering. The MMLS3 test used the ensemble artificial neural network (ANN) model to predict the dynamic modulus 

of asphalt mixtures. The results showed the model's feasibility and robustness, affirming its reliable stability. Future 

studies should expand the database to include an extensive range of materials and loading conditions for model 

verification. Huang et al. [14] used an artificial neural network (ANN) method with ensemble and weight optimization 

techniques to guess what the asphalt concrete's dynamic modulus (E*) would be. This study employed the random forest 

technique for input selection, examining various techniques such as evolutionary, backward, forward, and brute force, 

all of which were hybridized with random forest. The evolutionary random forest strategy was the best at choosing 

inputs. The most important variables to think about when making ANN models were binder G* (dynamic shear 

modulus), binder (phase angle), ρ 200, and Vbeff. The researchers found that the artificial neural network-particle swarm 

optimization (ANNPSO) model outperformed the other models.  

Another thing they discovered was that weight optimization strategies worked better than ensemble techniques at 

improving ANN's ability to predict the dynamic modulus of asphalt concrete. Genetic method trained BP neural network 

model with 263 parametric analysis data sets to predict projectile residual velocity and attitude angle under different 

penetration conditions. The GA BP neural network model in this research accurately predicts projectile penetration in 

reinforced concrete multilayer target plates' residual velocity and deflection angle. This model and the reserved 13 test 

sets yield irrelevant data. BPNN excels in learning non-linear connections through continuously iterations. The process 

of training includes estimating the error between output and expected data, then retroactively adjusting weights and 

thresholds to reduce the error. Local convergence, parameter modification, etc. are limitations of these methods. This 

makes most optimization difficulties difficult. Many of these methods support unconstrained optimization. When 

iterating, constrained optimization algorithms use different constraint handling methodologies to find the best solution. 

Because heuristic algorithms were flawed, improved algorithms for solution quality and computation efficiency were 

needed. The authors of the study was interested in combining local search algorithms with additional heuristics to make 

them more resilient [15, 16]. 

Zhang et al. [17] published a different study that used a new optimization method to find the Cohesive Zone Model 

(CZM) parameters that affect how asphalt mixtures break. The Kriging model was utilized as a stand-in model for the 

semicircular bending test conducted at intermediate temperatures. To improve computing performance, a pre-select 

operation was suggested. The approach demonstrated its ability to correctly quantify fracture mechanics in asphalt 

mixes, as evidenced by the simulations' agreement with experimental observations. Huang et al. [18] looked at the 

modulus properties of different high-modulus asphalt mixtures (HMAMs) and how they related to how well they 

prevented rutting. The results indicated that the dynamic modulus of HMAMs fluctuates in response to changes in both 

loading frequency and testing temperature. The correlation between the ratio of dynamic modulus at low frequency to 

high frequency and dynamic stability in high-temperature situations is strong. For evaluating the resistance of HMAM 

to rutting, it is recommended to use two indicators: the absolute modulus and the ratio of the dynamic modulus at 0.1 

Hz to the dynamic modulus at 25 Hz at a temperature of 55 °C. The study validates the practicality of utilizing these 
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assessment indices for evaluating various categories of HMAMs. Behnood & Golafshani [19] utilized biogeography-

based programming (BBP) to develop predictive models for asphalt pavement behavior under various traffic and climate 

conditions. They developed two models using 4022 asphalt mixture samples and 90 asphalt mixture records. Both 

models provided excellent accuracy and outperformed the Witczak, Hirsch, and ANN models. The most influential 

factors were temperature and frequency. 

Acharjee et al. [20] established two ANN-based prediction models for Colombian hot-mix asphalt mixtures. The 

models W-ANN and H-ANN outperformed earlier models in terms of dynamic modulus prediction. The models were 

trained, validated, and tested on 972 data points. Both models are sensitive to binder and mixture qualities, making them 

more practical for practitioners to utilize. These models can be utilized in Colombia for pavement design packages, 

reducing future testing requirements. Wang et al. [21] employed a combined technique to forecast dynamic modulus 

design parameters from Falling Weight Deflectometer (FWD) back-calculated modulus data. It creates dynamic 

modulus prediction models for in-service asphalt pavements utilizing fundamental model deduction and gene expression 

programming (GEP). The model improves design precision, refines residual life estimates, and identifies problematic 

segments, all of which are critical for the maintenance or reconstruction of existing pavements.  

Also, Uwanuakwa et al. [22] described a new AHA-boosted model for estimating the dynamic modulus of hot mix 

asphalt concrete. Using data from NCHRP Report-547, the model outperformed known models. Incorporating test 

temperature, frequency, and asphalt content increased the model's accuracy by 1.23%. The study also identified the 

binder complex modulus as a significant predictor. However, a modest drop in R2 recommends additional validation. 

Hu et al. [23] presented an AI-powered IDEAL-E* test for asphalt mixtures, which addresses the high cost and 

complexity of previous methods. This novel approach streamlines the collection of E* data, allowing it to be used in 

AASHTO Pavement ME design software and harmonizes with current procedures in DOT and contractor quality control 

labs. Zeiada et al. [24] studied the dynamic modulus (|E*|) of hot-mix asphalt (HMA) and compares it to well-known 

regression models. Eight cutting-edge machine learning and deep learning methods are used: multiple linear regression, 

decision trees, support vector regression, ensemble trees, Gaussian process regression, artificial neural networks, 

recurrent neural networks, and convolutional neural networks. A database of 50 AC mixes is created, totaling 3,720 

measurements. The bagging ETs, Gaussian process regression (GPR) with exponential kernel, and decision trees (DT) 

have the highest prediction accuracy, while bagging ETs have the simplest training and testing requirements. 

2. Research Methodology 

Figure 1 presents a structured workflow for predicting the dynamic modulus (|E*|) of hot mix asphalt using data-

driven modeling techniques. The process starts with a comprehensive dataset from the LTPP database, which includes 

7,400 dynamic modulus values from 346 asphalt mixtures. Preprocessing steps are then taken to ensure the input 

parameters are ready for analysis. Two primary modeling approaches are developed in parallel: Artificial Neural 

Networks (ANN) and Genetic Algorithms (GA). ANN models are implemented using MATLAB, while GA models are 

constructed using GeneXpro5.0. Both models are trained and tested using data subsets, and their predictive performances 

are evaluated using key metrics. 

 

Figure 1. Flowchart for predicting the dynamic modulus (|E*|) of hot mix asphalt using Genetic Algorithms and Neural 

Network Modeling  
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A comparative analysis is conducted to determine the most accurate and reliable approach. Results show that ANN 
models significantly outperform other models, especially under extreme temperature and frequency conditions, making 
them the preferred method for predicting |E*|. The dataset underwent normalization using min-max scaling to ensure 

uniform input ranges across features. Outliers beyond three standard deviations were inspected and removed if deemed 
erroneous. Missing values were not present due to the comprehensive nature of the LTPP database. These preprocessing 
steps helped stabilize the model training process and improve convergence. The dataset was split into training (70%), 
validation (15%), and testing (15%) subsets to assess model performance. However, no external datasets or k-fold cross-
validation were used. Future work should include testing on independent datasets or applying cross-validation to ensure 
model generalizability beyond the current data. 

2.1. Experimental Program 

In the experimental phase of this work, a cylindrical asphalt specimen undergoes testing in a chamber, where an 
axial force is applied at varying frequencies to determine its dynamic modulus. An environmental chamber controls the 

desired test specimen temperature, and the stress levels applied to the specimen are temperature-dependent. Table 1 
below shows the recommended stress ranges for testing specimens at different temperatures. 

Table 1. The stress ranges vs. temperature 

Temperature °C (°F) 
Range Stress range 

e (kPa) 

Range Stress range 
e (psi) 

-10 (14) 1400 to 2800 200 to 400 

4 (40) 700 to 1400 100 to 200 

21 (70) 350 to 700 50 to 100 

37 (100) 140 to 250 20 to 50 

54 (130) 35 to 70 5 to 10 

To condition the test specimen, a sinusoidal stress is applied at 25 Hz for 200 cycles once the stress level is 
determined. Subsequently, the stress is applied at frequencies of 25 Hz, 10 Hz, 5 Hz, 1 Hz, 0.5 Hz, and 0.1 Hz, each for 

200 cycles. Once the specimen completes all cycles at a given frequency, it should rest for two minutes before proceeding 
to the next frequency. Following the temperatures specified in Table 1, the specimen is then tested at a different ambient 
temperature. 

The testing procedure begins with the lowest temperature and progresses sequentially to the highest temperature. 
After increasing the chamber testing temperature, the operator typically allows a waiting period of up to 6 hours to 
ensure the chamber and the specimens equilibrate at the new temperature before performing the subsequent test. To 

obtain average values for an asphalt sample, multiple specimens are evaluated at each temperature. Recording 
equipment, i.e., a load cell and three LVDTs directly mounted to the specimen, is used to measure the stress, recoverable 
strain, and permanent strain for each test. These parameters facilitate the calculation of the asphalt's phase angle and 
dynamic modulus. A standard asphalt specimen, measuring 6 in. 150 mm in height and 4 in. 100 mm in diameter, 
undergoes scoring using a scoring machine with a cooling system and a diamond bit, as presented in Figure 2. A 
SuperPave gyratory compactor is commonly employed for specimen creation and compaction. Additionally, a grinder 

and saw were utilized to trim the specimen to a size that guarantees level, smooth, and parallel edges. The impact of 
different combinations of particle sizes, void ratios, binder types, and other properties on specimen preparation and their 
subsequent influence on the asphalt mixture's dynamic modulus is investigated. 

 

Figure 2. Instrumental setup and sample testing 

It is known that the experimental measurements of the hot mix asphalt mixture's dynamic modulus are time-
consuming, expensive, and require expert personnel. The study's goals are to figure out how to predict the dynamic 

modulus using genetic algorithms and artificial neural network models, as well as to create analytical models that can 
figure out how to predict the dynamic modulus (E*) of an asphaltic layer. Numerous studies on the available E* models 
have led to the conclusion that the properties of HMA and binders influence their prediction accuracy. 

We will develop the predictive models in this work using artificial neural networks (ANN) and gene expression 

techniques. These models will be compared to previous studies to evaluate their performance. This study also aims to 

establish a correlation between the given set of volumetric and mechanical properties and the corresponding dynamic 

modulus values. This analysis would help optimize the dynamic modulus of asphalt mixes, thereby enhancing their 
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resistance to rutting and fatigue cracking in road construction across the USA. The variables in the study are temperature 

(T), loading frequency (fc), phase degree (εb), grade of mix, asphalt content (AC), mix air void content (Va%), effective 

binder content of the mix (Vbeff%), and viscosity (h). 

 In this study, two methodologies were employed: ANN to model complex interactions between input and output 

variables and a genetic algorithm (GA) to establish the relationship between the inputs and output factors. ANN, a typical 

computational network modeling, incorporates hidden input and output layers, while GA, relying on Darwin's evolution 

theory, is considered the most efficient method for time and effort savings. 

The gradation of the aggregates used in this study is presented in Figure 3. The distribution of particle sizes, indicated 

by cumulative retained percentages on standard sieves (No. 3/4, No. 3/8, No. 4, and No. 200), was used to analyze the 

aggregate structure of the hot mix asphalt. These gradation parameters are crucial because they directly affect the 

volumetric properties and ultimately the dynamic modulus (E*) of the asphalt mixture. 

 

Figure 3. Aggregate gradation curve 

2.2. Study Area 

This study developed and trained new models to overcome the limitations of the Witczak model. Furthermore, this 

study employed a database containing 7400 |E*| values from 346 HMA combinations for this purpose. We replaced the 

bindings' viscosity and loading frequency (f) in the original Witczak model with the bindings' shear modulus (Gb*) and 

phase angle (b), respectively. The determination coefficient (R2) between the measured and projected |E*| values of the 

new model improved to 0.96 for the first model and 0.93 for the second. This improvement indicates enhanced predictive 

accuracy. This study's primary objective was to establish a connection between the output (E*) and the various input 

factors (T, fc, |G*|, db, 34, etc.), as illustrated in Equation 2. Table 2 summarizes the standard mathematical parameters. 

Table 2. Standard mathematical parameters for data that are utilized in model development 

Parameter Name Data Numbers Max. value Min. value Mean. value 

T 7400 130 0 70.52 

fc 7400 25 0.1 6.94 

|G*| 7400 7386.6 0.02 995.97 

δb 7400 90 11.86 58.98 

ρ 34 7400 29.3 0 4.40 

ρ 38 7400 56 0 24.98 

ρ 4 7400 74 3 48.18 

ρ 200 7400 11.8 0.4 4.96 

AC 7400 10.2 3 5.53 

Va 7400 18.1 0.1 6.73 

Vbeff 7400 25.1 6.08 10.76 

h 7400 1.15833E+16 184297.0317 8.88851E+13 

VMA 7400 34.64 10.33 17.5 

E* 7400 8644878.528 10497.207 1311989.38 

where: Temperature (T), Loading Frequency (fc), Phase degree (εb), Gradation of Mix, Asphalt Content (AC), Mix Air Void Content 

(Va%), Effective Binder Content of the Mix (Vbeff%), Viscosity (h), void in mineral aggregate (VMA), asphalt concrete (AC), 

cumulative retained weight on the No. 4 sieve (ρ4), cumulative retained weight on the No. 3/4-in. sieve (ρ34), cumulative retained 

weight on the No. 3/8-in. sieve (ρ38), and amount passing a No. 200 sieve (ρ200). 
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2.3. Artificial Neural Network 

An ANN is a widely employed computational modeling network that consists of hidden input and output layers. Its 

function is to simulate complex interactions between inputs and outputs or to obtain patterns within data. ANNs 

showcase the interconnection of the system through numeric weighting, adjusted according to inputs, experience, 

outputs, and processing. Simple interconnected adaptive processing components, often referred to as nodes or artificial 

neurons, comprise these networks, performing computations for knowledge representation and data processing [24–27]. 

The architecture of an ANN model includes nodes distributed across hidden layers, an input layer, and an output 

layer. The number of hidden layers can equal or exceed the number of inputs. The squared regression value influenced 

the decision to obtain the best performance in one hidden layer in both models through multiple trial and error processes. 

The study’s database was compiled from prior research considering parameters leading to the "E*" outcomes. 

This study employed an artificial neural network and genetic algorithm to predict the dynamic modulus of hot mix 

asphalt. ANN is a powerful model that correlates system components using numerical load based on input, processing, 

output, and experience. Maintaining ANN at an acceptable level and for prospects requires combining it with 

engineering methodologies. ANNs learn via experience, examples, and practice, like humans. Genetic algorithms are 

survival-of-the-fittest theoretical algorithms that use historical data. This improves search performance. This method 

excels in maintenance management, even with complex and changeable situations. The prediction of dynamic modulus 

(|E*|) was accomplished through the application of artificial neural networks (ANNs). The dynamic modulus serves as 

a crucial parameter in asphalt mixtures, acting as a primary input in EMPDG to predict rutting and fatigue cracking. 

Various factors, including air voids, asphalt content, temperature, and nominal maximum aggregate size, among others, 

contribute to its determination. This investigation employed two models: one with a single output and twelve inputs, 

and another with one output and eight inputs, respectively. These models were implemented using ANN to generate the 

expected outputs, which were then compared with the experimental outputs. This comparison was performed using 

specific inputs in each model. The database for this study was gathered from previous studies that took into account 

parameters leading to the determination of "E*" output. The ANN analysis was carried out using the MATLAB computer 

application. 

2.4. Genetic Algorithm  

A genetic algorithm represents an optimization approach that applies principles derived from Darwin's genetic 

determination theory to solve a problem. The central focus of the GA is to find the optimum value for a given function, 

aligning with Darwin's theory of evolution. The genetic algorithm involves three fundamental operations: selection, 

crossover, and mutations [28]. 

Using evolutionary tools like choice and variation, genetic algorithms explore functions that will appropriately fit 

data gathering. Friedberg pioneered the genetic algorithms field by developing a performance-oriented training 

algorithm. Cramer NL first introduced genetic programming, and Koza JR later improved it, leading to the development 

of sophisticated models. This study employed GeneXpro5.0, a gene expression programming model, to predict the 

dynamic modulus. 

GeneXpro5.0 is a sophisticated data processing tool that solves diverse challenges and generates various models 

using vast volumes of heterogeneous data. It operates by locating codes in complex programming languages such as 

Visual Basic and Java, particularly in this study. Alongside compiling a comprehensive report on the process, several 

predictions are required to achieve optimal results. The authors have all reported the same approach with great efficiency 

in their predicted results [24, 29–32]. 

3. Results and Discussion 

The performance of both ANN and GA models is described not only with R² values but also with error metrics such 

as MAE and RMSE. The influence of each variable (e.g., G*, AC, VMA) on dynamic modulus is discussed, providing 

engineering insights into the model results. Artificial Neural Networks (ANN) and Genetic Algorithms (GA) were 

selected due to their proven effectiveness in capturing complex, nonlinear relationships inherent in pavement material 

behavior. While other techniques such as Support Vector Machines (SVM), Decision Trees, and Ensemble Methods 

have demonstrated success in similar applications, ANN offers superior generalization for regression tasks with high-

dimensional data, and GA provides flexibility in model structure development. These methods were also chosen based 

on their widespread availability in software tools like MATLAB and GeneXpro5.0, facilitating practical implementation 

and reproducibility. 

3.1. Artificial Neural Network Models 

The MATLAB software tool was used to extract the "E*" from the database, which was compiled from prior 
experiments incorporating relevant factors into account. The dynamic modulus is indicated by a single neuron for the 
output parameter. The main challenge lies in developing a suitable model capable of predicting an accurate E* value. 
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Consequently, modifying the number of hidden layers, the number of nodes for each hidden layer, and the number of 
epochs is necessary to obtain effective modeling control. The study employing ANN was executed using the MATLAB 
software application [33-37]. 

Figure 4 illustrates the structure of the neural model, displaying the twelve input parameters previously mentioned 
on the left side. This figure illustrates the layout of ANN Model 1, which includes twelve input parameters, one hidden 
layer with 13 neurons, and a single output neuron corresponding to the dynamic modulus (E*). This model configuration 
was selected after numerous iterations, yielding an R² value of 0.96 during training, indicating high accuracy. This visual 
representation aims to determine the optimal model by adjusting the number of hidden layers. Afterwards, we discovered 
that 13 neurons represent the optimal number of hidden layers, with each neuron on the right-hand side symbolizing the 

output, represented as E*. The neural network model provides accurate estimations of target values. Furthermore, the 
neural network model yields R2 values of 0.96 and 0.95 for training and testing, respectively, offering acceptable 
estimation, as represented in Figure 5. 

 

Figure 4. Input parameters, hidden layers, output, and biases for model 1 are represented by the structure of an ANN 

 

Figure 5. Model 1 training and testing data regression scheme of projected dynamic modulus against experimental dynamic modulus 
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The regression plot demonstrates a strong correlation between predicted and experimental values of E*. The 

closeness of the points to the regression line, with R² = 0.96, validates the model’s ability to generalize well over the 

dataset. Figure 6 demonstrates the strong correlation between the observed E* and the measured E*. This figure confirms 

that both models maintain a strong linear relationship between experimental and predicted values, highlighting the 

robustness of the ANN approach. 

 

Figure 6. The relationship between experimental E* and anticipated E * in the testing model 1 & 2 

ANN can predict E* using experimental data, and by using the equations for bias and weight average for the input 

data, hidden variables, and output result, it can generate the Equation 1: 

E*= 
𝟏

𝟏+𝒆
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4
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34
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200
+1.49*AC-1.31*Va-31.96*Vbeff+0.34*h 

I=1.72+0.07*T+0.07*FC-16.55*|G*|-0.14*δb-0.63*ρ
34

-16.53*ρ
38

-1.8*ρ
4
-29.17*ρ

200
+4.94*AC-0.23*Va-48.34*Vbeff-0.29*h 

J=2.11-0.18*T-0.39*FC-21.05*|G*|+0.2*δb+0.08*ρ
34

-21.16*ρ
38

+196.22*ρ
4
-31.76*ρ

200
-6.12*AC+0.017*Va-1.52*Vbeff-4.93*h 

K=-779.65-0.18*T-3.83*FC+27.67*|G*|-1.86*δb+3.13*ρ
34

+42.97*ρ
38

+198.21*ρ
4
+23.16*ρ

200
+6.43*AC+0.049*Va-12.76*Vbeff+8.39*h 

L=1.83-0.13*T+5.73*FC+1.99*|G*|-0.003*δb-2.9*ρ
34

-6.01*ρ
38

-177.11*ρ
4
-34.01*ρ

200
+0.21*AC+37*Va-721.21*Vbeff+2.88*h 

The construction of neural model 2, as shown in Figure 7, involves several input parameters on the left side, which 

correspond to the eight previously mentioned parameters. Model 2 incorporates eight selected input parameters and one 

hidden layer with two neurons. This simpler architecture achieved R² values of 0.932 and 0.933 in training and testing 

respectively, balancing model simplicity with strong performance. By adjusting the number of hidden layers until the 

optimal model was created, the number of neurons was set to two. A single neuron on the right side of the brain represents 

E*. Figure 8 compares the measured E* with observations of the predicted robust E*. The ANN model provides exact 

values of 0.932 and 0.933 for training and testing, respectively. Figure 8 demonstrates the strong correlation between 

observed E* and measured E*. 
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Figure 7. Input parameters, the output of hidden layers, and bias for model 2 are represented by the structure of an ANN 

 

Figure 8. Model 2 training and testing data regression scheme of projected E* against experimental E* 

Figure 9 shows the comparison of experimental vs. Predicted E for ANN Model 2*, Model 2 maintains a reliable 

performance across the validation data. The plot further confirms the model's utility in predicting E* within acceptable 

error margins. With the use of experimental data, ANN can predict E* and generate Equation 2 by employing the 

Equations for bias and weight average for input data, hidden results, and output results. 

E*= 
𝟏

𝟏+𝒆
−𝟕.𝟓𝟕+ 

𝟏𝟎.𝟖𝟒

𝟏+𝒆−𝑨 + 
−𝟔.𝟒𝟗

𝟏+𝒆−𝑩 + 
𝟓.𝟑𝟐

𝟏+𝒆−𝑪 + 
−𝟏𝟎.𝟓𝟔

𝟏+𝒆−𝑫 + 
−𝟎.𝟗

𝟏+𝒆−𝑬 + 
𝟎.𝟓𝟐

𝟏+𝒆−𝑭 + 
𝟏.𝟎𝟔

𝟏+𝒆−𝑮 + 
−𝟑.𝟐𝟏

𝟏+𝒆−𝑯+
−𝟎.𝟐𝟓

𝟏+𝒆−𝑰 
 (2) 

A= -10.36+0.068*T-0.048*fc+0.079*|G*|-2.58*ρ34-7.37*ρ38+3.98*ρ200-4.06*AC+4.039*VMA 

B= -.655+0.119*T-0.09*fc+0.019*|G*|-0.024*ρ34+0.109*ρ38-.27*ρ200-.069*AC+.527*VMA 
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C= 2.93-.45*T+0.13*fc+1.22*|G*|+0.16*ρ34+.007*ρ38-0.22*ρ200+.037*AC+.68*VMA 

D= -7.56-.069*T-0.049*fc+.074*|G*|+2.10*ρ34-9.63*ρ38+5.27*ρ200-3.88*AC+4.55*VMA 

E= -4.55+ 0.80*T-0.008*fc+0.21*|G*|-9.99*ρ34-0.83*ρ38+3.47*ρ200+1.07*AC+1.71 *VMA 

F=3.38+ 0.70*T-0.16*fc-0.065*|G*|+3.47*ρ34-10.68*ρ38-1.36*ρ200-3.75*AC-1.46 *VMA 

G= -2.71+ 0.35*T+0.059*fc+0.087*|G*|-6.13*ρ34+1.05*ρ38+2.32*ρ200+0.16*AC+1.23*VM 

H= 1.098+0.07*T+0.016*fc-0.028*|G*|+0.36*ρ34-1.16*ρ38-0.55*ρ200-0.066*AC-0.13*VMA 

I= 0.117 -0.48*T+4.18*fc+0.58*|G*|+.024*ρ34-.016*ρ38-.099*ρ200+0.062*AC+0.0085*VMA 

 

Figure 9. The relationship between experimental E* and predicted E* in training models 1 & 2 

After running both models and comparing the R2 values, it was found that the first model, with an R2 value of 0.962, 

outperforms the second one. The first model used twelve neurons and one hidden layer, while the second model used 

nine neurons and one hidden layer, yielding a value of 0. 931. Table 3 presents the key training parameters used for 

developing the Artificial Neural Network (ANN) model in this study. The learning rate was set to 0.01 to ensure gradual 

convergence during the training process, minimizing the risk of overshooting optimal weights. The model was trained 

for 1000 epochs, allowing sufficient iterations for the weights to adjust and minimize prediction errors. The dataset was 

divided into 70% for training, 15% for validation, and 15% for testing, ensuring that the model’s generalization ability 

could be objectively assessed. The Levenberg-Marquardt optimization algorithm was selected for its fast convergence 

properties, especially in regression tasks involving moderate-sized networks. A sigmoid activation function was used to 

introduce non-linearity into the model, enabling it to learn complex relationships between input variables and the output 

dynamic modulus (E*). The mean squared error (MSE) was employed as the loss function to quantify prediction 

accuracy during training [37-39]. 

Table 3. ANN Training Parameters 

Parameter Value 

Learning Rate 0.01 

Epochs 1000 

Training/Validation/Test Split 70% / 15% / 15% 

Optimizer Levenberg-Marquardt 

Activation Function Sigmoid 

Loss Function MSE (Mean Squared Error) 

3.2. Genetic Algorithm Models 

The operation of the software is based on chromosomes comprising genes and expression trees that encode genetic 

information recorded in the chromosome. By creating a link between E* and the temperature of the input, the Gene 
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Expression Program (GeneXpro5.0) serves as a key tool for saving effort and time in the computation of the dynamic 

modulus (E*) with temperature (T). Model 1 found a link between E* and eight inputs: temperature (T), frequency (fc), 

shear modulus (|G*|), gradation of the mixture (4, 34, 38, and 200), asphalt content (AC), mix air void (Va percent), 

effective binder content of the mixture (Vbeff percent), and viscosity (h) (34, 38, and 200). Model two, on the other hand, 

focused on asphalt content (AC) and void mineral aggregate (VMA). 

The program undergoes multiple iterations, with model 1 set to 50,000 and model 2 set to 100,000 generations, to 

identify the optimal models. We terminated the experiment and selected the best models based on predefined standards, 

which included a determination coefficient R2 greater than 0.7358 for training data and above 0.717087 for testing data 

in the first model. Similarly, for the second model, R2 values exceeding 0.6471 and 0.6143 are utilized for testing and 

training data. Respectively. The Figures 10 and 11 illustrate the results of the predicted E* against the experimental E*. 

The genetic algorithm models provide a decent estimate, with R2 values of 0.7358 and 0.717087 for training and testing, 

respectively, as shown in Figures 10 and 11. 

 

 

Figure 10. training and testing data of experimental E* against predicted E* regression plot (model 1) 
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Figure 11. training and testing data of experimental E* against predicted E* regression plot (Model 2) 

The Gene Expression Program presents the model as an expression tree and then uses the algorithm system to 

translate it into a scientific form, as shown in the equations below. In these equations, d defines the inputs, and C is a 

variable within this program's visual basic language. The sum of the four subtrees is E* (G1, 2, 3, 4). As demonstrated 

in Figures 12 and 13, the genetic algorithm models are incorporated in the formula derived from expression trees. The 

empirical equations for (E*) indicate the generation and conversion of four sub-trees (Sub-ET-1, 2, 3, and 4) into an 

analytical equation form. 

E*=G1(Sub-ET-1) +G2(Sub-ET-2) +G3(Sub-ET-3) +G4(Sub-ET-4) 

E*= (4.81* (( 22.85+
-5.76+ρ

200

2
) *(( |G*|-db)+9.75))) + (√h

3
+

(((db*-9.71)*Vbeff)-|G*|

tan
1
db

) + ((T* tan(|G*|+1.16))* (-9.27-

(2|G*|+db
2))) + ((T* tan(|G*|+1.16))* (-9.27-(2|G*|+db

2))) 

(3) 
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Figure 12. Tree expression to estimate E* from model 1 

The strength and effectiveness of the evolutionary neural network and algorithm models were investigated through 

the R2 determination coefficients. The R2 value is found to be a reliable match between predicted and experimental E* 

values. The genetic algorithm model provides a reliable assessment, giving an R2 value of 0.7358 for training, whereas 

the ANN does a dependable evaluation and offers an R2 value of 0.95 for training. This suggests that the neural network 

model outperforms genetic algorithms in predictive accuracy. The novelty of this study depends on the integration of 

artificial neural networks and genetic algorithms for predicting dynamic modulus, an area not previously examined in 

the literature. This study introduces two new empirical equations that offer a more precise and computationally 

successful alternative to existing models, effectively addressing significant drawbacks in current pavement design 

methodologies. Compared to traditional regression-based models, the proposed ANN and GA models better capture 

complex nonlinear interactions in the data. This makes them better at predicting E across a range of temperatures and 

loading frequencies. 
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Figure 13. Tree expression to estimate E* from model 2 

The empirical equation derived from ANN Model 1 is expressed as: 

𝐸*=((VMA-(mod((Csc ρ
200

+(T-ρ
38

)),-14.10))
4)+ ((|G*|* ((ρ

34
*0.84),ρ

34
, VMA)) * (max (

1.64+fc

2
,(VMA,-0.72,ρ

38
)))) + 

((min ((-4.55-9.99)*(-9.99*9.16)*(√ ρ
200

+4.55)) ,|G*|
2) *T)  + ((-4.61*|G*|)*(√ ρ

200
+5.11)) 

(4) 

E* = f (T, fc, |G*|, ρ034, ρ038, ρ200, AC, VMA) with weights and biases detailed in Equation 4. 

The GA-derived empirical model (Model 1) is given in functional form as: 

E* = G1(SubET1) + G2(SubET2) + G3(SubET3) + G4(SubET4) 

where each SubET expression is mathematically derived from the GeneXpro5 tree structure 

4. Comparison with Previous Studies 

The proposed ANN model performed much better than the Witczak (R² = 0.85) and Hirsch (R² = 0.80) models, 

achieving an R² value of 0.96. This enhancement becomes particularly significant at high temperatures and low 

frequencies, when conventional models typically do not perform as well. The GA model is not as precise as the ANN 
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model, but it is still an acceptable choice, with an R² value of 0.73. With a R² of 0.96, a mean absolute error (MAE) of 

0.05, and a root mean square error (RMSE) of 0.07, the artificial neural network (ANN) model that was made was very 

accurate. The metrics show that the ANN model exhibits high accuracy and reliability, especially in extreme conditions, 

including elevated temperatures and low frequencies. With a R² of 0.73, a mean absolute error of 0.12, and a root mean 

square error of 0.15, the proposed Genetic Algorithm (GA) model was not as good as the Witczak models [24] and 

Hirsch models [9]. The Witczak model worked well at moderate temperatures, with R² of 0.85, a mean absolute error of 

0.10, and a root mean square error of 0.13. But it became less reliable when temperatures got too high or too low. The 

Hirsch model exhibited a coefficient of determination of 0.80, a mean absolute error (MAE) of 0.11, and a root mean 

square error (RMSE) of 0.14. It demonstrated a tendency to miscalculate the modulus of elasticity at elevated 

temperatures, potentially resulting in conservative predictions for high-temperature applications. The ANN model is the 

most robust and accurate, particularly in extreme conditions, whereas the GA, Witczak, and Hirsch models are 

appropriate choices for moderate circumstances. This study includes several limitations; relying on the LTPP database 

indicates that the models may insufficiently represent the characteristics of asphalt mixtures over the dataset's scope, 

particularly those with unconventional components or under extreme conditions. The ANN and GA models may not be 

able to be used in places with limited resources because they require a lot of computing power. In the future, researchers 

should focus on expanding the dataset to include a wider range of mix types, looking into hybrid modeling approaches, 

and testing the models with different datasets to see if they can be used in other situations. Table 4 summarizes and 

contrasts performance metrics of this study's models versus Witczak, Hirsch, ANN-GWO, and ANN-PSO models. The 

ANN model developed in this study outperforms others in conditions involving high temperatures and low frequencies. 

This is attributed to the ANN's ability to capture nonlinear interactions that traditional regression models overlook. 

Table 4. Comparative Analysis of Model Performance 

Model R² MAE RMSE Strengths Weaknesses 

ANN (Model 1) 0.96 0.05 0.07 High accuracy in extreme conditions Requires computational resources 

ANN-PSO 0.94 0.06 0.08 Good feature selection and optimization Sensitive to initial parameters 

ANN-GWO 0.93 0.06 0.09 Robust training and tuning Higher computation time 

GA (Model 1) 0.73 0.12 0.15 Acceptable for general predictions Less reliable in extreme conditions 

Witczak 0.85 0.1 0.13 Widely accepted, moderate temperatures Fails at high/low temperature ranges 

Hirsch 0.8 0.11 0.14 Conservative predictions at high temperatures Tends to underpredict modulus 

5. Conclusion 

The dynamic modulus, employing the input variables outlined above, was predicted using both ANN and genetic 

algorithms. The artificial neural network proves to be a reliable technique for E* prediction. The MATLAB software 

got an R2 value of 0.96 for training data and 0.95 for testing data in the first model by adding twelve neurons to model 

1 and eight neurons to model 2 in the hidden layer, fine-tuning the model for best performance, and getting a high R2 

value. Conversely, the genetic algorithm provided an R2 value of 0.73 for training data and 0.71 for testing data. The 

closeness of these numbers to one signifies an acceptable level of precision in the determination coefficient (R2). In the 

second model, the MATLAB-derived R2 values were 0.85 and 0.89 for training and testing data, respectively. The 

genetic algorithm yielded results of 0.64 and 0.613 for training and testing data, respectively. Summarizing the results 

of this experiment, the MATLAB-derived R2 was 0.96, while the genetic algorithm model yielded an R2 of 0.73. A 

comparative analysis of the models revealed that MATLAB provided a superior R2 value. It is concluded that the 

dynamic modulus is directly proportional to temperature, frequency, and air void ratio. It might be interesting to compare 

the equation that came out of this study to the MPEDG equation in the future, using different input samples to see how 

well they work with samples that weren't used in our model. 
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