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Abstract 

The valuation of construction project sales depends on various economic variables and indices. While accurate cost 

predictions support financial planning and risk management, traditional grid-search optimization-based machine learning 

techniques often demand extensive computational resources for training and optimization, especially when large datasets 

require comprehensive machine learning models. Recent investigations highlighted that random search optimization can 

shorten the training time of ensemble machine learning methods. Nevertheless, its effectiveness for construction project 

cost valuation, especially when examining model accuracy and training time, is still unclear. This research examines the 

usability of random search optimization for machine learning models in construction project sales valuation and compares 

it with the standard grid search approach. A large dataset with 103 inputs from 372 construction projects is used as the 

basis of the investigation. Six different machine learning models are designed and optimized under grid search and random 

search approaches to evaluate training time and predictive accuracy. The study results indicate that random search 

optimization cuts training time by up to 70% and preserves a high level of accuracy, with the best-performing model 

achieving an R² of 0.98 on the test set. These findings highlight random search optimization as a strong alternative to grid 

search, providing significant computational savings without harming model performance. The study offers guidance on 

effective hyperparameter tuning methods that may facilitate scalable and budget-friendly predictive models for 

construction project valuation. 
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1. Introduction 

Real estate is often selected in investment planning because it has strong potential for long-term income and stability 

[1-4]. Property values depend on many different factors, especially economic and financial conditions, that change over 

time [5-7]. When cities expand and population increases, the need for accurate housing estimates becomes more 

important. These estimates help in planning for demand, supply, investment, and even taxes [8-14]. Housing price 

forecasting has gained attention in recent years. Several studies proposed forecasting methods to help decision-making 

in real estate [15, 16]. Ibisola et al. [17] pointed out that valuation must be clear and consistent in order to avoid errors 

in price prediction. Although many models were suggested in the past, making a single method that works well in all 

cases is still difficult because different social and economic conditions always interact with the prediction problem [18, 

19]. For this reason, recent works started to apply advanced models that use computing algorithms and data processing 

techniques [20-25]. Machine learning has become more used for this kind of forecasting in different countries. For 

instance, Jafary et al. [26] studied different machine learning and deep learning models and showed how these can use 
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many property features to estimate land values. Gurmu & Miri [27] used machine learning regressions to estimate the 

cost range in construction, which can also help with predicting real estate value. Sammour et al. [28] worked on housing 

demand prediction in Jordan, which helps developers prepare for future projects. In another example, Calainho et al. 

[29] introduced a method for real estate price indexing using machine learning, which adds more support for automated 

valuation. Some studies took a larger-scale view in property modeling. Jafary et al. [30] built a macro-level property 

valuation model using steps like spatial imputation and machine learning together. Özalp and Akıncı [31] compared 

different tree-based algorithms and showed which ones give better price predictions for housing. Mathotaarachchi et al. 

[32] discussed machine learning methods that give better forecasts than basic models, while Hoxha [33] tested different 

machine learning techniques in Prishtina and compared their accuracy. Other studies worked on explainable models, 

which make it easier to understand how the prediction happens. For example, Gunes [34] applied model-agnostic 

machine learning to real estate valuation and discussed its usability. Areo [35] discussed how machine learning is 

becoming more used in real estate and what its possible applications are. Some papers focus on combining data with 

building systems. 

 Su et al. [36] introduced a model where machine learning and building information modeling are used together for 

valuation. In another research, Baur et al. [37] showed how property descriptions can help improve automated valuation 

using machine learning methods. Neural network models are another way to estimate housing prices. Rafiei and Adeli 

[38] developed a model that can estimate the sale prices of houses. Kim et al. [39] applied a hybrid approach using 

neural networks and genetic algorithms for construction cost prediction. Other researchers also explored neural-based 

methods in different real estate and infrastructure applications [40, 41]. Jang et al. [42] studied deep learning models to 

check bankruptcy risk in construction. Elalem et al. [43] worked on sales forecasting with neural models. Saha et al. 

[44] applied machine learning in bond valuation, which is outside of real estate but still shows how financial forecasting 

is now moving to intelligent models. In general, among these approaches, explainable machine learning models remain 

good methods for such problems due to their potential interoperability with prediction accuracy. However, using grid 

search for optimizing explainable machine learning models typically requires a lot of computing power, especially with 

large datasets that include many input features. Some recent studies mention that random search can reduce the training 

time of ensemble models. However, its applicability to machine learning models when predicting sales values of 

construction projects using economic variables and indices is still questionable. This includes the effect of optimization 

methods on both training speed and prediction accuracy. This study uses random search to train different machine 

learning models for this task. In this regard, six machine learning models are developed and trained with random search, 

while grid search is used for comparison to validate the applicability of the random search approach to a feasible 

benchmark. The study adopts a dataset of 372 completed construction projects with 103 input factors. Thereafter, a 

comparison is made between the models based on how long they took to train and how accurate they are. In general, 

showing how random search can save computing resources without reducing accuracy can help in developing machine 

learning models that are faster and can be used for real estate forecasting on a larger scale. 

2. Research Methodology  

This section provides a comprehensive discussion of the various machine learning models utilized in this study, 

along with their mathematical formulations. While artificial neural networks have been widely used for predicting 

housing prices in the real estate sector, the efficiency of different machine learning models in estimating construction 

project sales valuation remains a critical area of investigation. A key focus of this study is the comparative evaluation 

of hyperparameter optimization techniques, specifically random search optimization and grid search optimization, to 

assess their impact on model training efficiency and predictive accuracy. By benchmarking multiple models against 

these optimization techniques, this research aims to determine whether random search can significantly reduce 

computational time without compromising predictive performance. The overall methodology adopted in this study is 

illustrated in Figure 1. 

 

Figure 1. Illustration of the general research methodology adopted in this study 



Civil Engineering Journal         Vol. 11, No. 06, June, 2025 

2361 
 

2.1. Adopted Database 

All machine learning models in this investigation rely on a dataset developed by Rafiei & Adeli [38] that reflects 

various elements affecting the profitability of 372 completed residential construction projects. This dataset provides 103 

non-real-time input features grouped under physical and financial (P&F) variables and economic variables and indices 
(EV&Is), both of which strongly influence project sales valuation. Physical and financial variables address project-

specific details such as site location, total floor area in square meters, lot area, and the initial estimated construction cost. 

They also include cost breakdown parameters like estimated cost per square meter and its adjusted equivalent. Additional 

variables include construction duration measured in quarters, months, or weeks, as well as the price per square meter of 

the residential unit at project inception. These factors shape financial planning and market positioning, forming an 

essential foundation for machine learning approaches. The second category, economic variables and indices, 

incorporates macroeconomic and financial indicators affecting real estate and construction markets.  

The dataset covers the number of building permits, total subcontractor contract values (adjusted to a base year), and 

the producer price index (WPI) for building materials. It also features total floor areas for issued permits, cumulative 

liquidity in millions of dollars, and private-sector investments in new buildings to reflect market activity. Other relevant 

financial indicators include the land price index for a base year, the quantity and value of bank loans issued over a 

designated period, and the corresponding interest rate. Information on average construction costs borne by the private 
sector at both the start and completion of projects is also provided, expressed in millions of dollars per square meter. 

Exchange rate variations are covered by including official and unofficial rates compared to the U.S. dollar. Inflation-

related data includes the consumer price index (CPI) for a base year and the CPI for housing, water, fuel, and power, 

factors that directly affect purchasing power and cost changes. Stock market indices, city population, and gold price per 

ounce are part of the dataset to capture broader economic stability. Integrating these project-based details and macro-

level financial indicators helps generate more accurate valuations of construction project sales. This combined dataset 

offers a broad representation of the variables shaping project profitability, which is crucial for assessing how 

hyperparameter tuning with random search and grid search impacts predictive performance in construction project sales 

valuation. 

2.2. Machine Learning Models 

Machine learning models have become prominent in predictive analytics because they recognize patterns between 

input features and target outputs in historical data. In construction project sales valuation, these models estimate future 

sales values by analyzing data patterns associated with economic and project-specific factors. The approach selected for 

modeling directly affects both predictive precision and computational efficiency. This section outlines six models used 

in the study: Decision Tree (DT), Random Forest (RF), Extremely Randomized Trees (ETR), Adaptive Boosting 

(AdaBoost), Histogram Gradient Boosting (HGB), and Stochastic Gradient Boosting (GB). 

2.2.1. Decision Tree (DT) 

Decision Tree (DT) is frequently applied in classification and regression. It partitions the dataset recursively based 

on the most informative features, creating a hierarchy where each internal node involves a feature-based decision, each 

branch indicates a decision outcome, and each leaf node holds the predicted value. The method typically aims to 

minimize impurity at each node, often measured with Gini impurity, entropy, or mean squared error for regression. One 

advantage of DT is its transparent structure, which clarifies how predictions are made. Nonetheless, DT can overfit when 

deep trees are formed. Pruning or restricting tree depth can mitigate overfitting, and ensemble strategies often further 

improve performance. Despite these challenges, DT remains a strong baseline in predictive modeling, especially as a 

foundational element for ensemble methods. 

2.2.2. Random Forest (RF) 

Random Forest (RF) extends the decision tree approach by generating multiple decision trees and merging their 

outputs to increase accuracy and stability. A single decision tree can exhibit high variance and overfitting, but RF lowers 

this risk through bootstrapped sampling of training data, which produces different subsets for each tree. The algorithm 

also introduces feature randomness by picking a random subset of features at each split, reducing correlation among 

trees and bolstering the ensemble's predictive capacity. In regression, RF typically averages the outputs of the individual 

trees, while classification problems generally adopt a majority voting mechanism. RF handles high-dimensional data 

effectively and tolerates noise or missing entries. However, training and inference may become time-consuming if a 

large number of trees is used. 

2.2.3. Extremely Randomized Trees (ETR) 

Extremely Randomized Trees (ETR), sometimes called Extra Trees, follows an ensemble structure similar to random 

forest but increases randomness in its splitting process. Each tree is built on a subset of training data, yet ETR picks split 

thresholds at random rather than optimizing them. This procedure reduces computation because searching for the best 

split is unnecessary. Enhanced randomness lowers the chance of overfitting, as trees become less sensitive to noise. 
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However, random splits can lead to less precise partitioning, causing a slight drop in accuracy in some scenarios. ETR 

still performs well in regression and classification tasks, especially when hyperparameters are tuned to balance bias and 

variance. 

2.2.4. Adaptive Boosting (AdaBoost) 

Adaptive Boosting (AdaBoost) combines multiple weak learners, usually decision stumps, in a sequential manner. 

Each learner tries to correct the errors made by previous ones. Models that misclassify more data receive increased focus 

in the subsequent round by assigning higher weights to those points. This mechanism pushes the model to handle harder 

examples over iterations. Final predictions emerge from a weighted sum of all weak learners, where weights reflect each 

learner's accuracy. Although AdaBoost often delivers high accuracy with shallow learners, it can be sensitive to noisy 

data and outliers, because they may gain undue influence if repeatedly misclassified. 

2.2.5. Histogram Gradient Boosting (HGB) 

Histogram Gradient Boosting (HGB) refines the gradient boosting framework by compressing continuous features 

into histograms. Traditional gradient boosting trains decision trees iteratively, adjusting model weights according to 

gradient information. HGB accelerates this process through histogram binning, which reduces the candidate split points 

and saves memory. The method retains strong predictive performance on large datasets, thanks to its efficient use of 

regularization strategies like early stopping and feature importance pruning. Careful tuning of histogram parameters is 

needed to avoid losing important information, but HGB can achieve a suitable balance between speed and accuracy in 

regression and classification. 

2.2.6. Stochastic Gradient Boosting (GB) 

Stochastic Gradient Boosting (GB) adds randomness to the traditional gradient boosting approach. Gradient boosting 

trains trees sequentially to reduce errors, and stochastic GB introduces two forms of randomness: selecting a random 

sample of training data for each tree and sampling features randomly at each split. This diversification can reduce 

overfitting and computational cost, which is particularly helpful with large datasets. Nonetheless, hyperparameter tuning 

must manage the trade-off between randomness and accuracy. Excessive randomness may hamper learning of relevant 

patterns, while too little randomness might cause overfitting. Stochastic GB remains a popular choice in many predictive 

tasks due to its solid generalization capability and moderate computational demands. 

2.3. Grid Search and Random Search Optimization of Machine Learning Models 

Grid search systematically examines every combination of specified hyperparameter values in a given search space. 

Each combination undergoes cross-validation, and the best set of hyperparameters is chosen based on a designated 

performance metric. Though comprehensive, this approach becomes time-consuming in high-dimensional searches or 

when data sizes are large since training time escalates sharply with more parameters or candidate values. Random search 

provides a more efficient alternative by sampling hyperparameter values randomly from predefined ranges. This 

dramatically reduces computational effort and still identifies strong hyperparameters, as not all combinations need to be 

checked. Research suggests that random search often reaches near-optimal solutions much faster than grid search 

because it avoids exhaustive evaluations of less important regions of the search space. It also has a higher likelihood of 

finding better settings in situations where only a subset of hyperparameters substantially affects model quality. While 

random search cannot guarantee an absolute optimum, it delivers significant time savings without marked losses in 

accuracy. In this study, random search is compared with grid search to determine if similar predictive accuracy can be 

obtained at a lower computational cost, which is particularly relevant for large or complex datasets. Table 1 contrasts 

the two methods in terms of search technique, computational load, efficiency, and scalability. 

Table 1. Grid search and random search optimization techniques 

Criteria Grid Search Random Search 

Search Method Exhaustive search through all parameter combinations Randomly selects parameter combinations 

Computational Cost Exponentially increases with number of parameters Evaluates a subset of possible combinations 

Efficiency in High-Dimensional Spaces Computationally expensive Efficiently explores search space 

Probability of Finding Optimal Parameters Within predefined search range Depends on iterations 

Coverage of Search Space Fixed and structured Unstructured and broader 

Suitability for Large Datasets Can be slow Scales better 

Flexibility in Parameter Ranges Limited to predefined values Highly flexible 

Training Time Long Shorter 

Scalability to Complex Models Challenging for complex models More adaptable to complex models 

Ease of Implementation Straightforward but slow Easy and faster 
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2.4. Model Development and Hyperparameters Tunning 

Model development involved data preprocessing, selection of algorithms, and hyperparameter tuning. The dataset, 

which includes numerous economic variables and project-specific characteristics, was split into training and testing sets 

at an 80:20 ratio. This design ensures that final performance measurements reflect a fair estimate of generalization. The 

algorithms considered in this research include DT, RF, ETR, AdaBoost, HGB, and GB. Each has a set of 

hyperparameters, such as the number of estimators, learning rate, tree depth, and regularization factors, that must be 

configured for optimal performance. GridSearchCV and RandomizedSearchCV from standard libraries handled 

hyperparameter tuning, enabling a direct comparison between the exhaustive approach and a stochastic alternative. Both 

methods rely on cross-validation for model evaluation. Grid search evaluates every combination of hyperparameter 

values in a predefined range, while random search selects random points from that range, often achieving near-optimal 

results at significantly lower computational cost. Each algorithm was optimized using both methods, and the best 

hyperparameters were chosen for further evaluation. The chosen regression metrics included the coefficient of 

determination (R²), root mean squared error (RMSE), and mean absolute error (MAE). Separate evaluations of training 

and testing sets captured the potential for overfitting. Computation times were recorded to quantify potential speed gains. 

Models optimized with the best hyperparameters were then tested on unseen data, and actual vs. predicted outcomes 

were compared for additional clarity. Final model selection prioritized accuracy, efficiency, and robust generalization. 

Conclusions drawn from these outcomes highlight whether random search can effectively lower training effort while 

preserving predictive quality in construction project sales valuation applications. 

3. Results and Discussions 

As discussed before, explainable machine learning models are considered suitable for construction sales valuation 

since they can provide good prediction accuracy and can be used with other systems. However, when grid search is used 

to tune these models, it usually needs high computing power, especially when working with large datasets that include 

many input variables. Some new studies mention that random search can make the training faster in ensemble models. 

Still, there is doubt about how well it can be used in machine learning models when predicting sales values in 

construction projects where many economic indicators and indices are involved. This includes how the optimization 

method affects both the training time and how accurate the predictions are. In this study, random search is used to train 

different machine learning models for this kind of problem. Six machine learning models are built and trained with 

random search, and grid search is used as a comparison method to check if random search gives similar results. The 

study works with a dataset that includes 372 finished construction projects and uses 103 input features. Then, the models 

are compared based on how fast they train and how accurate they are. The dataset includes several variables that 

represent the economic, structural, and temporal factors affecting construction sales prices, which makes the modeling 

task more complex. 

In general, the findings of this study present a detailed comparison of predictive performance, error metrics, and 

computational efficiency across various machine learning models tuned with Grid Search and Random Search. Both 

hyperparameter tuning methods exhibit comparable accuracy, while Random Search reduces training time without 

lowering performance. The evaluation metrics (R², RMSE, MAE, and training time) were applied to DT, RF, ET, 

AdaBoost, HGB, and GB. Figure 2 shows measured versus predicted values for each model in training and testing, using 

scatter plots to map predictions against actual outcomes. Each subplot focuses on one machine learning model and 

highlights a tight clustering of data points along the diagonal line, confirming reliable predictive capabilities. Nearly 

identical results from both tuning strategies imply that Random Search successfully identifies suitable hyperparameters 

without exhaustive trials, which is valuable for models requiring significant computational resources. These findings 

are consistent across different models, which suggests that Random Search can be used in a broader range of regression-

based valuation problems in the construction domain. It may also be suitable when quick deployment is needed without 

reducing model accuracy. 

The R² values, which indicate how well each model explains variance in the dataset, are summarized in Figure 3. 

The bar charts display training and testing R² under both tuning techniques, followed by a third chart illustrating the 

percentage change in R². Across the models, differences between Grid Search and Random Search remain minimal. ET 

and GB reach the highest R² values, approximately 0.98 in testing, while RF and HGB also attain strong performance 

exceeding 0.94. The percentage change in R² falls below 0.5% in most cases, confirming that Random Search preserves 

high accuracy while helping to conserve computational effort. This result becomes more important when using limited 

hardware or when frequent model updates are needed. Also, since a small variation in R² may not always lead to 

noticeable differences in actual predictions, the result supports using Random Search in practice. These outcomes show 

that even for complex regression problems with many input variables, Random Search still manages to maintain high 

performance. 



Civil Engineering Journal         Vol. 11, No. 06, June, 2025 

2364 
 

 

Figure 2. Measured versus predicted plots for the training and testing results of the investigated results 

 

Figure 3. R2 of the investigated machine learning models 

Figures 4 and 5 display RMSE and MAE for the examined models, giving an overview of the magnitude and average 

magnitude of prediction errors, respectively. Differences in RMSE between Grid Search and Random Search are 

generally minor, except for GB, where the training RMSE increases considerably with Random Search even though it 

is still very low in value. This shift does not cause a marked decline in testing performance, implying that hyperparameter 
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variations may influence training stability but do not undermine model generalization. RF, ET, and HGB maintain low 

RMSE values, reflecting dependable forecasts for construction project sales valuation. MAE outcomes mirror these 

observations, as shown in Figure 5. 

 

Figure 4. RMSE of the investigated machine learning models 

 

Figure 5. MAE of the investigated machine learning models 

The percentage change in MAE is small for most models, indicating that both tuning methods achieve comparable 

accuracy. Although GB experiences a significant uptick in MAE during training, the testing phase remains steady, 
suggesting that complex models may be sensitive to hyperparameter adjustments, yet real-world predictive ability 

remains consistent. These results further support the argument that small variations in tuning may slightly affect the 

internal behavior of the model during training but do not affect the usefulness of the model when making future 
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predictions. Also, this consistency is important in construction valuation, where wrong forecasts may affect planning 

and investment decisions. One of the most important findings involves shorter training durations under Random Search, 

as depicted in Figure 6. The left bar chart lists absolute training times in seconds for each model, and the right bar chart 
reports percentage reductions achieved through Random Search. Improvements occur with DT (70% faster) and RF 

(68.52% faster). ET and HGB see gains of 51.47% and 63.28%, respectively. Adaptive Boosting shows a modest 

reduction of 16.76%, yet still benefits from the method's efficiency. These reductions in time can help practitioners who 

do not have access to advanced hardware or need to retrain models often. Especially in industry settings where deadlines 

are short, or system resources are shared, faster training can make the entire workflow more manageable. While accuracy 

is good overall, the time savings give more flexibility and allow for repeated testing and fine-tuning to reach the best 

results. Even if the gains in speed are not uniform across all models, the general pattern shows that Random Search 

brings consistent efficiency. This makes it a useful option in cases where both predictive accuracy and training speed 

are important at the same time. 

 

Figure 6. Training time analysis of the investigated machine learning models 

Overall, these results prove the applicability of machine learning models for construction project sales valuation. 

This observation aligns well with existing studies in the previous studies [25, 32, 37, 38]. Moreover, these outcomes 

confirm that Random Search accelerates model development while preserving similar accuracy levels, making it a more 

computationally efficient approach for hyperparameter tuning in machine learning. The comparison of Grid Search and 

Random Search in construction project sales valuation reveals that both yield nearly the same predictive performance, 

as shown by minimal differences in R², RMSE, and MAE. In this regard, the Gradient Boosting model with random 

search gave the highest accuracy, while the Random Forest model with random search trained faster than the others. 

Exhaustive hyperparameter searches appear unnecessary for achieving optimum results, given the significant time 

savings of Random Search. In some instances, training time is cut by as much as 70%, which strongly favors Random 

Search in large-scale scenarios. Moving from Grid Search to Random Search delivers substantial reductions in training 

time while maintaining high accuracy, making it a suitable choice for real-world machine learning tasks in construction 

sales valuation. Ultimately, it is worth noting that the results of these training times are inherently affected by the 

computing hardware. Nevertheless, the pattern in saving computational time is expected to be consistent in general. 

4. Conclusion 

This investigation assessed random search optimization for machine learning models aimed at forecasting 

construction project sales using economic variables and indices. Earlier publications indicated that random search can 

streamline training in general machine learning contexts, but its impact on this domain was not clearly established. Six 

models were tested with both grid search and random search to explore whether random search preserves prediction 

accuracy while significantly cutting training time. Findings confirm that random search achieves predictive accuracy 

that is similar to grid search, with R² values reaching 0.98 for the best model. Training time declined by as much as 70% 

in some instances, such as the Random Forest. Models optimized under random search also showed close alignment of 

measured and predicted values, implying minimal effect on generalization. Ensemble methods, including Random 

Forest, Extremely Randomized Trees, and Histogram Gradient Boosting, showed benefits from the faster tuning process. 

In particular, the best machine learning model combined with the random search was the Gradient Boosting model in 

terms of accuracy and the Random Forest in terms of training time. Therefore, adopting random search presents a strong 

option for construction firms, financial analysts, and policymakers seeking swift and reasonably accurate real estate 

valuations and project pricing strategies. Although the dataset in this study was limited to 372 construction projects and 

103 input features, the results suggest that random search can deliver substantial computational advantages in bigger or 

more complex settings. Other optimization strategies, such as Bayesian methods or genetic algorithms, could offer 

further improvements. Future work may also look at real-time economic indicators and deep learning architectures to 

broaden these findings for dynamic market conditions. Addressing these aspects can strengthen the scalability and 

adaptability of machine learning-driven valuation models in the construction field. 
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