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Abstract 

This study aims to determine whether a data-driven-based approach provides more accurate predictions of timber fire-

resistance ratings (FRR) compared to conventional empirical methods. To achieve this, a machine learning framework 

based on the Deep Belief Network (DBN) was employed. A comprehensive database collected from previously published 

reports was used to train and validate the DBN model. The model’s predictive performance was benchmarked against 

traditional empirical equations derived from mechanics-based methods. The comparison demonstrated that the DBN model 

provided superior accuracy in predicting fire-resistance ratings. Model evaluation was further conducted using the 

Coefficient of Determination (R²) and Root Mean Squared Error (RMSE), confirming the robustness of the proposed 

approach. In addition, a parametric analysis was performed to assess the influence of input variables on the output. Results 

indicated that induced load (IDL) and breadth (BRH) were the most influential parameters, whereas ultimate strength 

(ULS) and elasticity modulus (ELM) had relatively minor effects. This study highlights the potential of advanced machine 

learning techniques, particularly DBN, to enhance predictive accuracy in structural fire engineering, offering a significant 

improvement over conventional calculation methods. 
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1. Introduction 

Structures using green and sustainable materials have gained much recognition over the past decade. Thanks to its 

incredible properties, such as pleasing appearance, ease of use, and necessary fire resistance, timber has been widely 

used for exposed structural members of modern structures [1]. The applications of advanced engineered timber products 

for constructing mid-rise and tall wood buildings are becoming more and more popular worldwide [2]. As an example, 

a 122,000 square-foot (11300 square-meter) building that used glulam and laminated timber beams was constructed in 

Norway in 2019, with a height of approximately 90 meters and18 stories, making it the highest timber structure in the 

world [3]. Japan has also proposed an ambitious concept design to build a 70-story wood-framed tower in Tokyo, called 

W350. Timber and steel would be utilized in this building, with wooden materials accounting for 90 percent [4]. 

To make engineered timber products possible for high-rise buildings, intensive investigations have been conducted 

to study structural performances and building management [5-10], as well as the fire response behavior of advanced and 

sustainable materials [1, 11-19]. Girompaire & Dagenais [11] developed an analytical model to predict fire dynamics in 

mass timber compartments with exposed surfaces. The model’s predictions of temperature, char depth, and heat release 

rate were compared against 20 experimental compartment fires, both with and without exposed timber. The results of 

                                                           
* Corresponding author: hungpt@hau.edu.vn 

 
http://dx.doi.org/10.28991/CEJ-2025-011-10-013 

 

© 2025 by the authors. Licensee C.E.J, Tehran, Iran. This article is an open access article distributed under the terms and 
conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). 

 

http://www.civilejournal.org/
mailto:hungpt@hau.edu.vn
http://creativecommons.org/
https://orcid.org/0009-0006-4723-4359
https://creativecommons.org/licenses/by/4.0/


Civil Engineering Journal         Vol. 11, No. 10, October, 2025 

4233 

 

this study showed strong agreement between the model predictions and the experimental data. Wiesner et al. [12] 

performed a series of large-scale experiments on cross-laminated timber (CLT) slabs subjected to four different heating 

scenarios with varying profiles to validate a previously published structural model. The findings confirmed that the 

proposed structural fire model can accurately predict the timber’s load-bearing capacity during fire. For assessing fire 

performance, ASTM E119 Standard Test Methods for Fire Tests of Building Construction and Materials [20] provides 

the procedures for determining the FRR of structural timber members, while the minimum fire-resistance requirements 

for building systems are specified in the 2015 International Building Code [21]. Besides, the National Design 

Specification for Wood Construction (NDS) [22] also outlined the fire design concepts for timber assemblies (i.e., beam, 

column, floor). 

The fire exposure time of a column depends on different factors such as the induced load, the ratio between induced 

load and ultimate capacity, the char rate, the loss of initial breadth, B, and depth, D, and the slenderness ratio (Le/D) of 

a member (Le is the effective length of the corresponding column). Figure 1 illustrates the cross-section of a rectangular 

column with fire exposed on four sides. The loss of cross-section at the corners of the column is faster than that of other 

parts due to the corner being heated from two sides. The high char rate develops the rounding effect at these corners, 

making the remaining cross-section of the column no longer rectangular after fire [1]. 

 

Figure 1. Reduction in dimensions due to charging 

The fire exposure time is determined at the point where the column fails due to the stress in the remaining section 

being over the maximum stress capacity. Depending on the column slenderness ratio, the column failure either occurs 

when the maximum compressive capacity surpasses its limit for the case of short column members or due to exceeding 

critical buckling capacity for the long column members. The NDS [22] provided equations to calculate a stability factor 

that is used for estimating the column capacity. The critical section of the column is determined through an iterative 

calculation using Equation 1 for the short column and Equation 2 for the long column. 

𝑘  𝑍  𝐵  𝐷 =   𝑏 𝑑  (1) 

𝑘 𝑍
 𝐵 𝐷3

12
 =  

 𝑏 𝑑3

12
  (2) 

where k is the safety factor reduction; Z is the load factor; b and d are the remaining breadth and depth of the section 

after a fire, respectively;  is the uniform reduction in strength properties; D is the column’s smallest cross-sectional 

dimension, with buckling assumed in this weakest direction. 

In the past, the FRR of the timber columns was estimated by employing the method developed by Lie [23]. In this 

method, the reduction of the member section was calculated using a constant char rate of = 1.42 in/hour (3.6 cm/hour), 

the rounding effects at the corners due to the increasing char rate were omitted. Also, a factor k = 0.33, and  = 0.8 

accounts for the design-to-ultimate strength ratio and strength and stiffness reductions. For the four-sided exposure, 

Equation 3 (in the US unit) was applied to estimate FRR. 

𝑡𝑓 = 2.54  𝑍  𝐷 (3 − 
 𝐷

𝐵
)  (3) 

where Z for short column (Le/D 11) can be calculated from: 

𝑍 = {
1.5                              𝑅 < 0.5

0.9 + 
0.3

𝑅
               𝑅   0.5   (4) 

For the long column (Le/D> 11), Z can be computed by Equation 5: 

D

BHeated zone

Cold wood

Char layer

T

r

d

b



Civil Engineering Journal         Vol. 11, No. 10, October, 2025 

4234 

 

𝑍 = {
1.3                             𝑅 < 0.5

0.7 +  
0.3

𝑅
                𝑅   0.5   (5) 

where R is applied to the allowable load ratio. 

In current practice, the adaptive mechanics-based design method is utilized to calculate the FRR of column 

members. Instead of using a fixed char rate, , as in the Lie method, an adaptive effective char rate, eff, is used. 

The effective char rate is a nonlinear function of time exposure t, and nominal char rate value n, and is determined 

by Equation 6. In this Equation, a coefficient of 1.2 accounts for corner rounding and strength and stiffness 

reductions in the heated zone. 

𝛽𝑒𝑓𝑓 =
1.2 𝛽𝑛

𝑡0.187  (6) 

The section properties of the columns subjected to four-sided exposure can be calculated using equations presented 

in Table 1 (Table 16.2.1 in NDS [22]). Gagnon & Pirvu (Wood Handbook) [24] stated that an FRR is the period during 

which a building element, component, or assembly can maintain its separating function, preventing or slowing the spread 

of heat, flames, or hot gases, its load-bearing function, or both.” To determine the FRR of a timber member, the standard 

fire-resistance tests compliant with ASTM E119-20 [20] are performed. The tested members are evaluated via three 

acceptance criteria, namely (i) structural resistance, (ii) integrity, and (iii) insulation. The standard time–temperature 

relationship used in fire-resistance testing is shown in Figure 2. 

Table 1. Cross-sectional properties for four-sided exposure (in US unit) 

Cross-sectional property Equations 

Area of the cross-section, in2 A(t) = (B - 2beff t) (D - 2beff t) 

Section Modulus about the major axis, in3 S(t) = (B - 2beff t) (D - 2beff t)
2/6 

Section Modulus about the minor axis, in3 S(t) = (B - 2beff t)
2(D - 2beff t)/6 

Moment of Inertia about the major axis, in4 I(t) = (Dmin - 2beff t) (Dmax - 2beff t)
3/12 

Moment of Inertia about the minor axis, in4 I(t) = (Dmin - 2beff t)
3(Dmax - 2beff t)/12 

 

Figure 2. Standard time-temperature relationship [20] 

Regarding the approval conditions, Figure 3 illustrates three acceptance criteria for timber members/assemblies. 

The first benchmark is the structural resistance, which is related to the stability of the tested members/assemblies 

under structural load during the fire test. The second benchmark, integrity standards, is linked to the passing of 

flame or hot gases through tested structures. The last measure is related to the maximum acceptable surface 

temperature of the tested members/assemblies. Information on these acceptance criteria can be found in detail in 

the Wood Handbook [24]. The FRR indicates the time at which a component fails to comply with at least one of 

the three criteria. 
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(a) Structural resistance (b) Integrity (c) Insulation 

Figure 3. Structural fire performance requirements [24] 

The conventional methods to estimate FRR for timber structures either utilize standard fire tests or apply empirical 

equations. Recently, the technique employing machine learning-based (ML) models, such as DBN or ANN, can be 

applied for timber FRR estimation. Instead of relying on purely mathematical equations, machine learning-based models 

use adaptive learning techniques to capture the nonlinear hidden relationship between inputs and outputs through 

existing experimental data. After training and testing with available data, the successfully developed models can be used 

to predict the outputs from the new input dataset with a high rate of accuracy.  

Regarding the applications of the ML-based models in assessing the fire performance of timber, Tasdemir et al. [25] 

employed ML to estimate the final cross-section of the timber after a fire with 180 experimental records. Evidence 

suggests that the ML model effectively predicted the remaining section of timber after the fire. Cachim [26] employed 

a multilayer feed-forward network model to estimate the temperature in the timber under fire loading using numerical 

data. The ML model was also successfully applied to predict the thermal and structural properties of timbers at the 

material and elemental level in a study by Naser [27]. Zaker Esteghamati et al. [28] developed interpretable machine 

learning models to predict the fire resistance of timber columns using 70 experimental records, taking into account their 

geometry and material properties. The study demonstrated that Random Forest (RF) models outperformed traditional 

prescriptive approaches, providing greater prediction accuracy while improving the interpretability of the results. 

In a recent study, Lou et al. [29] employed a DeepONet-based approach combined with finite element (FE) data to 

develop an integrated computational framework for analyzing and predicting temperature fields in glulam beam–column 

connections exposed to fire. The study demonstrated outstanding predictive performance, achieving an R² of 0.9991, 

while operating substantially faster than conventional FE analyses. Ye et al. [30] employed an FE-based ML model to 

predict the real-time structural response of a steel frame from temperature data under hundreds of fire scenarios. Several 

ML models were developed and trained with temperature as input and displacement as output. The results showed that 

Gradient Boosting achieved the highest accuracy, with an R² value of 0.99 when trained on 1,000 fire scenarios. ML 

was also used in the study of Ishtiaq et al. [31] to improve the fire safety of timber structures. 

Amin et al. [32] created a data-driven model to estimate the average charring rate of timber in fire, drawing on a 

database of 231 test samples. The findings showed that the model performed well, achieving predictions with as little as 

9% error. The authors further emphasized that the predicted average charring rate provided a much higher level of 

accuracy compared to the values specified in Eurocode-5, the standard widely used in many countries, and that this 

improvement was consistent across a wide range of mass timber products. Han et al. [33] developed an explainable 

machine learning model using numerical data to predict the FRR of connections. The model was validated against 140 

experimental data points and demonstrated superior performance compared to conventional empirical equations. 

Sensitivity analysis further revealed that timber thickness and load ratio are the most influential factors affecting the 

FRR.  

Besides the application for fire-related analysis, machine learning-based models have also been employed to address 

various engineering problems [34-42]. For example, Fud [34] used the DBN model to forecast the cooling load of the 

air-conditioning system. The proposed model was validated with real cooling load data from two different locations. It 

was shown that the DBN model could catch the nonlinear and dynamic features of the cooling load data series with high 

accuracy. In a study by Rafiei et al. [35], the DBN model was developed using 103 experimental records to predict the 

compressive strength of concrete at 28 days. The performance accuracy of the proposed DBN model was reported to 

reach 98 percent. 

Hao et al. [36] applied the DBN model with a sliding window to predict multiple-index energy consumption for a 

cement production plant. A sliding window technique was introduced to eliminate the time-varying delay and improve 

the performance of the DBN model. In another study, Nguyen et al. [37] employed a DBN model with 288 experimental 

data records to examine factors affecting ground-penetrating radar signal amplitude in reinforced concrete structures. 

The model demonstrated excellent predictive performance, achieving an R² of 0.9681 for the entire dataset. Nguyen & 

Dinh [38] applied ML to estimate bridge deck ratings using data from the National Bridge Inventory, achieving 

prediction accuracy of up to 98.5%. The ML-based models were employed to detect structural damages [39], to predict 

cardiovascular diseases [40], or to estimate the hardened properties of concrete [41, 42]. 
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Despite significant progress, the use of DBNs in timber structures, particularly under fire conditions, remains limited. 

Accurate prediction of the FRR of timber columns is essential for structural fire safety design. Yet, the high cost and 

labor-intensive nature of fire testing restricts dataset availability and slows the development of reliable predictive models 

in engineering practice. To address these challenges, this study proposes a DBN model for predicting the FRR of timber 

columns. Leveraging the strong predictive capabilities of DBNs, the approach provides an efficient and reliable tool for 

enhancing the fire safety design of timber structures. 

In this paper, a DBN approach was employed to predict the FRR of timber columns using data from a previously 

published study [1]. Proposed DBN model performance was evaluated using various coefficient measures, and its 

predictions were compared with calculated values reported in earlier publications. Currently, the FRR of timber 

members is primarily determined through standard fire tests and conventional empirical equations [24]. As far as the 

authors are aware, no prior studies have applied the DBN method for predicting the FRR of timber columns. The main 

objective of this research is to assess whether a machine learning–based approach can outperform conventional empirical 

methods in predicting timber FRR, while also advancing the understanding of how deep learning captures the nonlinear 

relationships between fire-resistance and its influencing variables. The DBN subroutine was implemented in MATLAB 

R2022a, following the approach of Tanaka [43]. 

The subsequent sections are organized as follows. Section 2 describes the data and methodology, including data 

collection and preprocessing, a brief overview of the DBN model, and the proposed DBN architecture for predicting the 

FRR of timber structures. Section 3 presents the key results, covering assessment categories, comparison with previously 

published calculations, and sensitivity analysis. Section 4 offers an in-depth discussion, followed by Section 5, which 

concludes the paper and suggests directions for future work. 

2. Data and Methodology 

Experimental data on FRR for timber columns extracted from the previously published source were employed in this 

study. The original data were refined to obtain a reliable dataset for developing and testing the proposed DBN model. A 

brief statistical analysis of the input and output variables was also presented. Besides, a summary of the DBN model, 

the model architecture, and steps to establish the DBN model for estimating the timber FRR were briefly discussed. 

Detailed information is described in the subsequent sections. 

2.1. Data Collection and Pre-Processing 

The original dataset consisted of 62 records of timber FRR collected from experimental fire tests. Table 2 presents 

the input and output variables and their basic statistical value in the entire dataset. It should be pointed out that the 

dataset also included the FRR calculated from the empirical equations proposed by the Lie method and the adaptive 

mechanics-based method. The calculated data were later used to compare with the predictions of the proposed DBN 

model. 

Table 1. Input and output characteristics 

Parameter Symbol Type Unit Min. Max. 

Depth DEP Input in. 5.5 11 

Breadth BRH Input in. 5.5 15.75 

Specific gravity SPG Input - 0.31 0.59 

Ultimate strength ULS Input psi 2565 9003 

Elasticity modulus ELM Input 106 psi 1.0 2.7 

Resisting capacity RCP Input lbs 70830 585190 

Induced load IDL Input lbs 9520 143960 

Measured time from tests MST Output minute 21 76 

Rating with the Lie method - Other minute 28 69 

Rating mechanics-based method - Other minute 18 96 

Before using the data for training and testing the proposed DBN model, all dataset values were carefully normalized 

to fall within the range of [0, 1] to ensure uniform scaling, improve numerical stability, and facilitate more efficient and 

accurate model learning using Equation 7 

𝑋𝑛𝑜𝑟𝑚 =  
 𝑋  −𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
  (7) 

where X and Xnorm denote the original and normalized values, respectively, while Xmax and Xmin represent the maximum 

and minimum values of X. 
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2.2. Approach Using Deep Belief Network 

A DBN is an unsupervised learning algorithm that uses probabilistic methods to generate outputs. Its typical structure 

comprises multiple interconnected Restricted Boltzmann Machine (RBM) units, as shown in Figure 4-a, with the first 

RBM serving as the visible layer and the subsequent units forming the hidden layers. 

 

 

(a) (b) 

Figure 4. (a) Deep Belief Network structure; (b) Restricted Boltzmann Machine Architecture 

A Restricted Boltzmann Machine (RBM) is composed of two layers: a visible layer and a hidden layer. Each neuron 

in the visible layer is fully connected to every neuron in the hidden layer, but there are no connections among neurons 

within the same layer [44]. Figure 4-b illustrates a standard RBM architecture, where vi represents a unit in the visible 

layer v, and hi denotes the unit in the hidden layer h. The weight matrix W defines the connections between the two 

layers. Each visible unit has an associated bias ai, and each hidden unit has a bias bi. Given a set of states (v, h), the 

energy of the RBM network can be defined as: 

𝐸(𝑣, ℎ) = − ∑ 𝑎𝑖𝑣𝑖𝑖 − ∑ 𝑏𝑗ℎ𝑗𝑗 − ∑ ∑ 𝑣𝑗𝑤𝑖,𝑗ℎ𝑗  = − 𝑎𝑇 𝑣 − 𝑏𝑇 ℎ − ℎ𝑇  𝑤 𝑣 𝑗𝑖   (8) 

The joint probability of an input v with the hidden vector h is described as 

𝑃(𝑣, ℎ;  𝜃) =   
1

𝑍
𝑒−𝐸(𝑣,ℎ)  (9) 

where  = {a, b, w} is the RMB network parameter; Z is a normalizing constant event so that the sum of all events equals 

1. The marginal distribution of training data v can be obtained by summing over h as: 

(𝑣) =   
1

𝑍
∑  𝑒−𝐸(𝑣,ℎ)

ℎ   (10) 

In the same manner, the marginal probability distribution of the hidden layer can be determined. 

𝑃(ℎ) =   
1

𝑍
∑  𝑒−𝐸(𝑣,ℎ)

𝑣   (11) 

To train the RBM network, the model parameters in Equation 9 are solved by the maximum likelihood method. 

𝑙𝑛 𝑃(ℎ) =   𝑙𝑛(∑  𝑒−𝐸(𝑣,ℎ)
ℎ ) −   𝑙𝑛(∑ ∑  𝑒−𝐸(𝑣,ℎ)

ℎ𝑣 )  (12) 

𝜕𝑙𝑛 𝑃(ℎ)

𝜕𝑎
=   𝐸𝑃𝑑[𝑣]   − 𝐸𝑃𝑚[𝑣]  (13) 

𝜕𝑙𝑛 𝑃(𝑣)

𝜕𝑏
=   𝐸𝑃𝑑[ℎ]   − 𝐸𝑃𝑚[ℎ]  (14) 

𝜕𝑙𝑛 𝑃(𝑣)

𝜕𝑤
=   𝐸𝑃𝑑[𝑣ℎ𝑇]   − 𝐸𝑃𝑚[𝑣ℎ𝑇]  (15) 

where EPd, EPm denote the expectations of the data and model probability distributions, respectively, computed using the 

contrastive divergence algorithm [45]. 

𝑃(𝑣𝑖 = 1|ℎ) =   𝜎(𝑎𝑖 + ∑ 𝑤𝑖,𝑗ℎ𝑗
𝑛
𝑗=1 )  (16) 

(ℎ𝑖 = 1|𝑣) =   𝜎(𝑏𝑖 + ∑ 𝑤𝑖,𝑗𝑣𝑗
𝑚
𝑗=1 )  (17) 

𝜎(𝑥) =   
1

1+𝑒−𝑥  (18) 
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DBN is a combination of several RBMs; thus, the joint probability distribution of DBN can be determined by 

Equation 19 

P(v, h1, h2, …, hn) = P(v | h1) P(h1 | h2), …, P(hn-2 | hn-1) P(hn-1 | hn) (19) 

where P(hn | hn+1)is the conditional probability of hn for the given hn+1 state; P(hn-1 | hn is the joint probability of hn-1 and 

hn. P(v, h) represents the joint probability distribution of a single RBM. 

2.3. Development of the DBN Model for FRR of Timber Structures 

The DBN model has been employed for dealing with unsupervised issues and has proven as an effective solution for 

energy consumption prediction in the cement calcination process [36], predicting ground penetrating radar signal [37], 

bearing performance degradation [46], and controlling systems of collaborative robots [47, 48]. In this study, DBN was 

used to address the supervised problems for estimating the FRR for timber structures using a comprehensive database 

consisting of 62 experimental fire-testing records of the timber. Table 3 shows the configurations of the proposed DBN 

model. The methodology used in this study is illustrated in Figure 5. 

Table 2. Detailed DBN model configurations 

Argument Quantity 

Input neurons 7 

Output neurons 1 

Number of neurons in hidden layers 15 

Epochs number 50 

Maximum iteration number 100 

Momentum for iterations 0.9 

Learning step size 0.01 

Costs of weight update 0.0002 

Dropout rate 0.2 

 

Figure 5. Methodology workflow 
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3. Results and Discussion 

As mentioned above, the proposed DBN model consisted of seven input variables, namely depth, breadth, specific 

gravity, ultimate strength, elasticity modulus, resisting capacity, and induced load. The output of the model was the FRR 

of timber columns. Given the relatively small size of the dataset, there is an increased risk of overfitting, which can 

reduce the robustness and generalizability of the DBN model. To address this, the dataset was randomly split into a 

training set of 48 records (i.e., 80 percent of the entire database) and a testing set of 14 instances (i.e., 20 percent), 

following standard machine learning practices. The training set was further divided to include a validation subset 

representing 20% of the training data, enabling monitoring of model performance and early detection of overfitting 

before evaluating on the testing set. 

Additionally, a k-fold cross-validation approach was employed on the training set to further mitigate overfitting and 

select the best model. In this method, the training data is partitioned into 10 equal folds, with each fold serving as a 

validation set in turn while the remaining folds are used for training. The model performance evaluation and the 

comparison between the calculated results with the predicted results from the DBN model are described in detail in the 

subsequent sections. 

3.1. Assessment Categories 

The DBN model’s performance was evaluated using the coefficient of determination and Root Mean Squared Error, 

as given in Equations 20 and 21, respectively. 

𝑅2 = 1 − 
∑ (𝑥−𝑥𝑖)2𝑛

𝑖=1

∑ (𝑥𝑖−𝑥̅)
2𝑛

𝑖=1

  (20) 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑥𝑖 − 𝑥̂𝑖)

2𝑛
𝑖=1   (21) 

where xi is the ith actual output; 𝑥̅ is the mean of the actual outputs; 𝑥̂𝑖 is the ith predicted output, and n is the total number 

of data points. 

3.2. Deep Belief Network to Estimate Fire Resistance Rating 

The predictive performance of the proposed DBN model was assessed using two coefficients, R2 and RMSE. Note 

that the higher value of R2 and the lower values of RMSE indicate a better prediction capacity of the proposed models. 

The results of the proposed DBN model’s performance are provided in Table 4. As can be seen, the overall coefficient 

of determination was 0.8775. These results indicate that the proposed DBN model can produce reliable outputs with a 

high degree of accuracy. For unseen data, the R2 value was slightly lower, at 0.8623 for the testing dataset. The 

predictions for the testing data demonstrate that the DBN model can effectively predict outputs for previously unseen 

input data. 

Table 3. DBN Model Assessment 

Data R2 RMSE Sample 

Training set 0.8720 0.1301 48 

Testing set 0.8623 0.1387 14 

Overall 0. 8775 0.1275 62 

Given the present dataset, it is important to note that the proposed DBN model exhibits a strong R2 value on both 

training and testing sets, indicating good generalization within the range of parameters represented. However, 

performance on entirely new experimental conditions outside this range may vary. Future validation with independent 

or prospective datasets would be necessary to confirm its predictive accuracy under different conditions. 

Scatter plots provide an alternative way to visualize the performance of the proposed DBN model. Figure 6 shows 

the relationship between the timber column FRR predicted by the DBN and the measured values for both training and 

testing datasets. In the plots, the horizontal axis represents the experimental measurements, while the vertical axis shows 

the FRR predicted by the model. The black diamond markers represent the experimental data points, while the red solid 

line indicates the linear fitting of the results, and the blue dashed line corresponds to the ideal 1:1 fitting line. As shown, 

most of the data points are distributed close to the ideal line, demonstrating good agreement between predicted and 

experimental values. The linear fitting line also follows the overall trend of the data with a correlation coefficient of R2 

= 0.872 and R2 = 0.863 for the training and testing datasets, respectively, indicating a strong positive relationship and 

confirming the reliability of the predictive model in estimating fire resistance ratings. 
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(a) Training (b) Testing 

Figure 6. Timber FRR: Predicted vs. Observed Values 

3.3. Compared Predicted Results with the Previously Published Calculations 

The predicted FRR of timber columns for the testing dataset was compared to the calculated ratings using the 

empirical equation. Table 5 presents the comparison results. The order of the records in the database is presented in 

column 1. Columns 2 to 4 contain the experimental ratings, calculated ratings using a mechanics-based method, and 

predicted ratings from the DBN model, respectively. The predicted rating was rounded to the nearest integer. The 

difference in percentage between calculated and measured ratings is shown in column 5, and predicted and measured 

results are presented in column 6. Besides, the information in column 7 represents the instances that the predicted results 

were better than the calculated values tabulated in the NDS report. 

Table 4. Comparison results from the measured and calculated results 

ID Measured (min.) Calculated (min.) Predicted (min.) Cal. and Mea. Diff. (%) Pre. and Mea. Diff (%) DBN better 

(1) (2) (3) (4) (5) (6) (7) 

51 55 77 63 40 14.5  

4 21 24 34 14.3 61.9  

44 54 64 61 18.5 12.9  

54 73 96 62 31.5 15.1  

15 53 36 47 32.1 11.3  

37 65 41 62 36.9 4.62  

35 60 59 52 1.67 13.3  

47 56 60 60 7.14 7.14  

40 56 55 55 1.79 1.79  

45 76 65 63 14.5 17.1  

58 45 50 53 11.1 17.6  

48 71 65 63 8.45 11.3  

1 48 45 46 6.25 4.17  

5 36 36 35 0.00 2.78  

As can be seen from Table 4, the proposed DBN model could predict the FRR of the timber columns better than the 

results from the method using empirical equations proposed in the American Wood Council technical report [1]. To be 

specific, within the 14 records from the testing dataset, the prediction results from the DBN model showed an equal to 

or better than that of the results from a mechanics-based method in eight instances. It should be noted that the total 

number of samples for which the DBN model has shown a better performance was 41 out of 62 records in the entire 

database.  

The SR indicator was used to evaluate the DBN model’s computational efficiency [42], representing the percentage 

of data with relative errors within a specified threshold, as calculated in Equation 22. 
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𝑒𝑟𝑟𝑖 = |
𝑥𝑖−𝑥𝑖

𝑥𝑖
| × 100% ;    𝑆𝑅 =

𝑁𝑒𝑝

𝑁
 × 100%  (22) 

Where, erri denotes the relative error; xi the actual output; 𝑥̂𝑖 is the predicted outputs; Nep is the number of data records 

with a relative error smaller than the restrained error bound, Nep is the number of data points with relative error below 

the specified threshold, and N is the total number of data points. Figure 7-a illustrates the SR for the full dataset across 

different methods, while Figure 7-b compares experimental FRR values with predictions from these methods. 

  

(a) SR vs. Nep (b) Experimental data vs results from models 

Figure 7. Performance assessment of different models 

Figure 7-a compares the predicted FRR of timber columns obtained from the Lie method, the mechanics-based 

method, and the DBN approach. Among them, the mechanics-based method consistently yields the lowest estimates, 

demonstrating its conservative nature and tendency to underestimate fire resistance. The Lie method provides 

intermediate predictions, aligning more closely with the DBN approach at higher values but still showing some 

deviation. In contrast, the DBN approach consistently predicts higher FRR values, particularly at low and medium 

ranges, illustrating its capability to capture nonlinear relationships and deliver more accurate predictions. These results 

suggest that the DBN method offers improved predictive accuracy and less conservativeness compared to conventional 

approaches. 

The comparison by including the measured FRR values alongside the three prediction methods is shown in Figure 

7-b. The experimental results show significant variability, reflecting the inherent scatter in fire testing. The Lie method 

generally underestimates higher values and fails to capture local fluctuations. The mechanics-based method performs 

less reliably, producing unstable predictions with large deviations from measured values, especially in the mid-to-high 

ranges. By contrast, the DBN approach demonstrates strong agreement with the measured data, effectively capturing 

both the overall trend and local variations. This close alignment indicates the robustness and superior predictive 

capability of the DBN model, confirming its advantage over traditional mechanics-based and semi-empirical approaches 

in modeling fire resistance of timber columns. 

It can be observed that the proposed DBN method presented great predicted results within the range of experimental 

records. Regarding the calculated results using empirical equations, the equation proposed in the mechanics-based 

method tended to conservatively predict the FRR for column members. The results using the mechanics-based method 

showed a high level of inaccuracy in some records. With respect to the calculated results using the Lie method, the 

calculation underestimated the ratings in most cases. However, the results from the Lie method were less conservative 

in comparison with those of using the mechanics-based method.  

3.4. Inputs and Outputs Relationship 

Sensitivity analysis was conducted to examine the effects of input variables on the output. For this purpose, seven 

DBN models with different combinations of input parameters were developed. The original model DBN0 consisted of 

all seven input variables. To develop a new model, one variable was taken out of the input parameters of the original 

model. Specifically, the DBN1 model was created by removing the DEP variable from the input variable of the DBN0 

model. Similarly, the DBN2, DBN3, DBN4, DBN5, DBN6, and DBN7 model was developed by eliminating BRH, SPG, 

ULS, ELM, RCP, and IDL variables from the input of the original DBN0 model, respectively. 

In order to achieve a reliable result, each developed DBN model conducted an output estimation ten times. For each 

trial, 80 percent of the entire database (i.e., 48 records) was arbitrarily chosen to create the training dataset. The value 

of RMSE for the training dataset in each run was recorded. The performance of the developed DBN models was 

evaluated using the average RMSE over ten trials. The detailed input parameters, performance results, and efficacy 

ranking of all seven developed DBN models are shown in Table 6. 
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Table 5. Developed model information and its performance 

Name Input variable Exclusion var. RMSE Ranking 

DBN0 DEP, BRH, SPG, ULS, ELM, RCP, IDL - 0.1286 - 

DBN1 BRH, SPG, ULS, ELM, RCP, IDL DEP 0.1429 5 

DBN2 DEP, SPG, ULS, ELM, RCP, IDL BRH 0.1558 7 

DBN3 DEP, BRH, ULS, ELM, RCP, IDL SPG 0.1372 3 

DBN4 DEP, BRH, SPG, ELM, RCP, IDL ULS 0.1279 2 

DBN5 DEP, BRH, SPG, ULS, RCP, IDL ELM 0.1277 1 

DBN6 DEP, BRH, SPG, ULS, ELM, IDL RCP 0.1410 4 

DBN7 DEP, BRH, SPG, ULS, ELM, RCP IDL 0.1458 6 

As can be seen, the DBN4 and DBN5 models presented the best performance results among all seven developed 
DBN models, with the value of RMSE being 0.1279 and 0.1277, respectively. That means the ELM and ULS variables 

had only a minor influence on the DBN model’s predictive capacity. On the other hand, by taking the BRH and IDL 
variables out of the original input to create the DBN2 and DBN7 models. The developed model showed the least 
prediction ability, with the value of RMSE increased to 0.1558 and 0.1458, respectively. In other words, the BRH and 
IDL variables had the greatest impact on the predictive accuracy of the DBN model. This finding is consistent with the 
understanding that increased column breadth enhances thermal mass, slowing heat penetration, while higher applied 
loads accelerate failure due to the reduction of material strength at elevated temperatures. 

4. Conclusion 

In this study, a DBN model was developed to predict the FRR of timber columns, using experimental data collected 

from previously published research. Seven input variables, including depth, breadth, specific gravity, ultimate strength, 

elastic modulus, resisting capacity, and induced load, were employed to train and optimize the DBN model. The primary 

objective was to evaluate whether a machine learning-based approach could provide more accurate predictions than 

conventional empirical methods. To achieve this, the FRR predicted by the DBN model was compared with ratings 

calculated using established empirical equations, particularly those proposed in the American Wood Council report. The 

comparison indicated that the DBN model consistently produced predictions closer to the experimental observations, 

demonstrating its superiority over the traditional calculation methods. This improvement highlights the potential of 

integrating advanced data-driven models in structural engineering applications, where complex interactions between 

multiple material and loading parameters often limit the accuracy of empirical formulas. 

The performance of the developed DBN model was evaluated using the coefficient of determination, R2, yielding 

values of 0.8623 for the testing dataset and 0.8775 for the overall dataset, reflecting strong predictive accuracy. A 

sensitivity analysis was conducted to assess the relative importance of each input variable on the model’s performance. 

Results revealed that BRH and IDL were the most influential parameters, suggesting that these variables play a critical 

role in determining the fire-resistance capacity of timber columns. Conversely, ELM and ULS were found to have the 

least impact on the model’s predictive ability. These findings provide insight into which factors most significantly affect 

fire-resistance performance and can guide both experimental design and structural assessment. Overall, the study 

demonstrates that machine learning-based models, such as the DBN, offer a reliable and efficient alternative for 

predicting the FRR of timber structures, potentially enhancing design safety and optimizing material usage. The adoption 

of such data-driven approaches represents a promising direction for future research and practical applications in 

structural fire engineering. 
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