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Abstract 

This study evaluates the effectiveness of three metaheuristic algorithms—Genetic Algorithm (GA), Differential Evolution 

(DE), and Particle Swarm Optimization (PSO)—for identifying lateral interstory stiffness and the modal damping ratio in 

two-dimensional shear building models. The main objective is to estimate these parameters using time-domain 

displacement, velocity, and acceleration data, assuming known floor masses and unknown input excitation that primarily 

excites translational vibration modes. Three structural configurations with 2, 3, and 5 stories are analyzed to assess the 

scalability and robustness of each algorithm. To assess the effect of signal filtering on the performance of the algorithms, 

white noise is added to the synthetic response data at six levels ranging from 0% to 5% of the root mean square (RMS) 

amplitude. A sixth-order Butterworth filter is applied to evaluate the effect of signal preprocessing, and results obtained 

with and without filtering are compared. The results show that all three algorithms achieve acceptable levels of accuracy, 

even under noisy conditions. Filtering consistently improves identification accuracy, especially in high-noise conditions. 

In the most challenging case (5% noise, 5-story model), the average identification errors were 5.042% for GA, 5.106% for 

DE, and 5.035% for PSO. The findings underscore the practical value of integrating signal filtering with metaheuristic 

optimization for robust structural system identification in noise-contaminated environments. To account for the random 

nature of the algorithms, all results reported correspond to the average of 10 independent runs per identification scenario 

to ensure reliable performance evaluation. 

Keywords: Metaheuristic Algorithms; Genetic Algorithm; Differential Evolution; Particle Swarm Optimization; Structural Parameter 

Identification; Shear Buildings; Butterworth Filter; Lateral Interstory Stiffness; Damping Identification. 

 

1. Introduction 

The accurate identification of the mechanical properties of structures such as buildings, bridges, and transmission 

towers is essential for evaluating their dynamic behavior under seismic loads, wind, and other loads. In particular, 

stiffness and damping are important parameters for assessing the safety and durability of these structures. Traditionally, 

the determination of these properties has been carried out using classical identification methods. These techniques, 

widely used in research, often rely on simplified assumptions about structural behavior and may require significant prior 

knowledge of the system or structure [1–8]. Moreover, their applicability can be limited in complex optimization 

problems, where the objective functions are nonlinear or multiple local minima exist. 

To overcome some of the limitations of classical methods, a promising alternative approach has emerged in recent 

years: system identification using metaheuristic algorithms. These methods, inspired by natural, social, or 

physicochemical processes, explore multiple potential solutions, making them particularly useful when information 
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about the system is limited or uncertain, a common situation in the analysis of complex structures. Significant advantages 

of metaheuristic algorithms include: (1) a high probability of finding optimal solutions; (2) increased robustness against 

incomplete or noisy data; (3) adaptability to complex problems, i.e., the ability to handle multidimensional problems 

with a large number of parameters, making them more applicable to real-world environments; and (4) efficient handling 

of large search spaces. In summary, metaheuristic algorithms provide a promising approach, offering robustness to 

imprecise data and flexibility in tackling complex problems, making them a valuable tool for identifying structural 

parameters. The field continues to evolve rapidly, with recent developments proposing hybrid algorithms tailored for 

structural optimization in diverse civil engineering problems [9], reinforcing their adaptability and growing relevance 

across structural modeling tasks. 

Recent studies have shown the potential of metaheuristic approaches in structural identification tasks [10–27], 

particularly under conditions where traditional techniques struggle due to model uncertainty or data limitations. 

Although individual studies exist, few have systematically benchmarked multiple metaheuristic methods under realistic 

noisy conditions. In addition, despite the practical relevance of signal filtering in experimental environments, its role in 

improving or altering the accuracy of metaheuristic-based identification has received limited attention. This study 

addresses these gaps through a controlled simulation framework that incorporates filtering strategies and seeks to 

benchmark three well-known metaheuristic methods. 

This study evaluates three metaheuristic algorithms widely used in science and engineering: Genetic Algorithm 

(GA), Differential Evolution (DE), and Particle Swarm Optimization (PSO). The algorithms are used for the 

identification of key structural parameters, such as lateral interstory stiffness and modal damping, corresponding to the 

first two modes of vibration, in two-dimensional shear buildings. The research focuses on the ability of these methods 

to determine these parameters from the dynamic response of the system, considering the impact of signal filtering and 

the presence of noise in the measurements, which represent a common scenario in real applications. 

To carry out this analysis, a methodology involving the acquisition of the dynamic response of structures in the time 

domain is used. Although the applied excitation is assumed to be unknown, it is considered capable of exciting the 

vibration modes of the system. In this study, an impulsive excitation is employed, applied to the roof of each building 

model. The dynamic lateral response is measured at each floor. To evaluate the precision of the metaheuristic algorithms, 

the response signals are contaminated with white noise at different levels (1%, 2%, ..., 5% of the RMS value). Three 

scenarios are analyzed to evaluate the performance of the algorithms: (1) in the absence of noise; (2) without filtering 

the contaminated response signals; and (3) filtering the contaminated response signals using a sixth-order Butterworth 

filter. An interesting aspect of this study is the evaluation of the performance of the metaheuristic algorithms when 

filtering is applied. In experimental settings, measurements are often contaminated by various types of noise. Filtering, 

depending on the type of filter applied, does not completely eliminate the original disturbances, but attenuates the 

unwanted components, particularly those of high frequency that are irrelevant to the structural response. This filtering 

process simulates a context in which initially “contaminated” signals are processed to highlight useful information. In 

this manner, the identification process is evaluated under conditions that more closely resemble real-world practices, 

where the information obtained from sensors must be processed to extract relevant parameters. This ensures that the 

employed methods are robust in the presence of noise and interference. 

This study aims to evaluate the effectiveness of metaheuristic algorithms for identifying structural parameters in 

shear buildings and to explore the use of filtering techniques under noisy measurement conditions. Although 

comparisons with classical identification techniques are not included, this study focuses on evaluating the robustness 

and relative performance of metaheuristics under realistic noise and filtering conditions. 

2. Literature Review 

This literature review analyzes the state of the art in the application of metaheuristic algorithms for the identification 

of structural parameters in two-dimensional shear buildings, including approaches related to damage detection. 

Wang et al. [10] explored the application of a GA to identify dynamic parameters in structural systems subjected to 

seismic activity. Parameters were optimized by minimizing the error between recorded and predicted responses. The 

methodology was validated using simulated data in single- and multi-degree-of-freedom systems (SDOF and MDOF), 

considering both linear and nonlinear dynamics. The tests included noise levels up to 30%, demonstrating that the GA 

accurately identifies the system parameters even with noisy data, highlighting its robustness and precision in all 

evaluated scenarios. 

Casciati [11] formulated an objective function to minimize the differences between the measured and theoretical 

modal characteristics of a structure. The stiffness of each finite element was used as an optimization variable, and a DE 

algorithm generated populations to improve the fit with the measured responses until a specified tolerance was reached. 

Modal parameters were recalculated at each iteration using updated stiffness matrices. As a numerical example, a 

cantilever beam was discretized into 16 quadrilateral four-node finite elements under plane stress conditions, analyzing 

six damage scenarios. The comparison between the identified and initial stiffness matrices enabled effective damage 

detection and localization. 
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Xue et al. [12] examined the use of PSO to estimate parameters in linear and nonlinear structural systems. The 

effectiveness of PSO was validated by simulations on a nonlinear 2-DOF system with hysteresis and a 10-DOF shear 

building model. The PSO demonstrated good performance even with partial measurements and noisy data. For the 2-

DOF system, errors ranged from 0.4% to 7.8% with noise. The PSO required fewer evaluations than GAs to converge. 

The analysis was conducted in the time domain with sampling every 0.01 seconds over 10 seconds. Begambre & Laier 

[13] introduced the Particle Swarm Optimization algorithm combined with the Simplex method (PSOS) for structural 

damage detection through frequency domain analysis. The PSOS integrates PSO with the Simplex method, thereby 

enhancing accuracy and reliability over traditional PSO. In their study, they evaluated three models: a 10-bar truss, a 

free-free beam with cracks, and a Duffing oscillator. The results demonstrated that PSOS accurately identifies both the 

location and extent of the damage, even with noisy or incomplete data, surpassing Simulated Annealing in both precision 

and efficiency. 

Xiang & Liang [14] proposed a two-step method to detect and assess damage in thin plates. First, damage locations 

were identified by applying the 2D wavelet transform to the modal shape, where singularities revealed the affected areas. 

Second, the severity of the damage was assessed using PSO, exploring a database that related natural frequencies to 

damage levels. Simulations on a plate with multiple damages demonstrated the method’s effectiveness. The authors 

recommend obtaining precise mode shapes and updating numerical models to improve accuracy in real structures. Li et 

al. [15] employed the Symbolization-based Differential Evolution Strategy (SDES) to identify structural parameters in 

two-dimensional shear building models. SDES combines symbolic analysis of time series and DE, converting numerical 

values into symbols to facilitate the analysis. Simulations showed that SDES outperformed PSO, providing better 

estimates when data were contaminated by noise. The approach uses the Euclidean distance of state frequency vectors 

of the symbols transformed from raw acceleration data and the DE method. SDES is reliable and effective for identifying 

structural systems in free and forced vibrations. 

Ravanfar et al. [16] presented a method to detect damage in beams using a GA without the need for reference data. 

The method relies on analyzing vibration signals and uses the Relative Wavelet Packet Entropy (RWPE) to determine 

the location and extent of the damage. The GA optimized the selection of the mother wavelet function and the 

decomposition level, achieving high precision. Tests on a simply supported beam modeled with 15 finite elements 

demonstrated its effectiveness. The main advantage is that it does not require data from an undamaged structure, making 

it more practical. Ghannadi & Kourehli [17] proposed a new damage identification method using Moth-Flame 

Optimization (MFO), inspired by the navigation of moths. A vibration-based approach was introduced to detect damage 

in trusses and shear buildings, combining MFO with a new objective function that considers natural frequency and the 

Modal Assurance Criterion (MAC) values. This hybrid approach allowed for effective damage assessment. The finite 

element model for the experimental and numerical examples was created using MATLAB to extract the structure’s 

modal properties. The mode shapes and natural frequencies of the analyzed models were contaminated with noise levels 

of 1% and 10%, respectively. The results showed that the method is efficient in damage identification. 

Ferreira-Gomes & Alves-de-Almeida [18] presented a metaheuristic optimization approach based on the SunFlower 

Optimization (SFO) algorithm to identify damage in plates. The identification was performed by minimizing an 

objective function based on modal parameters of composite laminated structures (CFRP). To evaluate noise sensitivity, 

noise levels of 1%, 5%, and 10% were added to the responses. The process consisted of two steps. First, the problem 

was modeled using the Finite Element Method (FEM). Then, an improved algorithm called Sunflower Optimization 

(SFO) was applied to minimize an objective function based on modal parameters. Two numerical examples 

demonstrated that the method successfully identifies the location and severity of small damages. 

Miao et al. [19] presented a method to identify beam damage using wavelet transform and Neural Networks (NNs). 

The method integrates a BP network with a GA to improve speed and accuracy. The authors analyzed modal rotation 

parameters using the Continuous Wavelet Transform (CWT) with the Mexican hat wavelet. Damage location was 

determined by peaks in wavelet coefficients, which were used as inputs in the BP network optimized by the GA to 

estimate damage severity. The results showed the method’s effectiveness for both single and multiple damages, 

achieving an average error of 0.18% in the latter case. This method is precise and applicable to various structures, 

particularly in monitoring railway infrastructure. Guo et al. [20] explored a method that combines Wavelet transform 

and an Improved Particle Swarm Algorithm (WIPSO) to detect and quantify micro-damages in a beam and a single-

story single-bay frame. The method identifies damage locations by detecting abrupt changes (singularities) in wavelet 

coefficients. Subsequently, WIPSO is employed to calculate damage severity by optimizing an objective function based 

on experimental data and numerical simulations. The effectiveness of WIPSO was evaluated under different scenarios, 

and its performance was compared with PSO, GA, and the Bat Algorithm (BA). WIPSO showed high precision in both 

damage localization and quantification, even in the presence of noise. 

Minh et al. [21] formulated a variant of PSO, called Enhancing Particle Swarm Optimization Algorithm (EHVPSO), 

to locate and assess damage in a 44.05 m transmission tower modeled with approximately 900 finite elements. Four 

simulated damage scenarios were analyzed, involving stiffness reductions between 15% and 60%, affecting between 3 

and 6 elements. Noise levels of 3%, 6%, and 12% were introduced to evaluate the algorithm’s robustness. To describe 
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changes in frequencies and modal shapes, the Multiple Damage Location Assurance Criteria (MDLAC) and the Modal 

Assurance Criterion (MAC) were incorporated into the proposed objective function. The results showed that the 

algorithm can detect damage with high precision and reliability. Minh et al. [22] used a bio-inspired metaheuristic 

optimization algorithm called Termite Life Cycle Optimizer (TLCO) to estimate the location and severity of damage in 

high-rise concrete structures. TLCO simulates the behavior and life cycle of termites to address complex optimization 

problems. The authors formulated an inverse problem to estimate damage, minimizing the difference between the 

measured values and those predicted by the updated finite element model. 

Zar et al. [23] present a 2024 review on vibration-based Structural Damage Detection (SDD) and its integration with 

Machine Learning (ML) and Deep Learning (DL) methods. The authors emphasize persistent challenges such as 

structural nonlinearities, environmental noise, and the ill-posed nature of inverse problems, issues also relevant to 

optimization-based identification. The review underscores the need for robust, noise-resilient strategies and highlights 

hybrid approaches and unsupervised learning as promising directions for continuous monitoring and early damage 

detection. Li et al. [24] propose an innovative Structural Damage Identification (SDI) method integrating a weighted 

average-based surrogate model combining three popular approaches with an improved bio-inspired optimizer, the 

Improved Termite Life Cycle Optimizer (ITLCO). The integrated surrogate model enhances predictive accuracy and 

generalization, while ITLCO incorporates a novel autonomous movement strategy that strengthens robustness and the 

ability to escape local optima, addressing challenges typical in nonlinear, multimodal structural optimization. Applied 

to a laboratory-scale dam model with simulated damage, the method achieves over a computational efficiency 

improvement of over 100 times compared to traditional FE model updating techniques without compromising accuracy. 

The study reveals that individual surrogate model accuracy does not directly correlate with SDI effectiveness, 

underscoring the importance of model integration and algorithm design. Recognized limitations include the 

computational complexity of probabilistic finite element analysis and reliance on limited modal parameters for precise 

damage localization. Overall, this work significantly advances metaheuristic optimization in structural dynamics by 

providing an efficient, accurate, and scalable framework for damage detection in large-scale structures. 

Hernández-González & García-Macías [25] proposed a supervised damage identification strategy based on 

populations of competing FE models, each parameterized to represent a specific failure mechanism. To enable 

computational efficiency suitable for continuous Structural Health Monitoring (SHM), Kriging-based surrogate models 

were used to approximate the modal properties (natural frequencies and mode shapes) of each FE model. The inverse 

problem was solved using PSO, and model selection was performed via the Bayesian Information Criterion (BIC), 

balancing prediction accuracy and model complexity. The approach was validated on a 25-bar planar truss with synthetic 

noisy data and on the Muhammad Tower, located in Granada, Spain, using real vibration measurements combined with 

damage scenarios generated via nonlinear analyses. Results confirmed that multi-model formulations with BIC enhance 

damage localization and the identification of activated failure mechanisms under limited modal observability. 

Alemu et al. [26] proposed a data-driven damage detection method using 680 vibration signals recorded from a three-

story steel frame. The study introduces the Most Damage-Sensitive Segment (MDSS), a novel spectral feature extraction 

technique that enhances classification accuracy under environmental variability. Their method achieves over 80% 

accuracy in detecting, localizing, and grading damage, emphasizing the importance of robust preprocessing in high-

variability field conditions. 

Farhadi et al. [27] develop a two-stage framework for damage identification in truss structures using modal data. 

The first stage employs the Residual Force Vector (RFV) and Total Element Discrepancy Index (TEDI) for damage 

localization; the second uses PSO, DE, and ECBO for severity quantification via model updating. To reduce 

computational cost, a PSO-trained GMDH surrogate model is employed, retaining high accuracy even with incomplete 

modal data, and demonstrating the viability of metaheuristic optimization in large-scale structural health monitoring. 

Numerical experiments on three large-scale benchmarks, a 47-bar power-line tower, a 200-bar double-layer grid, and a 

200-bar planar truss, demonstrate that the framework locates and quantifies damage accurately, and that the surrogate 

retains virtually the same precision even with only twelve sensors, confirming robustness under incomplete modal 

information. 

The precise identification of lateral interstory stiffnesses and damping in two-dimensional shear building models is 

fundamental for structural analysis and design. Although metaheuristic algorithms such as GA, PSO, and DE have 

demonstrated effectiveness in structural parameter identification and damage detection, there is limited research in the 

literature regarding the impact of signal filtering on the accuracy of these algorithms. Filtering is a common practice to 

reduce noise in measurements, but it can alter the characteristics of the signals and affect the identification of critical 

parameters. This work addresses the effect of signal filtering on metaheuristic algorithms for the identification of 

stiffnesses and damping in two-dimensional shear buildings. Understanding this impact is important because it allows 

for improving the robustness and reliability of these algorithms in real applications. The expected findings may lead to 

more precise methods for structural health monitoring and early damage detection, contributing to the advancement of 

the state of the art in structural engineering and improving safety and efficiency in infrastructure management. 
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3. Problem Formulation 

The problem formulation is detailed in the following subsections, which describe the approach for identifying key 

parameters of two-dimensional shear buildings. The methodology followed in the present work is briefly summarized 

in Figure 1, which illustrates the main steps of the analysis. 

 

Figure 1. Flowchart of the proposed methodology 

3.1. Problem Definition 

This study aims to identify the lateral interstory stiffnesses (𝒌 = [𝑘1, 𝑘2, ⋯ , 𝑘𝑁]𝑇) and the modal damping ratio (𝜁) 

of two-dimensional shear buildings using a Rayleigh-type damping model. The system is modeled as a Multi-Degree-

Of-Freedom (MDOF) system, minimizing the discrepancy between the simulated and measured responses under 

impulsive excitation. Three shear buildings with 2, 3, and 5 stories are analyzed. To identify the values of 𝒌 and 𝜁, time-

measured displacements are used. It is assumed that the mass matrix (𝑴) and the first two translational modal 

frequencies ( 𝜔1  and 𝜔2 ) are known. However, due to inherent uncertainties in the experimental or numerical 

determination of modal parameters, a ±7% variation is considered in the estimation of 𝜔1 and 𝜔2, as achieving absolute 

accuracy in the identification of the building’s fundamental frequencies is practically unachievable. The impulsive 

excitation is applied at the top level of the building, assuming that it excites the translational modes necessary for the 

accurate identification of the parameters. 

3.2. Equation of Motion 

The structural system is modeled using the following equation of motion for a MDOF system: 

𝑴𝒖̈(𝑡) + 𝑪(𝜁)𝒖̇(𝑡) + 𝑲(𝑘𝑖)𝒖(𝑡) = 𝒇(𝑡)  (1) 

Such that: 

𝑴 =

[
 
 
 
 
𝑚1 0 0 ⋯ 0
0 𝑚2 0 ⋯ 0
0 0 𝑚3 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝑚𝑁]

 
 
 
 

; 𝑲 =

[
 
 
 
 
𝑘1 + 𝑘2 −𝑘2 0 ⋯ 0

−𝑘2 𝑘2 + 𝑘3 −𝑘3 ⋯ 0
0 −𝑘3 𝑘3 + 𝑘4 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝑘𝑁−1 + 𝑘𝑁]

 
 
 
 

; 𝒇(𝑡) =

[
 
 
 
 

0
0
0
⋮

𝑓𝑁(𝑡)]
 
 
 
 

 (2) 

where 𝑴 is the diagonal mass matrix, which is known and constant for each level of the building; 𝑪(𝜁) is the Rayleigh-

type proportional damping matrix, which depends on the modal damping ratio ζ, and is expressed as 𝑪(𝜁) = 𝛼𝑴 +

𝛽𝑲(𝑘𝑖), where 𝛼 and 𝛽 are damping coefficients defined as 𝛼 = 𝜁
2𝜔1𝜔2

𝜔1+𝜔2
 and 𝛽 = 𝜁

2

𝜔1+𝜔2
. Here, 𝜔1  and 𝜔2  are the 

first and second modal frequencies of vibration of the system, respectively; 𝑲(𝑘𝑖) is the stiffness matrix that depends 

on the individual story stiffness values 𝑘1, 𝑘2, ⋯ , 𝑘𝑁; 𝒇(𝑡) is the vector of external forces applied to the system, in this 

case, an impulsive excitation applied at the top level; 𝒖(𝑡), 𝒖̇(𝑡), and 𝒖̈(𝑡) correspond to the displacement, velocity, and 

acceleration vectors of each of the building levels, respectively. 

3.3. Objective Function 

The objective is to identify the lateral interstory stiffness values (𝑘1, 𝑘2, ⋯ , 𝑘𝑁), where 𝑁 is the number of building 

stories, and the modal damping ratio (𝜁), which, when used in the simulation of the system’s response, accurately 

reproduces the measured responses. This formulation allows for a direct comparison between observed (measured) and 

simulated dynamic responses, enabling parameter optimization. 
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The optimization of the structural parameter vector 𝒑̂ = [𝜁 𝑘1 𝑘2 ⋯ 𝑘𝑁]𝑇  is carried out using a metaheuristic 

algorithm. This vector is extended to facilitate the optimization process as 𝒑 = [𝒑0 𝒑1 𝒑2]𝑇  such that 𝒑0 = 𝛼 ,                

𝒑1 = 𝛽[𝑘1 𝑘2 ⋯ 𝑘𝑁]𝑇, and 𝒑2 = [𝑘1 𝑘2 ⋯ 𝑘𝑁]𝑇 . With this, the equation of motion (1) is rewritten as: 

(𝑨0 𝑨1 𝑨2) {

𝒑0

𝒑1

𝒑2

} = 𝒇̂  (3) 

such that 𝒇̂ = 𝒇 − 𝑴𝒖̈, and 𝑨0, 𝑨1, and 𝑨2 are functions of time defined from 𝑡 = 𝑡0 to 𝑡 = 𝑡𝑚, as follows: 

𝑨0 = [𝑚1𝑢̇1 𝑚2𝑢̇2 ⋯ 𝑚𝑁𝑢̇𝑁]𝑇  (4) 

𝑨1 =

[
 
 
 
 
𝑢̇1 𝑢̇1 − 𝑢̇2 0 ⋯ 0
0 𝑢̇2 − 𝑢̇1 𝑢̇2 − 𝑢̇3 ⋯ 0
0 0 𝑢̇3 − 𝑢̇2 ⋯ 0
⋮ ⋮ ⋮ ⋱ 𝑢̇𝑁−1 − 𝑢̇𝑁

0 0 0 ⋯ 𝑢̇𝑁 − 𝑢̇𝑁−1]
 
 
 
 

  (5) 

𝑨2 =

[
 
 
 
 
𝑢1 𝑢1 − 𝑢2 0 ⋯ 0
0 𝑢2 − 𝑢1 𝑢2 − 𝑢3 ⋯ 0
0 0 𝑢3 − 𝑢2 ⋯ 0
⋮ ⋮ ⋮ ⋱ 𝑢𝑁−1 − 𝑢𝑁

0 0 0 ⋯ 𝑢𝑁 − 𝑢𝑁−1]
 
 
 
 

  (6) 

It is easy to see that 𝑨0𝒑0  represents 𝑴𝒖̇(𝑡) , 𝑨1𝒑1  represents 𝑪(𝜁)𝒖̇(𝑡) , and 𝑨2𝒑2  represents 𝑲(𝑘𝑖)𝒖(𝑡) . To 

minimize Equation 3, we define a cost function (or objective function) that measures the squared error between the left-

hand side of the equation and 𝒇̂ for each time 𝑡. Thus, the cost function 𝐽 is defined by: 

𝐽(𝒑̂) = ∑ ‖[𝑨0(𝑡) 𝑨1(𝑡) 𝑨2(𝑡)]𝒑̂ − 𝒇̂(𝑡)‖
2𝑡𝑚

𝑡=𝑡0
  (7) 

where ‖⋅‖ represents the 𝐿2 norm (or Euclidean norm), and the sum extends from 𝑡 = 𝑡1 to 𝑡 = 𝑡𝑚. 

By minimizing the function 𝐽(𝒑̂) with respect to the vector of structural parameters 𝒑̂, the discrepancy between the 

simulated dynamic responses and the measured responses is minimized. This minimization allows the identification of 

key parameters, such as lateral interstory stiffnesses and modal damping ratio. 

To evaluate the accuracy of the metaheuristic algorithms in the estimation of the structural parameters, the Mean 

Absolute Percentage Error (MAPE) is used. This metric measures the average percentage error between the actual values 

of the parameters and the values estimated by each metaheuristic algorithm. The MAPE is defined as: 

MAPE =
1

𝑁𝑝
∑ |

𝑦𝑖−𝑦̂𝑖

𝑦𝑖
|

𝑁𝑝

𝑖=1
× 100  (8) 

where 𝑦𝑖 represents the actual value of the parameter, 𝑦̂𝑖 is the value estimated by the metaheuristic algorithm, and 𝑁𝑝 

is the total number of parameters to be identified. A lower MAPE value indicates a higher accuracy in the estimation of 

the parameters. 

4. Description of Metaheuristic Algorithms 

The identification of structural parameters in two-dimensional shear building models often involves solving 

optimization problems with large search spaces and data that may be incomplete or noisy. To address these challenges, 

this study focuses on the evaluation of three widely used metaheuristic algorithms: the Genetic Algorithm (GA), 

Differential Evolution (DE) and Particle Swarm Optimization (PSO). The following sections briefly describe these 

algorithms. 

4.1. Genetic Algorithm (GA) 

GA is probably the most widely known of the evolutionary algorithms (EAs). In their original formulation, GAs 

used bit strings. However, GAs are not constrained to bit strings. Indeed, Davis [28], Janikow & Michalewicz [29], as 

well as Wright [30] were the pioneers who developed GAs with real parameters, which is the formulation used in this 

paper. A Genetic Algorithm (GA) consist of six fundamental steps. 

The first step, Initialization, consists of randomly generating a population, where each individual represents a 

possible solution to the optimization problem. Each individual (chromosome) is a vector of real values, and each element 

of the vector corresponds to a variable or parameter to be optimized (gene). The initial values for the population are 

calculated as follows: 
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𝑥𝑖,𝑗
1 = 𝑥𝑗

𝑚𝑖𝑛 + 𝑟𝑖,𝑗(𝑥𝑗
𝑚𝑎𝑥 − 𝑥𝑗

𝑚𝑖𝑛)  (9) 

For 𝑖 = 1⋯𝑁, and 𝑗 = 1⋯ 𝑛, where 𝑁 is the number of individuals (chromosomes); n is the number of parameters 

to identify (genes); 𝑟𝑖,𝑗 is a uniformly distributed random number 𝑈[0,1] generated independently for each individual 

and each variable; 𝑥𝑖,𝑗
1  represents the initial value of the j-th variable of the i-th individual of the population, the 

superscript “1” indicates the first (initial) generation; 𝑥𝑗
𝑚𝑖𝑛 is the lower limit of the valid range for the j-th variable; 𝑥𝑗

𝑚𝑎𝑥 

is the upper limit of the valid range for the j-th variable. During this stage, the algorithm parameters are set: population 

size, crossover rate, mutation rate, and stopping criterion. 

In the second stage, Evaluation, the fitness of each individual in the population is evaluated using the objective 

function of the problem. 

In the third phase, Parent Selection, individuals are selected from the population to participate in breeding, using an 

appropriate selection method. A wide variety of parent selection methods exist, such as Tournament Selection; Rank 

Selection; Uniform Parent Selection; Roulette Wheel Selection, and Steady State Selection. In this study, tournament 

selection is used due to its simplicity and the fact that selection pressure is easy to control by varying the tournament 

size [31]. 

In the fourth stage, Crossover (or Recombination), new solutions (offspring) are generated by randomly combining 

the genetic information of the parents. It is analogous to the crossover process that occurs during sexual reproduction. 

The most common crossover operators for continuous variables are: Arithmetic Crossover; Intermediate Crossover; 

Exponential Crossover; Blend Alpha Crossover; Simulated Binary Crossover (SBX); Blend Crossover (BLX-α), among 

others. This operator requires a high crossover probability (𝑝𝑐 ≥ 0.90). In this case, a crossover probability of 𝑝𝑐 = 0.90 

is used, in conjunction with the SBX crossover method. In SBX, two parent solutions 𝑥𝑖,𝑗
(1,𝑘̄)

 and 𝑥𝑘,𝑗
(2,𝑘̄)

 are selected, 

where 𝑖 and 𝑘 denote the indices of the parent individuals such that  𝑖 ≠ 𝑘 and 𝑗 refers to the parameter index. These 

parents generate two new offspring solutions 𝑥𝑖,𝑗
(1,𝑘̄+1)

 and 𝑥𝑘,𝑗
(2,𝑘̄+1)

 in generation 𝑘̄ + 1, where 𝑘̄ indicates the current 

iteration number. The offspring are computed as: 

𝑥𝑖,𝑗
(1,𝑘̄+1)

= 0.5 [(1 + 𝛽𝑞)𝑥𝑖,𝑗
(1,𝑘̄)

+ (1 − 𝛽𝑞)𝑥𝑘,𝑗
(2,𝑘̄)

]  
(10) 

𝑥𝑘,𝑗
(2,𝑘̄+1)

= 0.5 [(1 − 𝛽𝑞)𝑥𝑖,𝑗
(1,𝑘̄)

+ (1 + 𝛽𝑞)𝑥𝑘,𝑗
(2,𝑘̄)

]  

where 𝛽𝑞 is the spread factor that controls the distribution of the offspring with respect to the parents. Values of 𝛽𝑞 > 1 

generate offspring outside the range defined by the parents, while 𝛽𝑞 < 1 results in offspring closer to each other. The 

value of 𝛽𝑞 is computed as shown below: 

𝛽𝑞 = {
(2𝑟̄𝑖,𝑘,𝑗)

1

𝜂𝑐+1  if  𝑟̄𝑖,𝑘,𝑗 ≤ 0.50

(
1

2(1−𝑟̄𝑖,𝑘,𝑗)
)

1

𝜂𝑐+1
otherwise

  (11) 

In these equations, 𝑟̄𝑖,𝑘,𝑗  is a uniformly distributed random variable 𝑈[0,1] ; 𝜂𝑐  is a distribution parameter that 

controls the distribution of the children around the parents. Here 𝜂𝑐 = 2 is used, which is a value suggested by Deb & 

Agrawal [32] for single-objective optimization. 

Mutation: In the fifth stage of GA, genetic variability is introduced into the population by randomly modifying one 

or more genes (real values) of the newly created individuals. This process avoids premature convergence to suboptimal 

solutions and ensures a complete exploration of the search space, including regions that could be omitted by the 

crossover operator. The most commonly utilized mutation schemes include the following: Random Mutation, Uniform 

Mutation, Non-Uniform mutation, Gaussian Mutation, and Polynomial Mutation. For this operator to be executed, a 

relatively low probability is used, such that 𝑝𝑚 =
1

𝑛
 where 𝑛 is the number of variables to be optimized [33]. In this 

paper, the polynomial mutation scheme proposed by Deb & Agrawal [34] is used, which has been successfully applied 

in the resolution of single-objective and multi-objective optimization problems [35]. In polynomial mutation, a 

polynomial probability distribution is employed to perturb a solution in the vicinity of a parent, ensuring that the 

mutation does not result in any values outside the specified interval [𝑥𝑗
𝑚𝑖𝑛 , 𝑥𝑗

𝑚𝑎𝑥], for a parent solution [36]. The result 

of applying this operator is given by: 

𝑦𝑖,𝑗
(1,𝑘̄+1)

= 𝑥𝑖,𝑗
(1,𝑘̄+1)

+ ((𝑥𝑗
𝑚𝑎𝑥 − 𝑥𝑗

𝑚𝑖𝑛)𝛿̄𝑚)  (12) 

Such that: 

𝛿̄𝑚 = {
[(2𝑟𝑖)

1

𝑛𝑚+1] − 1  if  𝑟𝑖 < 0.50

1 − (2 − 2𝑟𝑖)
1

𝑛𝑚+1 if  𝑟𝑖 ≥ 0.50

  (13) 
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where 𝑦𝑖,𝑗
(1,𝑘̄+1)

 is the mutation result at iteration 𝑘̄ + 1; 𝛿̄𝑚 is a parameter calculated from the polynomial probability 

distribution 𝑃(𝛿) = 0.5(𝑛𝑚 + 1)(1 − |𝛿|)𝜂𝑚 ; 𝑟𝑖  is a uniformly distributed random variable 𝑈[0,1] , and 𝜂𝑚  is the 

polynomial mutation rate, which is set to 𝜂𝑚 = 20. 

Replacement: The sixth stage consists of selecting the individuals that will form the new population in each 

generation of a genetic algorithm. Although the average fitness of the genetic algorithm population usually increases 

with the number of generations (iterations), it is always possible that at some point the best individuals of each generation 

may be lost. This is due to the fact that selection, crossover, and mutation operators modify the individuals in the process 

of creating the subsequent generation [37]. This stage is crucial for the success of the algorithm, since it influences the 

diversity of the population, the speed of convergence, and the quality of the final solution. The most commonly used 

replacement schemes in real parameter GAs include: Generational Replacement; Steady-State Replacement; Ranked 

Replacement; Elitism, and the Survival Strategy (𝜇 + 𝜆), among others. In this case, the Survival Strategy (𝜇 + 𝜆) is 

used. In this strategy, the populations of parents (𝜇) and offspring (𝜆) are combined, and the best N individuals are 

selected. 

The algorithm proceeds iteratively until either a satisfactory solution is found or the maximum number of iterations 

is reached. 

4.2. Differential Evolution (DE) 

DE is a population-based optimization algorithm, which means that it works with a set of candidate solutions (the 

population) that evolves through iterations. This algorithm consists of four fundamental steps: Initialization, Differential 

Mutation, Recombination, and Selection. The first step is performed at the beginning of the search execution and consists 

of generating a first generation with an initial population of 𝑁 random individuals using the same expression as in the 

GAs (Equation 9), with 𝑖 = 1⋯𝑁, 𝑗 = 1⋯𝑛, where 𝑁 is the number of individuals and n is the number of parameters 

to identify. 

The second stage, Differential Mutation, consists of the creation of a new candidate solution 𝜼𝑖
𝑘̄, also called mutated 

individual, corresponding to the 𝑘̄-th iteration. This new solution is formed from the combination of three randomly 

chosen individuals, called target vectors, 𝒙𝑟1
𝑘̄ , 𝒙𝑟2

𝑘̄ , 𝒙𝑟3
𝑘̄  from the current population, such that: 

𝜼𝑖
𝑘̄ = 𝒙𝑟1

𝑘̄ + 𝐹 ⋅ (𝒙𝑟2
𝑘̄ − 𝒙𝑟3

𝑘̄ )  (14) 

with i, 𝑟1, 𝑟2, and 𝑟3 all distinct, and F is a scaling factor that controls the mutation intensity. Wang et al. [38] and Ho-

Huu et al. [39] consider that an acceptable value of F should be between [0.4, 1.0]. In this work, we use 𝐹 = 0.50, a 

value suggested by Das & Suganthan [40]. In the third stage, Recombination (Crossover), a new test individual 𝑡𝑖,𝑗
𝑘̄  is 

generated by combining the mutated individual 𝜂𝑖,𝑗
𝑘̄ with a parent individual 𝑥𝑖,𝑗

𝑘̄  from the current population, such that: 

𝑡𝑖,𝑗
𝑘̄ = {

𝜂𝑖,𝑗
𝑘̄ 𝑟𝑖,𝑗 ≤ 𝑝𝑐  or 𝑗 = 𝑗rand

𝑥𝑖,𝑗
𝑘̄ Otherwise

  (15) 

where 𝑟𝑖,𝑗 ∼ 𝑈[0,1], 𝑗rand is a randomly chosen index in the set {1,2. . . , 𝑛}, and 𝑝𝑐 is the crossover probability. Storn & 

Price [41] suggest 0.10 ≤ 𝑝𝑐 ≤ 0.90; here, we use 𝑝𝑐 = 0.5. 

Finally, in the Selection stage, the fitness of the test individual 𝒕𝑖
𝑘̄ is compared with the fitness of the parent individual 

𝒙𝑖
𝑘̄. The individual with the highest fitness—i.e., the best solution—𝒙𝑖

𝑘̄+1, is selected to be part of the new population: 

𝒙𝑖
𝑘̄+1 = {

𝒕𝑖
𝑘̄ 𝑓(𝒕𝑖

𝑘̄) < 𝑓(𝒙𝑖
𝑘̄)

𝒙𝑖
𝑘̄ Otherwise

  (16) 

The algorithm proceeds iteratively until a satisfactory solution is found or the maximum number of iterations is 

reached. 

4.3. Particle Swarm Optimization (PSO) 

PSO was developed in 1995 by James Kennedy & Eberhart [42]. This stochastic algorithm, belonging to the family 

of evolutionary algorithms, has proven to be efficient and effective in a wide range of applications, including function 

optimization, system identification, process control, and machine learning problem solving [42-44]. The PSO algorithm 

uses a swarm of particles that explore the search space looking for optimal solutions. Each particle represents a possible 

solution, with a position and velocity that are updated at each iteration. This update is based on their own experience 

(local behavior) and on the shared information of the swarm (global behavior), allowing them to converge towards more 

favorable solutions. A summary of the four steps involved in this method is presented below. 
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PSO Initialization represents the first step in the process by which the fundamental basis of the search is established. 

At this stage, particles are randomly distributed in the search space, with velocities also randomly assigned, resulting in 

an initial swarm configuration. In the initial iteration (𝑘̄ = 1), a swarm 𝑿1 composed of 𝑁 particles is created, forming 

a population represented by 𝑿1 = {𝒙1
1, 𝒙2

1 , . . . , 𝒙𝑁
1 }; as defined in Equation 9. Simultaneously, an initial velocity vector 

is defined for each particle, 𝒗𝑖
𝑘̄=1. One practice is to initially set the velocity of the particles as 𝒗𝑖

𝑘̄=1 = 𝟎. However, a 

uniform distribution can also be used to generate random velocities within a specific range. In this study, the latter 

approach is adopted, allowing a more diversified initial exploration of the search space. The best individual 𝒑𝑖
1 and 

global 𝒈1 positions are initialized as: 𝒑𝑖
1 = 𝒙𝑖

1 and 𝒈1 = argmin
𝑖=1,…,𝑁

 𝑓(𝒙𝑖
1), respectively. 

The second stage of the PSO algorithm consists of updating both the velocity and the position of each particle. Thus, 

the velocity of the 𝑖 -th particle is defined as: 

𝒗𝑖
𝑘̄+1 = 𝜔𝒗𝑖

𝑘̄ + 𝑐1𝑟1(𝒑𝑖
𝑘̄ − 𝒙𝑖

𝑘̄) + 𝑐2𝑟2(𝒈
𝑘̄ − 𝒙𝑖

𝑘̄)  (17) 

The first term (𝜔𝒗𝑖
𝑘̄) of Equation 17 represents the inertial component of the motion. According to Shi & Eberhart 

[45], a suitable choice of ω should be in the range between 0.80 and 1.40. Here, a mean value is taken, i.e., ω = 1.10. 

The second term, 𝑐1𝑟1(𝒑𝑖
𝑘̄ − 𝒙𝑖

𝑘̄), represents the cognitive component, while the third term 𝑐2𝑟2(𝒈
𝑘̄ − 𝒙𝑖

𝑘̄) represents 

the influence of the overall population on the individual. 𝑐1 and 𝑐2 are the cognitive and social acceleration coefficients, 

respectively. According to Carlisle & Dozier [44], 𝑐1 + 𝑐2 ≤ 4. Here, 𝑐1 = 𝑐2 = 2.0 is assumed, which are values 

suggested by Kennedy & Eberhart [42]. 𝑟1 and 𝑟2 are uniformly distributed random numbers in the range [0,1]; 𝒙𝑖
𝑘̄ and 

𝒗𝑖
𝑘̄ are the position and velocity vectors of the 𝑖 -th particle, corresponding to the 𝑛 -th variable to be optimized, at the 

𝑘̄-th iteration. Subsequently, the position of each particle in the search space is updated using: 

𝒙𝑖
𝑘̄+1 = 𝒙𝑖

𝑘̄ + 𝒗𝑖
𝑘̄+1  (18) 

Finally, in the third stage (Evaluation of 𝒙𝑖
𝑘̄+1 ), the performance of the population in the 𝑘̄ + 1-th iteration is 

evaluated, i.e., 𝑓(𝒙𝑖
𝑘̄+1) is computed, and the best individual position of particle i, 𝒑𝑖

𝑘̄+1, and the best global position, 

𝒈𝑘̄+1, are updated using Equations 19 and 20, respectively. 

𝒑𝑖
𝑘̄+1 = {

𝒙𝑖
𝑘̄+1,if 𝑓(𝒙𝑖

𝑘̄+1) < 𝑓(𝒑𝑖
𝑘̄)

𝒑𝑖
𝑘̄ ,otherwise

  (19) 

𝒈𝑘̄+1 = {
𝒑𝑖

𝑘̄+1,  if 𝑓(𝒑𝑖
𝑘̄+1) < 𝑓(𝒈𝑘̄) for any 𝑖 ∈ {1, … , 𝑁}

𝒈𝑘̄,  otherwise
  (20) 

Iterations continue until a satisfactory solution is found or the predefined maximum number of iterations is reached. 

4.4. Configuration of Metaheuristic Algorithms 

This section details the configuration of the metaheuristic algorithms used to identify structural parameters in three 

shear-building models with 2, 3, and 5 stories. These parameters include two or more lateral interstory stiffnesses, along 

with the modal damping ratio. The configuration for each case was established based on the fact that the number of 

parameters increases with the number of stories and on the empirical behavior observed in exploratory trials. To promote 

a balance between global exploration and local exploitation of the search space, a population size of 50 individuals or 

particles was selected for the 2- and 3-story models, and 100 for the 5-story model. This decision was based on the fact 

that, as the number of stories increases, so does the number of lateral interstory stiffnesses to be identified, which 

expands the search space and increases the risk of convergence stagnation. In this context, a larger population improves 

diversity, enhances space coverage, and reduces premature convergence.  

In addition, exploratory trials were conducted to determine appropriate maximum iteration limits, taking into account 

the convergence behavior and execution variability of each algorithm. For the 3- and 5-story models, generous limits of 

10,000 and 15,000 iterations were selected to ensure robust convergence. For the 2-story model, 5,000 iterations proved 

sufficient to achieve stable and reproducible results, since only three parameters needed to be identified: two lateral 

interstory stiffnesses and the modal damping ratio, resulting in a simpler objective function topology. 

The algorithms employed two stopping criteria: the first based on a fixed number of iterations, and the second on a 

population stabilization condition defined by the relative convergence index 𝛥: 

𝛥 = |
𝑓𝑚𝑒𝑎𝑛

𝑓𝑏𝑒𝑠𝑡
− 1|  (21) 

where 𝑓𝑚𝑒𝑎𝑛  is the average value of the objective function in the population, and 𝑓𝑏𝑒𝑠𝑡  is the best value obtained. 

Convergence was considered to have been reached when 𝛥 ≤ 10−10.  
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Regarding the variable bounds, for the modal damping ratio, a range of [0.01, 0.10] was established for all the models 

analyzed. Although typical values for low-rise structures are usually between 1% and 6%, a wider interval was adopted 

to account for model uncertainties, absorb possible noise effects, and allow for flexibility during the optimization 

process. As for the lateral interstory stiffnesses, the lower and upper bounds were set at 20% and 300% of the nominal 

value for the 2- and 3-story models, and at 40% and 180% for the 5-story model, respectively. This choice was made to 

reduce parametric dispersion, avoid non-physical configurations, and promote faster convergence in the higher-

dimensional optimization problem. For the 2- and 3-story models, these issues were less relevant, making broader 

intervals acceptable without detriment to performance. To account for the stochastic nature of the algorithms, each 

identification scenario was executed 10 times independently. All reported results correspond to the average values 

computed over these independent runs. 

5. Building Models and Input Forces 

This study analyzes three shear building models with 2, 3 and 5 stories, modeled in two dimensions. Rayleigh-type 

damping is assumed for all models. The masses of each level (mi), and the first two translational vibration frequencies 

(ω1 and ω2) are considered known, acknowledging an inherent uncertainty of ±7% in their estimation due to practical 

limitations in the field measurement of vibration frequencies. In all cases analyzed, a modal damping ratio of ζ = 0.05 

is adopted for the first two modes. The structural properties (masses, stiffnesses, and vibration frequencies) of the 

analyzed models are shown in Figure 2. 

 

Figure 2. Structural properties of the studied building models 

For the models under investigation, the lateral dynamic excitation applied at the upper level is considered 

unknown. However, for simulation purposes, an impulsive excitation is used to excite all modes of vibration. The 

Fourier amplitude spectra of the excitations are shown in Figures 3 to 5. These figures also show, with gray lines, 

the modal vibration frequencies of the models. It is assumed that the system responses (displacements, velocities, 

and accelerations) are measured, and noise is then added to these signals to simulate realistic recordings. Six noise 

levels are considered: 0%, 1%, ..., 5% of the Root Mean Square (RMS) value, which represents the average intensity 

of the signal.  

   
(a) (b) (c) 

Figure 3. (a) Single-sided amplitude spectrum of the excitation; (b) displacement; and (c) acceleration histories for a noise 

level of 5% (filtered and unfiltered signals) for the 2-story model 
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(a) (b) (c) 

Figure 4. (a) Single-sided amplitude spectrum of the excitation; (b) displacement; and (c) acceleration histories for a noise 

level of 5% (filtered and unfiltered signals) for the 3-story model 

   
(a) (b) (c) 

Figure 5. (a) Single-sided amplitude spectrum of the excitation; (b) displacement; and (c) acceleration histories for a noise 

level of 5% (filtered and unfiltered signals) for the 5-story model 

An important aspect of this study is the evaluation of the metaheuristic methods’ performance both under noisy 

conditions and after applying a filtering process. Additionally, the study examines how filtering the “measured” signals 

affects the algorithms’ performance. Although displacement, velocity, and acceleration histories are typically filtered in 

practice, the algorithms’ performance is first analyzed without filtering and subsequently with filtering. A low-pass 

Butterworth filter is employed, and its transfer function is defined as follows: 

|𝐻(𝑗𝜔)| =
1

√1+(
𝜔

𝜔𝑐
)
2𝑁̄

  
(22) 

where 𝑁̄ is the filter order, ωc is the cutoff frequency, and ω is the angular frequency. In this study, a sixth-order 

Butterworth low-pass filter with a normalized cutoff frequency defined as 𝜔𝑐 = 0.25𝜔𝑚𝑎𝑥  was used. The quantity 𝜔𝑚𝑎𝑥 

corresponds to the maximum angular frequency of the excitation signal, which in this study is approximately 1745.33 

rad/s (equivalent to 278 Hz). The resulting cutoff frequency is therefore 𝜔𝑐 = 436.33 rad/s. This value was selected 

based on preliminary analyses to attenuate high-frequency noise without distorting the dominant low-frequency 

components.  

A sixth-order configuration was selected to ensure a steeper roll-off beyond the cutoff, enabling effective suppression 

of high-frequency components without compromising the fidelity of the low-frequency signal content. While lower-

order filters offer computational advantages, they exhibit more gradual attenuation and are therefore less effective at 

isolating the response from residual noise. The chosen order represents a balanced trade-off between frequency 

selectivity and signal fidelity. Alternative filters such as Chebyshev or elliptic designs were not considered due to their 

non-monotonic magnitude response in the passband or stopband, which may introduce undesirable amplitude distortions 

that alter modal characteristics relevant to structural identification. 

Figure 6 illustrates the frequency responses of second-, fourth-, and sixth-order Butterworth filters, with vertical 

lines indicating the minimum and maximum frequencies of the studied models. This figure demonstrates how each filter 

attenuates specific frequency ranges, highlighting their effectiveness in reducing high-frequency noise. 
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Figure 6. Frequency responses of Butterworth filters (2nd-, 4th-, and 6th-order) 

The Butterworth filter was selected due to its flat frequency response in the passband, which preserves low-frequency 

modal content with minimal amplitude distortion. Alternative filters such as Chebyshev or band-pass designs could 

compromise the integrity of the signals of interest. For instance, Chebyshev filters introduce ripples in the passband, 

potentially distorting low-frequency characteristics. Band-pass filters, in turn, are unsuitable when the primary goal is 

to eliminate high-frequencies content while preserving the full low-response. It should be noted that the Butterworth 

filter does not eliminate all noise, but it selectively attenuates frequencies above the cutoff threshold, effectively reducing 

high-frequency white noise without completely removing it. 

6. Results and Discussion 

This section analyzes and discusses the performance of the three metaheuristic algorithms used to identify the lateral 

interstory stiffnesses and the modal damping ratio corresponding to the first two modes in two-dimensional shear-

building models. The analysis is conducted based on the number of stories of the building and the level of noise in the 

recorded signals, considering two scenarios: one with the unfiltered response signals, and another using a sixth-order 

Butterworth filter. Six levels of white noise (0%, 1%, 2%, 3%, 4%, and 5% of the RMS value) were added to the response 

signals to evaluate the robustness of the algorithms. 

6.1. Noise-Free Performance of the Algorithms 

According to the results shown in Tables 1 and 2, corresponding to the scenario without noise, the three algorithms 

demonstrated high accuracy in the identification of structural parameters, with small differences among them. Table 1 

presents the error in the estimation of the modal damping ratio, as well as the individual errors associated with each 

lateral interstory stiffness. Table 2, in turn, reports the same damping error (since a single value is identified per model) 

and the average of the lateral interstory stiffness errors previously reported in Table 1. The DE and PSO algorithms 

stood out as the most accurate, with an average error of 0.00% for both the modal damping ratio and the lateral interstory 

stiffnesses, and for the three building models analyzed.  

With regard to GA, the estimation of the modal damping ratio and the average error in the lateral interstory stiffnesses 

for the 2-story building showed an error of 0.00% and 0.01%, respectively, while for the 3-story building, these errors 

reached 0.76% and 0.04%, respectively. Finally, for the 5-story building, these values were equal to 0.16% and 0.12%, 

respectively. This indicates that the selected metaheuristic method has little influence on the determination of the 

structural parameters when there is no noise in the measured signals. 
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Table 1. Values obtained from the identification process and errors in the estimation of lateral interstory stiffnesses and 

damping ratio under noise-free measurement conditions 

Model 
Actual parameter 

value 

GA DE PSO 

Identified value Percentage error Identified value Percentage error Identified value Percentage error 

2-Story 

building 

 = 0.05 0.0500 0.00% 0.0500 0.00% 0.0500 0.00% 

k1 = 30700.0 kN 30704.31 0.01% 30700.00 0.00% 30700.00 0.00% 

k2 = 44300.0 kN 44300.28 0.00% 44300.00 0.00% 44300.00 0.00% 

3-Story 

building 

 = 0.05 0.0496 0.76% 0.0500 0.00% 0.0500 0.00% 

k1 = 3000.0 kN 2997.79 0.07% 3000.00 0.00% 3000.00 0.00% 

k2 = 2000.0 kN 1999.50 0.02% 2000.00 0.00% 2000.00 0.00% 

k3 = 1000.0 kN 1000.12 0.01% 1000.00 0.00% 1000.00 0.00% 

5-Story 
building 

 = 0.05 0.0501 0.16% 0.0500 0.00% 0.0500 0.00% 

k1 = 44300 kN 44290.62 0.02% 44300.00 0.00% 44300.00 0.00% 

k2 = 44300 kN 44319.23 0.04% 44300.00 0.00% 44300.00 0.00% 

k3 = 35000 kN 35032.10 0.09% 35000.00 0.00% 35000.00 0.00% 

k4 = 35000 kN 35055.93 0.16% 35000.00 0.00% 35000.00 0.00% 

k5 = 30700 kN 30785.72 0.28% 30700.00 0.00% 30700.00 0.00% 

Table 2. Average errors in the identification of parameters (lateral interstory stiffness and modal damping) under noise-free conditions 

Algorithm 
2-Story building 3-Story building 5-Story building 

ζn Lateral stiffness ζn Lateral stiffness ζn Lateral stiffness 

GA 0.00% 0.01%  0.76% 0.04% 0.16% 0.12% 

DE 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

PSO 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

6.2. Performance of Algorithms in the Presence of Noise in the Response Signals (Without Filtering) 

As expected, the introduction of noise into the calculated displacement, velocity, and acceleration histories resulted 

in a decrease in the accuracy of parameter identification. This is evidenced by analyzing the results shown in Table 3. 

The average error increased with the noise level and with the complexity of the building model analyzed. Regarding the 

GA, there is an average error of 0.253% for a noise level of 1%, and it reaches a value of 2.806% for a noise level of 

5% for the 2-story model. This error grows to 0.597% and 3.705% for 1% and 5% noise levels, respectively, for the 3-

story model. When the model complexity increases, the errors grow to 0.717% and 7.882% for noise levels of 1% and 

5%, respectively. 

Table 3. Average errors in the identification of parameters under noisy conditions (unfiltered signals) 

Algorithm 
Model 

height 

Noise level 

1.00% 2.00% 3.00% 4.00% 5.00% 

GA 

2-story 0.253 0.701 1.056 1.694 2.806 

3-story 0.597 0.705 2.012 2.546 3.705 

5-story 0.717 3.131 5.962 6.296 7.882 

DE 

2-story 0.326 0.467 0.946 1.378 1.918 

3-story 0.181 0.688 1.504 2.867 4.080 

5-story 0.887 3.357 6.439 6.354 7.060 

PSO 

2-story 0.177 0.615 1.113 1.405 2.223 

3-story 0.171 0.702 1.412 2.561 4.190 

5-story 0.861 3.256 6.440 6.475 7.217 

As can be seen in Table 3, in the case of DE, the errors obtained are similar in magnitude to those obtained with GA 

in the 2-story building; thus, for the 2-story model, the error in the estimation of the parameters is 0.326% for a noise 

level of 1% and 1.918% for a noise level of 5%. For the 3-story model, the error is 0.181% for a noise level of 1% and 

4.080% for a noise level of 5%. While in the 5-story model, these errors are 0.887% and 7.060% for 1% and 5% noise, 
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respectively. Regarding the PSO algorithm, it presents average errors for the 2-story building of 0.177% and 2.223% 

for the 1% and 5% noise levels, respectively; values that increase to 0.171%–4.190% and 0.861%–7.217% for the 3- 

and 5-story models, respectively. 

For the models with 2 and 3 stories, the choice of the metaheuristic method (GA, DE, and PSO) has a relatively 

limited influence on the accuracy of the identification of the structural parameters. In the scenario with the maximum 

noise level, errors smaller than 2.9% are observed for the 2-story model and values smaller than 4.2% for the 3-story 

model, regardless of the algorithm used. 

Regarding the 5-story model, it is observed that the average errors obtained at the maximum noise level increase 

considerably compared to the simpler models. In this case, the average errors for GA, DE, and PSO are 7.882%, 7.060%, 

and 7.217%, respectively, which represents a significant increase in relation to those of the 2- and 3-story models. 

Although the errors obtained for the 5-story model are relatively high, the maximum difference among the metaheuristic 

algorithms analyzed is less than 1%, indicating that the three algorithms exhibit similar performance in this complex 

scenario. 

Figure 7 illustrates the variation of the Mean Absolute Percentage Error (MAPE) as a function of the noise level in 

unfiltered response signals (Table 3). 

   

Figure 7. Variation of the Mean Absolute Percentage Error (MAPE) as a function of noise level in the unfiltered response signals 

6.3. Performance of Algorithms in the Presence of Noise in the Response Signals (With Filtering) 

The application of the sixth-order Butterworth filter to noise-contaminated signals has the effect of improving the 

accuracy of structural parameter identification. This improvement is particularly evident in scenarios with elevated noise 

levels and in 5-story building models. As shown in Table 4, under the most unfavorable noise level, the GA metaheuristic 

method accurately determines the damping ratios of the first two vibration modes, with an error of no greater than 1.74% 

for the 2-story model, 1.18% for the 3-story model, and 2.28% for the 5-story model. 

Table 4. Values obtained from the identification process and errors in the estimation of lateral interstory stiffnesses and 

damping ratio under noisy measurement conditions. Metaheuristic Algorithm: GA 

Model 
Actual parameter 

value 

Noise level 

1.00% 2.00% 3.00% 4.00% 5.00% 

2-Story 

building 

 = 0.05 
0.0504 0.0497 0.0498 0.0496 0.0491 

(0.77%) (0.68%) (0.34%) (0.87%) (1.74%) 

k1 = 30700.0 kN 
30711.36 30697.14 30593.25 30685.84 30461.91 

(0.04%) (0.01%) (0.35%) (0.05%) (0.78%) 

k2 = 44300.0 kN 
44265.92 44193.44 44139.52 43881.74 43814.46 

(0.08%) (0.24%) (0.36%) (0.94%) (1.10%) 

3-Story 

building 

 = 0.05 
0.0495 0.0505 0.0494 0.0502 0.0504 

(1.00%) (0.99%) (1.18%) (0.39%) (0.89%) 

k1 = 3000.0 kN 
2998.24  2989.74 2984.47 2982.42 2980.85 

(0.06%) (0.34%) (0.52%) (0.59%) (0.64%) 

k2 = 2000.0 kN 
1997.53 1990.50 1990.06 1984.60 1980.57 

(0.12%) (0.48%) (0.50%) (0.77%) (0.97%) 

k3 = 1000.0 kN 
999.12 995.90 996.30 992.38 991.57 

(0.09%) (0.41%) (0.37%) (0.76%) (0.84%) 
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5-Story 

building 

 = 0.05 
0.0504 0.0496 0.0496 0.0505 0.0511 

(0.70%) (0.85%) (0.78%) (1.07%) (2.28%) 

k1 = 44300 kN 
44206.42 44128.18 43876.60 43708.90 43480.18 

(0.21%) (0.39%) (0.96%) (1.33%) (1.85%) 

k2 = 44300 kN 
44219.16 44053.68 43836.94 43422.77 43116.38 

(0.18%) (0.56%) (1.05%) (1.98%) (2.67%) 

k3 = 35000 kN 
34859.26 34738.72 34332.58 33764.65 33207.13 

(0.40%) (0.75%) (1.91%) (3.53%) (5.12%) 

k4 = 35000 kN 
34821.58 34566.60 34071.08 33287.77 32579.29 

(0.51%) (1.24%) (2.65%) (4.89%) (6.92%) 

k5 = 30700 kN 
30494.31 30219.06 29474.19 28228.22 27196.56 

(0.67%) (1.57%) (3.99%) (8.05%) (11.41%) 

With respect to the estimation of lateral interstory stiffnesses, the GA algorithm exhibits very low errors for the 2- 
and 3-story buildings, with maximum deviations of 1.10% and 0.97%, respectively. For the 5-story model, although the 
errors increase due to the system’s complexity and higher sensitivity to noise, the maximum recorded deviation is 
11.41%, specifically in the identification of the fifth interstory stiffness. 

The performance of the DE algorithm, presented in Table 5, also confirms the benefits of filtering. For the most 
unfavorable case (5% noise), damping ratio errors are limited to 1.79% for the 2-story model, 0.47% for the 3-story 
model, and 2.15% for the 5-story model. These values are comparable to those obtained with GA, and the error trends 

are similarly stable across noise levels. 

In terms of lateral interstory stiffness identification, DE achieves high accuracy for 2- and 3-story models, with 

maximum errors of 1.19% and 1.22%, respectively. In the 5-story model, although the complexity leads to higher 
deviations, the maximum error reaches 11.39%, which is slightly lower than the maximum error observed with GA. 
Table 6 shows the results obtained with the PSO algorithm. For the 5% noise case, the damping ratio errors are 1.90% 
for the 2-story model, 0.91% for the 3-story model, and 1.89% for the 5-story model—figures that are comparable to 
those from GA and DE, confirming the robustness of the filtering technique across metaheuristics. 

Table 5. Values obtained from the identification process and errors in the estimation of lateral interstory stiffnesses and 

damping ratio under noisy measurement conditions. Metaheuristic Algorithm: DE 

Model 
Actual parameter 

value 

Noise level 

1.00% 2.00% 3.00% 4.00% 5.00% 

2-Story 

building 

 = 0.05 
0.0503 0.0502 0.0504 0.0491 0.0509 

(0.55%) (0.42%) (0.84%) (1.78%) (1.79%) 

k1 = 30700.0 kN 
30694.14 30695.10 30636.18 30554.45 30644.19 

(0.02%) (0.02%) (0.21%) (0.47%) (0.18%) 

k2 = 44300.0 kN 
44238.86 44299.06 44120.31 43807.32 43772.91 

(0.14%) (0.00%) (0.41%) (1.11%) (1.19%) 

3-Story 

building 

 = 0.05 
0.0501 0.0501 0.0502 0.0502 0.0500 

(0.11%) (0.18%) (0.32%) (0.47%) (0.08%) 

k1 = 3000.0 kN 
2998.54 2995.38 2987.30 2980.29 2968.39 

(0.05%) (0.15%) (0.42%) (0.66%) (1.05%) 

k2 = 2000.0 kN 
1999.44 1996.32 1990.47 1985.94 1975.68 

(0.03%) (0.18%) (0.48%) (0.70%) (1.22%) 

k3 = 1000.0 kN 
999.32 998.14 994.63 993.50 990.17 

(0.07%) (0.19%) (0.54%) (0.65%) (0.98%) 

5-Story 

building 

 = 0.05 
0.0500 0.0507 0.0506 0.0506 0.0511 

(0.03%) (1.43%) (1.15%) (1.13%) (2.15%) 

k1 = 44300 kN 
44267.50 44110.87 43921.21 43657.25 43419.03 

(0.07%) (0.43%) (0.86%) (1.45%) (1.99%) 

k2 = 44300 kN 
44246.36 44085.27 43782.52 43408.83 43004.99 

(0.12%) (0.48%) (1.17%) (2.01%) (2.92%) 

k3 = 35000 kN 
34920.61 34697.48 34323.11 33839.22 33349.02 

(0.23%) (0.86%) (1.93%) (3.32%) (4.72%) 

k4 = 35000 kN 
34898.71 34560.66 33934.97 33400.76 32383.48 

(0.29%) (1.26%) (3.04%) (4.57%) (7.48%) 

k5 = 30700 kN 
30553.99 30064.40 29321.45 28262.04 27204.77 

(0.48%) (2.07%) (4.49%) (7.94%) (11.39%) 
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In the estimation of lateral interstory stiffnesses, PSO also demonstrates competitive performance. Maximum errors 

recorded are 0.97% for the 2-story model, 1.23% for the 3-story model, and 11.09% for the 5-story model, the latter 

again corresponding to the most complex stiffness component (k₅ ). 

In summary, the use of a sixth-order Butterworth filter significantly improves the accuracy of structural parameter 

identification under noisy conditions. This improvement becomes particularly relevant when identifying parameters in 

more complex building models. For the 2-story model, damping ratio errors across all algorithms and noise levels range 

from 0.34% to 1.90%, resulting in a maximum variation of 1.56%. Regarding lateral interstory stiffnesses, the errors 

range from 0.01% to 1.19%, yielding a total spread of 1.17%. These narrow ranges confirm that the filter effectively 

stabilizes the identification process in relatively simple systems, allowing all three algorithms (GA, DE, and PSO) to 

achieve comparable levels of accuracy. 

In the 3-story model, damping ratio estimation errors lie between 0.39% and 1.18%, producing a total variation of 

0.79%. For lateral interstory stiffnesses, the identification errors span from 0.03% to 1.23%, with a maximum variation 

of 1.20%. Despite the increased complexity compared to the 2-story model, the filter maintains strong error control, and 

no algorithm shows a clear advantage over the others in this scenario. 

In the 5-story model, two distinct behaviors are observed regarding the identification of structural parameters. For 

the damping ratio, all three algorithms maintain consistent accuracy across noise levels, with errors ranging from 0.42% 

to 2.28%, showing no significant algorithmic advantage. This indicates that the Butterworth filter is effective at 

preserving low-frequency modal components critical to damping estimation, as evidenced by the consistently low errors 

across all noise levels. In contrast, for the lateral interstory stiffnesses, identification accuracy degrades progressively 

towards the upper stories. For stories 1 through 4, errors remain within the range of 0.07% to 7.48%, but in story 5, the 

deviations increase notably, reaching 11.09% to 11.41%, depending on the algorithm. This trend may reflect the intrinsic 

challenges of capturing the structural response at the top level, possibly due to reduced excitation and modeling 

sensitivity at higher stories. 

Table 6. Values obtained from the identification process and errors in the estimation of lateral interstory stiffnesses and 

damping ratio under noisy measurement conditions. Metaheuristic Algorithm: PSO 

Model 
Actual parameter 

value 

Noise level 

1.00% 2.00% 3.00% 4.00% 5.00% 

2-Story 

building 

 = 0.05 
0.0503 0.0494 0.0496 0.0497 0.0490 

(0.66%) (1.12%) (0.72%) (0.58%) (1.90%) 

k1 = 30700.0 kN 
30688.65 30678.01 30668.97 30596.66 30663.15 

(0.04%) (0.07%) (0.10%) (0.34%) (0.12%) 

k2 = 44300.0 kN 
44268.27 44113.58 44105.76 44224.01 43868.10 

(0.07%) (0.42%) (0.44%) (0.17%) (0.97%) 

3-Story 

building 

 = 0.05 
0.0500 0.0500 0.0501 0.0505 0.0495 

(0.01%) (0.09%) (0.14%) (0.94%) (0.91%) 

k1 = 3000.0 kN 
2998.72 2995.21 2990.43 2980.44 2969.52 

(0.04%) (0.16%) (0.32%) (0.65%) (1.02%) 

k2 = 2000.0 kN 
1998.98 1997.14 1992.53 1986.75 1975.47 

(0.05%) (0.14%) (0.37%) (0.66%) (1.23%) 

k3 = 1000.0 kN 
999.73 998.80 995.59 994.15 988.81 

(0.03%) (0.12%) (0.44%) (0.59%) (1.12%) 

5-Story 

building 

 = 0.05 
0.0500 0.0502 0.0510 0.0505 0.0509 

(0.10%) (0.45%) (1.93%) (1.00%) (1.89%) 

k1 = 44300 kN 
44267.19 44134.59 44011.75 43855.79 43375.69 

(0.07%) (0.37%) (0.65%) (1.00%) (2.09%) 

k2 = 44300 kN 
44254.63 44095.58 43845.88 43508.62 43099.85 

(0.10%) (0.46%) (1.03%) (1.79%) (2.71%) 

k3 = 35000 kN 
34903.84 34739.72 34326.39 33876.92 33241.37 

(0.27%) (0.74%) (1.92%) (3.21%) (5.02%) 

k4 = 35000 kN 
34895.90 34547.52 34047.35 33514.87 32405.77 

(0.30%) (1.29%) (2.72%) (4.24%) (7.41%) 

k5 = 30700 kN 
30502.33 30026.85 29341.05 28275.28 27296.69 

(0.64%) (2.19%) (4.43%) (7.90%) (11.09%) 
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Despite this localized discrepancy, all three metaheuristic algorithms maintain a globally consistent performance 
pattern, particularly in the damping ratio estimation, where differences remain bounded and no method shows a 
significant advantage once the filtering is applied. These results demonstrate that applying a sixth-order Butterworth 

filter is a highly effective strategy for improving robustness in parameter identification under noise. Furthermore, since 
none of the metaheuristic algorithms significantly outperforms the others under filtered conditions, their shared ability 

to deliver stable and accurate results becomes evident, especially in structures of moderate complexity. 

Table 7 reports the average parameter identification errors based on filtered displacement, velocity, and acceleration 

data. Across all noise levels analyzed, the following trends are observed: 

2-story model: The DE algorithm achieves the best performance, with a maximum average error of 1.122%. The 

PSO algorithm follows closely, reaching a maximum of 0.999%, while the GA algorithm shows the least favorable 

performance, with 1.203%. 

3-story model: Both DE and GA algorithms yield the most accurate results, with maximum errors of 0.834% and 
0.835%, respectively. The PSO algorithm, in contrast, presents a higher maximum error of 1.067%. Thus, while all three 

algorithms maintain acceptable performance, DE and GA outperform PSO in this particular case. 

5-story model: The PSO algorithm again demonstrates a slight advantage, with a maximum average error of 5.035%, 
closely followed by GA with 5.042%, and DE with 5.106%. The differences among the three methods are minimal, 

despite the increased complexity of the system. 

Across all cases, the GA, DE, and PSO algorithms exhibit broadly comparable performance in parameter 
identification under all noise levels analyzed. As expected, the average errors increase with both noise intensity and 
structural complexity, particularly for the 5-story model. 

Table 7. Average errors in the identification of parameters under noisy conditions (filtered response signals) 

Algorithm 
Model 

height 

Noise level 

1.00% 2.00% 3.00% 4.00% 5.00% 

GA 

2-Story 0.294 0.310 0.351 0.621 1.203 

3-Story 0.318 0.554 0.641 0.626 0.835 

5-Story 0.446 0.890 1.890 3.476 5.042 

DE 

2-Story 0.236 0.145 0.483 1.122 1.054 

3-Story 0.065 0.175 0.440 0.619 0.834 

5-Story 0.202 1.089 2.107 3.403 5.106 

PSO 

2-Story 0.256 0.538 0.419 0.363 0.999 

3-Story 0.033 0.128 0.319 0.711 1.067 

5-Story 0.248 0.918 2.113 3.190 5.035 

Therefore, algorithm selection may be guided by practical considerations, such as ease of implementation, tuning 
simplicity, or computational cost, rather than accuracy alone. In summary, the combination of signal filtering and 
metaheuristic optimization yields reliable structural parameter identification in noisy shear building models. 

Overall, the GA, DE, and PSO algorithms demonstrate similar performance in structural parameter identification 
under all noise levels, with average errors increasing with both noise intensity and system complexity. These results 
confirm that, when combined with signal filtering, GA, DE, and PSO are effective tools for identifying modal damping 

and lateral interstory stiffness in two-dimensional shear building models. 

Figure 8 illustrates the variation in the Mean Absolute Percentage Error (MAPE) as a function of noise level in the 
filtered response signals (Tables 1 and 7). At the highest noise level, the maximum average errors remain below 5.106% 
for the 5-story model. In contrast, in the 2- and 3-story models, errors are below 1.203%. These results suggest that the 
metaheuristic algorithms analyzed (GA, DE, and PSO), combined with signal filtering, are suitable for the identification 
of structural parameters, particularly modal damping and lateral interstory stiffness, in two-dimensional shear building 

models. 

   

Figure 8. Variation of the Mean Absolute Percentage Error (MAPE) as a function of noise level in the filtered response signals 
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6.4. Comparative Evaluation with the Element-Level Identification Method by Wang & Haldar [1] 

To benchmark the performance of the metaheuristic algorithms evaluated in this study, a comparative analysis was 

carried out against the time-domain identification methodology introduced by Wang & Haldar [1]. Both approaches 

estimate structural parameters solely from measured response data, without requiring knowledge of the input excitation. 

While their method identifies interstory stiffnesses and viscous damping coefficients for each story, our approach 

estimates the lateral interstory stiffnesses and the modal damping ratios associated with the first two modes of vibration. 

The main difference between the two methods lies in the optimization strategy. Wang & Haldar update parameter 

estimates iteratively by solving a sequence of least-squares problems based on measured responses and assumed zero 

input at selected time instants. In contrast, our approach formulates the identification as a nonlinear optimization 

problem, solved using metaheuristic algorithms (GA, DE, and PSO), which explore the solution space stochastically 

and do not rely on gradient-based updates. 

Although the present study estimates modal damping ratios instead of story-specific viscous damping coefficients, 

a valid comparison can still be made by analyzing the average relative errors in damping identification. For lateral 

interstory stiffnesses, the comparison is performed on a story-by-story basis. This is straightforward in the case of the 

2- and 3-story models, as both studies use identical structural properties (masses and stiffnesses), thereby enabling a 

direct match. Note that the relative errors obtained using the metaheuristic-based approach (GA, DE, and PSO), and 

reported in Tables 8 to 10, were computed from the filtered response signals described in Section 6.3. For the 5-story 

building model specifically, both our model and that of Wang & Haldar have varying mass and stiffness properties, but 

these are not the same. Therefore, to ensure dimensional consistency, the comparison was limited to the first five stories 

of their six-story model. While this setting is not structurally equivalent, it is included to explore potential performance 

trends across identification methods as model complexity increases. 

Table 8. Relative errors (%) in the estimation of structural parameters using different identification methods for a 2-story 

shear building model 

Structural 

parameter 

Noise-free 5% Noise level 

Wang & Haldar [1] GA DE PSO Wang & Haldar [1] GA* DE* PSO* 

ζ/cprom 0.08% 0.00% 0.00% 0.00% 7.48% 1.74% 1.79% 1.90% 

k1 0.00% 0.01% 0.00% 0.00% 0.05% 0.79% 0.18% 0.12% 

k2 0.01% 0.00% 0.00% 0.00% 1.81% 1.10% 1.19% 0.97% 

∗ These cases correspond to scenarios in which response signals were pre-filtered using a Butterworth filter prior to the structural parameter 

identification process. Estimations were conducted on two-dimensional shear building models subjected to dynamic excitation. 

Table 9. Relative errors (%) in the estimation of structural parameters using different identification methods for a 3-story 

shear building model 

Structural 

parameter 

Noise-free 1% Noise level 

Wang & Haldar [1] GA DE PSO Wang & Haldar [1] GA* DE* PSO* 

ζ/cprom 0.47% 0.76% 0.00% 0.00% 3.28% 1.00% 0.11% 0.01% 

k1 0.08% 0.07% 0.00% 0.00% 0.38% 0.06% 0.05% 0.04% 

k2 0.05% 0.02% 0.00% 0.00% 1.75% 0.12% 0.03% 0.05% 

k3 0.01% 0.01% 0.00% 0.00% 0.16% 0.09% 0.07% 0.03% 

∗ These cases correspond to scenarios in which response signals were pre-filtered using a Butterworth filter prior to the structural parameter 

identification process. Estimations were conducted on two-dimensional shear building models subjected to dynamic excitation. 

Table 10. Relative errors (%) in the estimation of structural parameters using different identification methods for a 5-story 

shear building model 

Structural 

parameter 

Noise-free 5% Noise level 

Wang & Haldar [1] GA DE PSO Wang & Haldar [1] GA* DE* PSO* 

ζ/cprom 0.02% 0.16% 0.00% 0.00% 1.55% 2.28% 2.15% 1.89% 

k1 0.01% 0.02% 0.00% 0.00% 0.64% 1.85% 1.99% 2.09% 

k2 0.01% 0.04% 0.00% 0.00% 1.23% 2.67% 2.92% 2.71% 

k3 0.01% 0.09% 0.00% 0.00% 0.92% 5.12% 4.72% 5.02% 

k4 0.01% 0.16% 0.00% 0.00% 0.67% 6.92% 7.48% 7.41% 

k5 0.01% 0.28% 0.00% 0.00% 0.58% 11.41% 11.39% 11.09% 

∗ These cases correspond to scenarios in which response signals were pre-filtered using a Butterworth filter prior to the structural parameter 

identification process. Estimations were conducted on two-dimensional shear building models subjected to dynamic excitation 
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Tables 8 to 10 provide a comparative summary of the relative errors (%) in the estimation of structural parameters 

using the two identification methodologies—Wang & Haldar’s approach and the metaheuristic-based framework—for 

2-, 3-, and 5-story shear building models.  

In the case of the 2-story shear building model (Table 8), all methods exhibit very high accuracy under noise-free 

conditions. The DE and PSO algorithms achieve exact matches for all parameters, while GA presents a minor error of 

0.01% in 𝑘1. Wang & Haldar’s method shows similarly low errors, with a maximum of 0.08% in damping. These small 

differences confirm that under ideal conditions, the four methods deliver highly accurate and practically equivalent 

results. Under 5% noise in the signal responses, however, differences in robustness emerge. Wang & Haldar’s method 

shows a notable increase in damping error (7.48%), while the metaheuristic algorithms keep this error below 2%, 

specifically, 1.74% (GA), 1.79% (DE), and 1.90% (PSO). For stiffness identification, all methods remain under 2% 

error. 

In the 3-story shear building model (Table 9), all methods once again demonstrate excellent performance under 

noise-free conditions. The DE and PSO algorithms produce exact estimates for all parameters, while GA and Wang & 

Haldar’s method show slightly higher—but still very low—errors, particularly in damping and the first two stiffness 

coefficients. When 1% noise level is introduced into the response signals, the superior robustness of the metaheuristic 

framework becomes more evident. Damping estimation errors increase noticeably for Wang & Haldar (3.28%), while 

the metaheuristic algorithms maintain significantly lower errors: 1.00% (GA), 0.11% (DE), and 0.01% (PSO). Similarly, 

for stiffness parameters, all metaheuristic methods remain below 0.12% error across all stories, whereas Wang & 

Haldar’s method reaches up to 1.75% in k2.  

For the 5-story shear building model (Table 10), all methods perform well under noise-free conditions. The DE and 

PSO algorithms produce exact estimates for all parameters, while GA shows small but increasing errors in the upper 

stories, reaching up to 0.16% in 𝑘4 and 0.28% in 𝑘5. In contrast, Wang & Haldar’s method maintains uniformly low 

errors (0.01%) across all stiffness parameters and 0.02% in damping. Under 5% noise, differences in performance 

become more evident. Damping identification errors rise to 1.55% for Wang & Haldar, while metaheuristic methods 

yield values ranging from 1.89% (PSO) to 2.28% (GA). Regarding stiffness estimation, Wang & Haldar’s errors remain 

below 1.3% across all stories, with a maximum of 1.23% in 𝑘2. In contrast, the metaheuristic methods show a progressive 

increase in error with story height. Errors remain moderate in the lower stories (k1, k2), but rise sharply in the upper 

levels: for 𝑘4, all metaheuristic algorithms exceed 6.9%, and for 𝑘5, they surpass 11%, with GA reaching the highest 

error at 11.41%.  

These results suggest that while both frameworks are capable of accurate identification under ideal conditions, the 

metaheuristic-based approach demonstrates greater robustness in damping identification under noise. In contrast, Wang 

& Haldar’s method yields more consistent results in lateral interstory stiffness estimation—specifically in the 5-story 

model and particularly in the upper stories, where the metaheuristic algorithms show reduced accuracy under noisy 

conditions. 

6.5. Computational Efficiency and Convergence Behavior of Metaheuristic Algorithms 

This section presents a detailed evaluation of the computational efficiency and convergence behavior of the GA, DE, 

and PSO algorithms, measured through average CPU time and iteration count required to achieve convergence in each 

model. These results complement the accuracy analysis discussed in previous sections and provide a broader perspective 

on the practical efficiency of each metaheuristic algorithm. 

Simulations were implemented in MATLAB R2023b and executed across five machines with identical lower-mid-

range specifications [Intel® Core™ i7-6700T (4 cores/8 threads, 2.8 GHz), 16 GB DDR4 RAM, and a 250 GB solid-

state drive (SSD)], all running Windows 11 as the operating system. 

The simulation runs were evenly distributed among the five systems, and the values reported in Table 11 correspond 

to the average of 10 independent executions per model and algorithm. All metaheuristic algorithms (GA, DE, and PSO) 

were implemented by the authors in MATLAB using custom code. No proprietary or built-in metaheuristic functions 

from MATLAB toolboxes were used in this study. 

Table 11. Average CPU Time and Iteration Count per Algorithm and Model 

Algorithm 
2-Story building 3-Story building 5-Story building 

CPU Time (s) Average Iterations CPU Time (s) Average Iterations CPU Time (s) Average Iterations 

GA 
1044.34 R0 2759.56 R0 2356.41 R0 3117.63 R0 843.83 R0 6441.65 R0 

1146.01 R1 2746.83 R1 1564.83 R1 1920.00 R1 987.23 R1 6680.56 R1 

DE 
145.56 R0 2719.28 R0 454.49 R0 4333.98 R0 2363.20 R0 9300.60 R0 

170.59 R1 2861.00 R1 485.82 R1 4049.52 R1 1283.69 R1 9804.54 R1 

PSO 
277.60 R0 3357.00 R0 2281.86 R0 4866.11 R0 2067.54 R0 10364.35 R0 

284.89 R1 3078.94 R1 2218.69 R1 4503.85 R1 977.62 R1 10336.81 R1 

R0 refers to the case in which the system response was used without any filtering. R1 corresponds to the case in which the response was filtered prior 

to the identification process. 
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Table 11 summarizes the average CPU time and iteration count for the GA, DE, and PSO algorithms under both 

unfiltered (R0) and filtered (R1) response scenarios. These metrics not only provide a general measure of computational 

effort and cost but also offer complementary insight into the internal search dynamics of each algorithm. While CPU 

time quantifies the total computational effort, it does not necessarily reflect the algorithm’s internal efficiency. For 

instance, an algorithm may require a large number of iterations with only marginal improvements per step, yet maintain 

a relatively low total CPU time if the cost per iteration is minimal, as is the case when the objective function is simple 

or the population size is small. Conversely, another algorithm may converge in fewer iterations but incur higher total 

CPU time due to significant per-evaluation costs, arising from a more complex objective function, a more intensive 

search mechanism, or a larger population size. For this reason, the number of iterations complements CPU time, since 

it provides insight into the algorithm’s capacity to explore and exploit the search space independently of the total 

runtime, which is influenced by the number of iterations, the complexity of the objective function, and the algorithm-

specific population or swarm size. A detailed analysis of these results is presented in the following subsections. 

1. Performance Without Filtering (R0 Scenario) 

In the unfiltered scenario (R0), all algorithms show an increase in average CPU time when transitioning from the 2-

story to the 3-story model, albeit with markedly different growth rates. DE is the most efficient in this context, despite 

showing a 212.2% increase in time (from 145.56 s to 454.49 s). PSO follows in ranking but displays a much larger 

relative increase of 722.0% (from 277.60 s to 2281.86 s). GA, despite showing the smallest relative increase (125.6%), 

remained the slowest algorithm in absolute terms: 1044.34 s for the 2-story model and 2356.41 s for the 3-story model. 

However, in the 5-story model, this trend reverses: GA becomes the most efficient algorithm, achieving an average 

time of 843.83 s, significantly outperforming the others. In comparison, PSO shows a 145.02% increase relative to GA, 

and DE exhibits the highest computational cost with a 180.1% increase. 

Regarding the average number of iterations to convergence, DE requires 2719.28 iterations for the 2-story model, 

followed by GA with 2759.56 (+1.48%) and PSO with 3357.00 (+23.45%). For the 3-story model, GA requires 3117.63 

iterations, while DE and PSO need 4333.98 (+39.02%) and 4866.11 (+56.08%), respectively. For the 5-story model, 

GA converges in 6441.65 iterations, compared to 9300.60 for DE (+44.38%) and 10364.35 for PSO (+60.90%). 

These results suggest that GA demonstrates greater robustness as problem dimensionality increases, as its 

performance deteriorates less than DE and PSO. However, this does not necessarily imply superior internal efficiency. 

This resilience may be attributed to GA’s lower sensitivity to the combination of bounded search spaces and high 

dimensionality, whereas DE and PSO tend to stagnate or disperse in more complex domains. 

In simpler models with wide parameter bounds, DE and PSO outperform GA. However, as the number of parameters 

increases, GA becomes clearly more competitive, surpassing the other two algorithms. This reinforces the notion that, 

in high-dimensional problems, designing a well-defined search space alone is insufficient to ensure efficiency. In such 

scenarios, DE and PSO require enhanced initial diversity and adaptive exploration strategies to avoid premature 

convergence, even when the search bounds are well configured. GA’s capacity to maintain robust performance under 

demanding conditions makes it a particularly attractive tool for large-scale optimization problems. 

2. Performance With Filtering (R1 Scenario) 

In the 2-story model with filtered response, DE achieved the lowest average CPU time (170.59 s), outperforming 

PSO (284.89 s, +67.00%) and GA (1146.01 s, +571.79%). In the 3-story model, DE again had the best computational 

performance (485.82 s), followed by GA (1564.83 s, +222.10%) and PSO (2218.69 s, +356.69%). Finally, in the 5-story 

model, PSO emerged as the most efficient (977.62 s), slightly outperforming GA (987.23 s, +0.98%) and substantially 

outperforming DE (1283.69 s, +31.31%). 

As for the number of iterations to convergence, in the 2-story model GA required 2746.83 iterations, followed by 

DE (2861.00, +4.16%) and PSO (3078.94, +12.09%). In the 3-story model, GA required only 1920.00 iterations, while 

DE and PSO needed 4049.52 (+110.91%) and 4503.85 (+134.58%), respectively. In the 5-story case, GA maintained its 

advantage with 6680.56 iterations, compared to 9804.54 for DE (+46.76%) and 10336.81 for PSO (+54.73%). 

These results show that, under filtered conditions, GA consistently achieves the lowest average number of iterations 

to convergence. DE ranks second, while PSO systematically requires the highest iteration count. This hierarchy is 

preserved across all three models, suggesting a stable relative behavior of the algorithms as system complexity increases. 

3. Impact of Filtering on Algorithmic Performance (R0 vs. R1) 

When comparing R0 and R1 scenarios, it becomes evident that filtering the structural response significantly impacts 

CPU time, while the number of iterations shows minimal variation in most cases. In terms of CPU time, for the 2-story 

model, DE increased from 145.56 s (R0) to 170.59 s (R1), a 17.2% rise. PSO increased from 277.60 s to 284.89 s 

(+2.6%), and GA from 1044.34 s to 1146.01 s (+9.7%). For the 3-story model, DE increased from 2719.28 s to 2861.00 
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s (+5.2%), while PSO decreased from 3357.00 s to 3078.94 s (–8.3%) and GA dropped from 2356.41 s to 1564.83 s (–

33.6%). In the 5-story model, DE showed a significant reduction from 2363.20 s to 1283.69 s (–45.7%), PSO from 

2067.54 s to 977.62 s (–52.7%), whereas GA exhibited a slight increase from 843.83 s to 987.23 s (+17.0%). 

These results indicate that DE and particularly PSO benefit from filtering, especially in the 5-story model. GA, on 

the other hand, exhibits a mixed response: improved performance in the intermediate case (3 stories), but slight 

degradation in the other two. 

Regarding the average number of iterations, the impact of filtering is more heterogeneous. For the 2-story model, 

DE increased from 2719.28 to 2861.00 (+5.2%), while PSO decreased from 3357.00 to 3078.94 (–8.3%) and GA 

remained nearly unchanged, from 2759.56 to 2746.83 (–0.5%). In the 3-story model, all algorithms reduced their 

iteration count: DE from 4333.98 to 4049.52 (–6.6%), PSO from 4866.11 to 4503.85 (–7.4%), and GA from 3117.63 to 

1920.00 (–38.4%). For the 5-story case, DE increased slightly from 9300.60 to 9804.54 (+5.4%), PSO remained stable 

(from 10364.35 to 10336.81, –0.3%), and GA increased marginally from 6441.65 to 6680.56 (+3.7%). 

These findings suggest that, although filtering does not substantially alter the search trajectory or systematically 

reduce the number of iterations required for convergence, it effectively reduces the per-iteration computational cost. 

Therefore, its primary benefit lies not in improving the internal efficiency of the search process, but in making each step 

computationally cheaper—especially in scenarios involving either high-dimensional or computationally expensive 

objective functions. In this sense, filtering emerges as a complementary mechanism for enhancing overall algorithmic 

performance and is particularly advisable when evaluation cost dominates total computational effort, without altering 

the core algorithm. 

7. Conclusions 

This study compares the performance of three metaheuristic algorithms (DE, GA, and PSO) to identify the lateral 

interstory stiffnesses and the modal damping ratio of two-dimensional shear buildings. Three building models with 2, 3, 

and 5 stories were analyzed, subjected to an impulsive excitation at the upper floor. Free vibration responses 

(displacement histories, velocities, and accelerations at each of the analyzed building levels) were calculated. To 

evaluate the reliability of the algorithms, the signal responses were contaminated with white noise, considering six noise 

levels: 0%, 1%..., 5% of the RMS value. Regarding the responses obtained, two scenarios were studied: one with raw 

response signals and the other with filtered response signals. The results lead to the following conclusions: 

1. Unfiltered response signals: 

In the model without filtering, the three metaheuristic algorithms (GA, DE, and PSO) are capable of identifying the 

lateral interstory stiffnesses and the modal damping ratio of the first two modes with reasonable accuracy, especially in 

low-rise models and moderate noise conditions. The maximum average error in the estimation between actual and 

identified values was less than 7.882%, observed at the highest noise level and in the most complex model. The results 

for the identification of lateral interstory stiffness and modal damping ratio at a 5% noise level (RMS value) are 

summarized below: 

 2-story building: DE achieved the lowest error, with an average of 1.918%, PSO produced an intermediate value 

(2.223%), while GA had the least accurate results with an error of 2.806%. 

 3-story building: GA showed the lowest average error of 3.705%, followed by DE (4.080%), while PSO recorded 

the highest, with an average error of 4.190%. 

 5-story building: In this case, DE outperformed the other algorithms with the lowest average error recorded, at 

7.060%, followed by PSO (7.217%), while GA showed the highest deviation (7.882%). 

2. Filtered response signals: 

Across all noise levels analyzed (with values of 1%, 2%, 3%, 4%, or 5%), the sixth-order Butterworth filter 

significantly improved the accuracy of structural parameter identification, especially at higher noise levels and for larger 

buildings. In the 5-story building, considering the maximum errors observed across these noise levels, filtering reduced 

the identification error by approximately 4% across all algorithms. 

 2-story building: DE performed best with an average error of 1.122%, followed closely by PSO with 0.999%, 

and GA with the highest error of 1.203%. 

 3-story building: DE and GA yielded nearly identical maximum errors of 0.834% and 0.835%, respectively, while 

PSO showed a slightly higher error of 1.067%. 

 5-story building: PSO demonstrated a marginal advantage with an error of 5.035%, followed by GA with 5.042%, 

and DE with 5.106%. Despite the increased complexity, all three algorithms maintained comparable performance. 
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These results confirm that the application of a Butterworth filter markedly enhances the robustness of metaheuristic 

algorithms under noisy conditions. In particular, the filter stabilizes the estimation of both damping ratios and lateral 

interstory stiffnesses, even in high-complexity models. Furthermore, the absence of a consistently superior algorithm 

reinforces the conclusion that GA, DE, and PSO all remain viable and reliable alternatives when combined with 

appropriate signal processing. 

3. Computational performance: 

The comparative evaluation of algorithmic performance under both unfiltered (R0) and filtered (R1) response 

scenarios revealed distinct strengths for each metaheuristic. Differential Evolution (DE) demonstrated the lowest 

computational cost in simple, low-dimensional problems, particularly under unfiltered conditions. Particle Swarm 

Optimization (PSO) showed substantial improvement from pre-filtering, especially in more complex models. However, 

the Genetic Algorithm (GA) stood out for its consistent convergence behavior and reduced sensitivity to problem 

dimensionality. GA achieved the lowest iteration counts in most cases, and maintained stable performance regardless of 

the filtering condition. These attributes make GA a robust and scalable option for large-scale structural identification 

tasks, where convergence stability and adaptability are critical. 

In summary, this study shows that the three metaheuristic algorithms—GA, DE, and PSO—satisfactorily identify 

the structural parameters of two-dimensional shear buildings with minimal differences. The incorporation of a filtering 

process, such as the Butterworth filter, substantially enhances the accuracy of the identification process, especially under 

noisy conditions and in complex models. The reported outcomes correspond to the average values obtained from 10 

independent runs for each identification scenario, thereby allowing us to capture the performance trends of the 

algorithms in response to noise and the complexity associated with the number of stories in the analyzed shear building 

models. Although these results are based on theoretical models, they demonstrate strong potential for application in real-

world structural safety assessments, particularly in dynamic testing scenarios where signal noise is an inherent challenge. 
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