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Abstract 

Traffic crash prediction remains a critical challenge in transportation safety management, with increasing emphasis on 

leveraging machine learning techniques for accurate casualty prediction. This study aims to develop an optimized feature 

selection framework for traffic crash casualty prediction by comparing six selection techniques: Design of Experiments 

(DOE), Forward and Backward Sequential Feature Selection, Information Gain, Lasso Regularization, and Random Forest 

(RF) Feature Importance, with subsequent integration using the Borda count method. By analyzing 517,000 UK traffic 

crash records (2019-2023), 25 machine learning models (linear models, decision trees, ensemble methods, and neural 

networks) were evaluated across 12 critical attributes. Results demonstrate eXtreme Gradient Boosting (XGBoost)'s 

superior performance with a Root Mean Square Error (RMSE) of 0.671 and Mean Absolute Error (MAE) of 0.372 using 

the proposed Borda count integration method while maintaining efficient computation time (11.3 minutes compared to the 

baseline's 17 minutes). Five factors consistently emerged as the most influential predictors across all selection methods: 

number of vehicles involved, speed limit, police officer attendance, day of the week, and urban/rural classification, while 

environmental factors showed lower importance than traditionally assumed. The novel integration of multiple feature 

selection techniques through Borda count provides a more robust feature subset than any individual method, offering an 

optimal balance between computational efficiency and prediction accuracy. The framework enables transportation safety 

authorities to implement more efficient crash prediction systems while providing actionable insights about key risk factors 

for targeted interventions, especially to support the Highway Safety Manual development. 

Keywords: Traffic Crash Analysis; Feature Selection; Machine Learning; Traffic Safety; Predictive Analytics. 

1. Introduction 

Traffic crashes continue to pose a severe global health issue, resulting in significant human suffering and economic 

impacts. The World Health Organization reports that road traffic crashes claim about 1.19 million lives each year, with 

countless others incurring injuries or long-term disabilities [1]. Economically, the global cost of road traffic crashes 

amounts to about 3% of national GDPs, and this figure rises to 5% in low- and middle-income nations [2, 3]. For 
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example, in the United States, the National Highway Traffic Safety Administration (NHTSA) noted that motor vehicle 

crashes had an economic impact of $417 billion in 2024 alone [4]. The economic impact of road crashes encompasses 

not only immediate healthcare and property repair costs but also broader implications such as reduced productivity, 

psychological distress, and significant rehabilitation requirements. Additional indirect costs include legal fees, 

emergency services, insurance processing, traffic congestion, and loss of workplace productivity [5-7].  

This highlights the urgent need for effective crash prevention strategies, where predictive modeling plays a crucial 
role in identifying high-risk zones and implementing successful safety measures. Particularly vulnerable areas within 

transportation networks, such as high-speed freeways and intersections, are noted for their elevated risk levels [8], with 
intersections alone being the site of around half of all traffic incidents [9]. Such locations frequently see serious injuries 
and broadly impact road users. 

There has been significant evolution in crash prediction techniques, moving from traditional statistical approaches 

to sophisticated machine learning models. This evolution reflects the growing complexity of predictive challenges and 

the increased availability of diverse datasets. The initial focus on basic machine learning algorithms with elementary 

feature selection has evolved, establishing essential benchmarks for both performance and methodological approaches. 

One notable study underscored the effectiveness of ensemble methods, where XGBoost achieved a 93% accuracy rate, 

surpassing older methods like Decision Trees (88%) and Logistic Regression (63%) [10]. Another research initiative 

developed a system to evaluate driving behavior and risk prediction using feature extraction and selection with XGBoost, 

which successfully identified crucial risk indicators, achieving 89% accuracy using NGSIM data and demonstrating the 

model's precision [11]. Moreover, a study highlights the critical role of advanced feature selection in improving the 

outcomes of models handling extensive crash data. It introduced the Weighted Fusion-Based Feature Selection (WFFS) 

method, which significantly enhanced the accuracy of UK traffic crash predictions to 97.28% using a random tree-based 

bagging technique, vital for strengthening road safety initiatives [12]. Additionally, another research utilized XGBoost 

and SHAP in analyzing high-risk lane changes, markedly enhancing the capabilities of Advanced Driving Assistance 

Systems (ADAS) through better predictive accuracy [13]. An examination of more than 91,000 crash records indicated 

that neural networks outperformed conventional models like Support Vector Machines in predicting casualties [14]. 

This continued with studies into the importance of features within ensemble methods, where Random Forest achieved 

an 81.45% accuracy in predicting crash severity [15]. The research also applied GIS-based spatial clustering techniques 

together with machine learning models to accurately identify crash hotspots and predict incidents, underscoring the 

importance of data-driven approaches in traffic safety management [16]. Concurrently, the study demonstrated Gaussian 

Process Regression's effectiveness in prediction tasks, achieving notable accuracy with an R^2 value of 0.63, 

highlighting the significance of choosing the right model for specific scenarios [17].  

Further investigations analyzed 117,000 crash records, revealing that nonlinear SVM particularly excelled, attaining 
78.32% accuracy in severity prediction and underscoring the trade-offs between model accuracy and computational 

efficiency [18]. More recent work improved on these results using Random Forest to achieve a 91.72% F1 score for 
three-category severity classification, showing the benefits of refined feature selection strategies [19]. This shift towards 
more sophisticated prediction methods is characterized by a growing focus on optimizing feature selection. Recent 
investigations have explored diverse feature selection techniques, each bringing unique benefits. For instance, a study 
implemented a deep learning framework integrated with CatBoost feature selection, achieving a weighted average 
precision of 0.80 and an F-measure of 0.82 [20]. This effort proved crucial for selecting spatially correlated features to 

improve prediction accuracy. The field progressed with a multi-task learning strategy that enhanced feature sharing 
across related tasks, achieving a 13.93% average improvement in accuracy compared to traditional methods [21]. 
Another study reaffirmed the superiority of advanced machine learning techniques over traditional models, achieving 
an R^2 of 0.80 through meticulous feature selection and model optimization, marking significant advancements in 
predictive methodologies [22]. Additionally, parallel research indicated that technological advances could reduce 
weather-related crash risks in traffic safety modeling, thereby enhancing prediction accuracy [23]. 

These developments underscore the essential role of feature selection in contemporary crash prediction systems, 
though challenges persist in fine-tuning these methods for optimal performance. Analysis via machine learning has 

shown that in developing regions, infrastructure elements have a more significant impact on traffic safety than human 
factors, diverging from conventional findings. Applying Multiple Linear Regression (MLR) has proven effective for 
crash analysis in urban environments [24]. Utilizing target speed modeling, behavioral analysis, and the APW technique, 
findings indicate human-related causes contribute to 66.8% of highway collisions, underscoring the urgency for 
predictive strategies and location-specific traffic safety improvements [25, 26]. Additionally, employing machine 
learning to pinpoint critical safety factors substantially improves traffic management efficacy [27]. Another study 

explores advanced feature selection for accident classification using deep learning, significantly enhancing road safety 
and aligning with prior research by boosting predictive accuracy and strategic traffic management interventions [28]. 
Further investigations have adopted a hybrid feature selection-based machine learning classification to assess injury 
severity in road incidents, using Random Forests and the Boruta Algorithm to identify key attributes evaluated by various 
classifiers, with XGBoost showing high accuracy in both single- and multi-vehicle accidents [29]. Additionally, a study 
has introduced a univariate feature selection method to address liability in vehicle-cyclist collisions in China, employing 

SVM, LDA, and ANN to determine cyclists' pre-collision activities, with SVM achieving 81.84% accuracy [30]. 
Another study found that behavioral compliance and machine learning jointly enhance traffic safety through predictive 
insights and targeted interventions [31]. Research builds on previous findings by simplifying the analysis of injury 
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severity in Taiwanese traffic incidents, categorizing twenty-eight factors based on their importance [32]. Utilizing a 
decade of UK traffic data, another study applied models like Random Forest and Logistic Regression, achieving an 87% 
accuracy rate in predicting traffic accident severity [33]. Additional analysis using Poisson and Negative Binomial 

models revealed critical roadway factors, highlighting speed’s negative correlation and urgent safety enhancements [34]. 

Overall, the high dimensionality of crash data, encompassing numerous environmental, temporal, and infrastructural 

factors, necessitates efficient feature selection strategies. Current approaches often rely on single feature selection 
techniques, potentially missing important feature interactions or overlooking crucial predictive factors. The comparative 
effectiveness of different feature selection methods in the context of crash prediction remains understudied, particularly 
regarding their impact on model performance, training efficiency, and generalization capabilities. Furthermore, while 
individual feature selection methods have shown promise, the potential benefits of combining multiple techniques have 
not been thoroughly explored. 

This study addresses these gaps by conducting a comprehensive comparison of six feature selection techniques: 
Design of Experiments (DOE), Forward Sequential Feature Selection (FSFS), Backward Sequential Feature Selection 

(BSFS), Information Gain (IG), Lasso Regularization, and Random Forest Feature Importance. Each method brings 
unique strengths to feature selection: DOE provides systematic factor screening, FSFS and BSFS offer iterative feature 
optimization, IG captures information-theoretic importance, Lasso enables sparse feature selection through 
regularization, and Random Forest importance leverages ensemble learning for feature ranking. By comparing and 
merging these approaches, we aim to develop a more robust framework for feature selection in crash prediction. Given 
these research opportunities, this study's objectives are to: 

 Analyze the impact of different feature selection approaches on machine learning models performance. 

 Develop a framework for integrating multiple feature selection methods to identify the most robust and predictive 
feature subset. 

 Compare the computational efficiency and performance across different scenarios. 

2. Data Pre-Processing 

This section presents the methodology employed for data preprocessing and the subsequent exploratory analysis of 
the crash dataset. The preprocessing phase encompassed data cleaning, feature selection, and preliminary statistical 
analysis, while the exploratory analysis focused on understanding the distributions and relationships among the selected 
variables. The initial dataset comprised 520,000 traffic crash records from the United Kingdom, spanning from 2019 to 

2023, with 35 distinct attributes. Through systematic analysis and domain knowledge, 12 critical features were identified 
as potential predictors for crash severity and casualty numbers. Table 1 presents these selected features, their respective 
data types, and descriptions. The features encompass both numeric attributes (number of vehicles, number of casualties, 
speed limit, and time of day) and nominal attributes (day of the week, road type, junction detail, first road class, light 
conditions, weather conditions, road surface conditions, urban or rural area, and police officer attendance). The dataset 
underwent a cleaning process to handle missing values, resulting in a final dataset of 517,000 records (99.4% retention 

rate). This high retention rate suggests robust initial data collection procedures and minimal impact of the cleaning 
process on the dataset's representativeness. Additionally, the crash severity variable, originally categorized into three 
classes (slight, serious, and fatal), was transformed into a binary classification problem by merging the 'serious' and 
'fatal' categories into a single 'severe' class while maintaining 'slight' as 'not severe'. This transformation was 
implemented to enhance model robustness and address class imbalance issues, as fatal crashes represented a relatively 
small proportion of the dataset. 

Table 1. Description of Selected Features for the Study 

Attribute Name Data Type Description 

Number of Vehicles Numeric Count of vehicles involved in the crash 

Number of Casualties Numeric Count of people injured or killed in the crash 

Speed Limit Numeric Posted speed limit at the crash location (mph) 

Time of the Day Numeric Time when the crash occurred (0-23 hours) 

Crash Severity Nominal Severity level of the crash 

Day of Week Nominal Day of the week when the crash occurred 

Road Type Nominal Categorization of road: Roundabout, One-way Street, Dual carriageway, Single carriageway, Slip Road 

Junction Detail Nominal Type of junction where the crash occurred 

First Road Class Nominal Classification of the first road (A, B, C, Motorway, or Unclassified) 

Light Conditions Nominal Lighting conditions of the road at the time of the crash 

Weather Conditions Nominal Weather conditions at the time of crash 

Road Surface Conditions Nominal Whether the surface of the road was dry, wet, snowy, or oily 

Urban or Rural Area Nominal The type of area where the crash occurred 

Did Police Officer Attend Nominal Whether a police officer attended the scene of the crash, or it was self-reported 
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Descriptive statistics for the numerical variables are presented in Table 2. The analysis reveals that crashes typically 
involved a mean of 1.833 vehicles (σ = 0.69 vehicles, range: 1-17 vehicles) and resulted in 1.28 casualties on average 
(σ = 0.71 casualties, range: 1-70 casualties). Speed limits at crash locations exhibited considerable variation (μ = 36 

mph, σ = 14.14 mph, range: 20-70 mph).  

Table 2. Descriptive statistics of numerical variables in the dataset 

Factor Mean σ Min Max 

Number of Vehicles 1.833 0.69 1 17 

Number of Casualties 1.28 0.71 1 70 

Speed Limit 36 14.14 20 70 

Time of crash 13.7 5.15 0 23 

The temporal distribution of crashes showed a mean occurrence time of 13.7 hours (σ = 5.15 hours). The distribution 
analysis of the categorical variables is shown in Figure 1. 

 

 

 
Figure 1. Distribution plots of categorical variables 
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Figure 2 presents the temporal distribution of crashes from 2019 to 2023, highlighting a significant reduction in crash 
numbers during the COVID-19 period in 2020, followed by a gradual return to pre-pandemic levels. Weekly patterns, 
depicted in Figure 3, demonstrate systematic variation in crash frequencies, with peak occurrences on Fridays (n ≈ 

85,000) and minimum occurrences on Sundays (n ≈ 58,000). This analysis is extended by disaggregating the data by 
crash severity, revealing relatively consistent severity proportions across weekdays despite varying total frequencies. 
Daily patterns, presented in Figure 4, exhibit a characteristic bimodal distribution with prominent peaks during morning 
(08:00-09:00) and afternoon (16:00-17:00) rush hours, and a minimum between 03:00 and 04:00. The severity 
distribution across hours indicates an elevated proportion of severe crashes during night-time hours, despite lower 
overall frequencies. 

 

Figure 2. Monthly distribution of road crashes in the UK from 2019 to 2023 

 

Figure 3. Stacked bar chart showing the distribution of crash severity across different days of the week 

 

Figure 4. Stacked bar chart showing the distribution of crash severity across different hours of the day 
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Figure 5 presents the correlation matrix between all variables, with particular focus on their relationships with the 

model's target variables (crash severity and number of casualties). The analysis reveals weak correlations with crash 

severity, including number of vehicles (-0.069), number of casualties (-0.086), and speed limit (-0.11). For the number 

of casualties, weak positive correlations are observed with the number of vehicles (0.21) and urban/rural classification 

(0.14). The light conditions show a weak correlation with crash severity (-0.049), while weather conditions demonstrate 

a slight negative correlation (-0.037). Interestingly, the presence of police officers at the crash scene shows a modest 

positive correlation with severity (0.18), potentially indicating their more frequent attendance at more severe crashes. 

These correlations, while relatively modest in magnitude, provide initial insights into potential relationships between 

predictor variables and target outcomes that warrant further investigation through more advanced modeling techniques. 

It's important to note that weak linear correlations do not necessarily exclude significant non-linear relationships that 

may be captured by machine learning models. 

 

Figure 5. Correlation matrix heatmap showing the relationships between all variables 

3. Research Methodology 

This study presents a comprehensive framework as shown in Figure 6 for predicting crash casualties through 

systematic comparison of feature selection techniques and machine learning models. The framework consists of three 

main components: (1) feature selection through multiple techniques, (2) machine learning model implementation, and 

(3) performance evaluation and comparison. The methodology enables both individual assessment of each feature 

selection technique and evaluation of their combined effectiveness. 

3.1. Feature Selection Techniques 

This study implements five distinct feature selection approaches to identify the most influential factors affecting 

crash casualties. The number of selected features (K) for all methods was determined by the number of significant factors 

identified through DOE analysis at α = 0.05, ensuring consistent comparison across different techniques. The selection 

of these six feature selection techniques was deliberate, aiming to provide comprehensive coverage across different 

methodological paradigms: experimental design (DOE), wrapper methods (FSFS and BSFS), information theory (IG), 

regularization techniques (Lasso), and ensemble learning (Random Forest). This diversity enables robust comparison 

while leveraging the complementary strengths of each approach. 
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Figure 6. Methodology framework 

3.1.1. Design of Experiments 

The DOE approach implemented a systematic full factorial design to evaluate the impact of both categorical and 

numerical factors on crash casualties. This methodology enables comprehensive analysis of main effects and interaction 

effects between factors while maintaining statistical rigor. The experimental design incorporated twelve factors, each 

mapped to two levels to facilitate factorial analysis, resulting in 2^12 = 4,096 possible factor combinations. The 

experimental design matrix D was constructed by Equation 1: 
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𝐷 = [

+1 +1 ⋯ +1
+1 −1 ⋯ +1

⋮ ⋮ ⋱ ⋮
−1 −1 ⋯ −1

]

212×12

                                                                                                                                     (1) 

where each row represents an experimental run, and each column represents a factor level combination. For categorical 
variables, logical groupings based on factor characteristics and their relationship to crash severity were implemented. 
The mapping process followed a structured approach that preserved the underlying risk characteristics while reducing 
dimensionality. Temporal factors were mapped based on established traffic patterns: day of week distinguished between 
weekdays and weekends, acknowledging the distinct traffic patterns and risk profiles associated with each period. 

Infrastructure-related factors received similar treatment: first road class differentiated between major roads including 
motorways and A-roads versus minor roads, while road type separated major infrastructures such as roundabouts and 
dual carriageways from minor road configurations. Environmental and situational factors were mapped according to 
their risk implications. Light conditions were simplified to daylight versus darkness, reflecting the fundamental visibility 
distinction.  

Weather conditions distinguished between fine and adverse conditions, while road surface conditions were 
categorized as either dry or slippery, capturing the primary friction characteristics affecting vehicle control. For 
numerical variables, threshold-based binary classifications were established based on domain knowledge and statistical 

analysis of crash patterns based on Equation 2: 

𝑥binary = {
1     if     𝑥 ≥  threshold 

0     otherwise 
                                                                                                                                  (2) 

The effect of each factor was calculated using the standard DOE formula (Equation 3): 

𝐸𝑖 =
1

𝑛
∑  𝑛

𝑗=1 𝑦𝑗𝑥𝑖𝑗                                                                                                                                                             (3) 

where Ei represents the effect of factor 𝑖, 𝑛 is the number of experimental runs, 𝑦𝑗 is the response (number of casualties) 
in run j, and xij is the coded level (-1 or +1) of factor i in run j. This formula calculates the average difference in response 
between the high level (+1) and low level (-1) runs for each factor. Table 3 showed the proposed mapping for the 
categorical and numerical factors. 

Statistical significance was assessed through Analysis of Variance (ANOVA), with the test statistic in Equation 4: 

𝐹 =
𝑀𝑆factor 

𝑀𝑆error 
=

𝑆𝑆factor /𝑑𝑓factor 

𝑆𝑆error /𝑑𝑓error 
                                                                                                                                             (4) 

where 𝑀𝑆 represents mean squares, SS represents sum of squares, and 𝑑𝑓 represents degrees of freedom. Factors were 
considered significant at α = 0.05, and this significance level determined the number of features (𝐾) selected for 
subsequent analysis methods. The analysis also considered two-way interaction effects between factors through the 

interaction term using Equation 5:  

𝐸𝑖𝑗 =
1

𝑛
∑  𝑛

𝑘=1 𝑦𝑘𝑥𝑖𝑘𝑥𝑗𝑘                                                                                                                                                     (5) 

where Eij represents the interaction effect between factors 𝑖 and 𝑗. 

Table 3. Factors and their 2 levels proposed mapping 

Factor Categories/ Rule Proposed Mapping 

Day of week 
Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, 

Saturday 

Weekend (Saturday, Sunday): 1, Weekday (Monday–

Friday):  0 

First Road Class 
Motorway, A(M) Road, A Road, B Road, C Road, 

Unclassified 
Major Roads (Motorway, A(M), A Road): 1, Minor Roads: 0 

Road type 
Roundabout, One way street, Dual carriageway, Single 

carriageway, Slip road, Unknown 

Major Roads (Roundabout, One way, Dual carriageway): 

1, Minor Roads: 0 

Junction detail 
Not at junction, Roundabout, Mini-roundabout, T junction, 

Slip road, Crossroads, etc. 

At Junction (e.g., Roundabout, T-junction, etc.): 1, Not at 

Junction: 0 

Light conditions 
Daylight, Darkness – lights lit, Darkness – lights unlit, 

Darkness – no lighting, etc. 
Dark (with or without lighting): 1, Daylight: 0 

Weather conditions 
Fine without high winds, Raining, Snowing, Fine with high 

winds, Raining with high winds, etc. 
Adverse Weather (Raining, Snowing, Fog, etc.): 1, Fine: 0 

Road surface conditions Dry, Wet or damp, Snow, Frost or ice, Flood, etc. Slippery (Wet, Snow, Ice, Flood, etc.): 1, Dry : 0 

Urban or Rural area Urban, Rural Urban: 1, Rural: 0 

Police officer at the crash Yes, No, crash self-reported Yes: 1, No or Self-reported: 0 

Speed limit High speed (≥ 50 mph) High Speed: 1, Low Speed: 0 

Number of vehicles Multiple vehicles (> 2) Multiple Vehicles: 1, Single/Two Vehicles: 0 

Time Peak hours (7–9 AM, 4–6 PM) Peak Hours: 1, Off-Peak Hours: 0 
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3.1.2. Forward Sequential Feature Selection 

FSFS represents a wrapper-based feature selection method that builds a feature subset incrementally, starting 

from an empty set and sequentially adding the most beneficial features. The fundamental principle behind FSFS is 

to evaluate each candidate feature's contribution to the model's performance through an iterative process, selecting 

features that maximize predictive accuracy while maintaining model parsimony. This approach proves particularly 

valuable in datasets with high dimensionality, where identifying the most informative features can significantly 

improve model efficiency and interpretability. The selection process can be formalized through the following 

optimization problem: 

For each step k, the algorithm selects feature x* that satisfies Equation 6: 

𝑥 ∗= arg 𝑚𝑖𝑛
𝑥∈𝑋∖𝑆𝑘

MSE(𝑓(𝑆𝑘 ∪ {𝑥}), 𝑌)                                                                                                                                (6) 

where 𝑋 ∖Sk denotes the set of features not yet selected. The Mean Squared Error (MSE) across the 5-fold cross-

validation is computed according to Equation 7: 

MSE =
1

5
∑  5

𝑖=1
1

𝑛𝑖
∑  

𝑛𝑖
𝑗=1 (𝑦𝑖𝑗 − �̂�𝑖𝑗)

2
                                                                                                                               (7) 

where ni represents the number of samples in the i-th fold. yij represents the true value for the j-th sample in the i-th fold. 

ŷij represents the predicted value for the j-th sample in the i-th fold. The implementation of FSFS in this study employs 

a neural network with one hidden layer as the base model for feature evaluation. The process as shown in Figure 7(a) 

begins with an empty feature set and iteratively adds features that contribute most significantly to reducing the prediction 

error. The selection process incorporates a 5-fold cross-validation strategy, ensuring robust performance estimation and 

minimizing the risk of overfitting to particular data segments. To handle the mixed nature of variables in the traffic crash 

dataset, a comprehensive data preprocessing strategy was implemented. Categorical variables, including road type, 

weather conditions, and junction details, undergo one-hot encoding prior to the selection process. This transformation 

expands the initial feature space while preserving the categorical information structure. Numerical variables, such as 

vehicle count and speed limit, are standardized to zero mean and unit variance, ensuring equal scale consideration during 

the selection process.  

3.1.3. Backward Sequential Feature Selection 

Backward Sequential Feature Selection (BSFS) represents a wrapper-based feature selection approach that begins 

with the complete set of features and iteratively removes the least significant features until reaching a desired subset 

size. This method complements the forward selection approach by examining feature significance from the opposite 

direction, potentially capturing different feature interactions and dependencies. The elimination process can be 

formalized through the following optimization problem: 

For each step 𝑘, the algorithm removes feature x* that satisfies Equation 8: 

𝑥 ∗= arg 𝑚𝑖𝑛
𝑥∈𝑆𝑘

MSE(𝑓(𝑆𝑘 ∖ {𝑥}), 𝑌)                                                                                                                                 (8) 

where Sk \ {x} denotes the set of features remaining after removing feature x. The Mean Squared Error (MSE) across 

the 5-fold cross-validation is computed similar to FSFS. The implementation of BSFS employs the same neural 

network architecture with one hidden layer used in FSFS, maintaining consistency in the evaluation framework. The 

process begins with all twelve features and systematically eliminates features whose removal results in the smallest 

increase in prediction error. Like FSFS, the selection process incorporates a 5-fold cross-validation strategy to ensure 

robust performance estimation. The data preprocessing strategy for handling mixed variables remains consistent with 

the FSFS approach. Categorical variables undergo one-hot encoding, while numerical variables are standardized to 

zero mean and unit variance before the selection process begins. This preprocessing ensures fair comparison of 

feature importance regardless of their original scale or type. The process framework for FSFS implementation is 

shown in Figure 7(b). 
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                         Figure 7. (a) FSFS Framework      Figure 8. (b) BSFS Framework 

3.1.4. Information Gain 

Information Gain represents a filter-based feature selection approach adapted for regression problems, quantifying 

each feature's contribution to reducing uncertainty in predicting crash casualties. For a continuous target variable Y 

(number of casualties), the differential entropy H(Y) is calculated as shown in Equation 9: 

𝐻(𝑌) = −∫ 𝑝(𝑦)log (𝑝(𝑦))𝑑𝑦                                                                                                                                       (9) 

where p(y) is the probability density function of Y, estimated using kernel density estimation. The conditional entropy 

is defined by Equation 10: 

𝐻(𝑌 ∣ 𝑋) = −∬ 𝑝(𝑥, 𝑦)log (𝑝(𝑦 ∣ 𝑥))𝑑𝑦𝑑𝑥                                                                                                                (10) 

The Information Gain for each feature is subsequently calculated using Equation 11: 

𝐼𝐺(𝑌, 𝑋) = 𝐻(𝑌) − 𝐻(𝑌 ∣ 𝑋)                                                                                                                                       (11) 

Features are selected based on a significance threshold determined through Equation 12: 

𝜏 = 𝜇𝐼𝐺 + 𝑎𝜎𝐼𝐺                                                                                                                                                              (12) 

where 𝜇𝐼𝐺  is the mean of all IG values, 𝜎𝐼𝐺  is their standard deviation, and a is a scaling factor set to 1.5 to ensure 

selection of features with significantly higher information content. This adaptive threshold accounts for the varying 

scales of information gain across different datasets and feature types. To maintain consistency with the number of 

features (K) identified through the DOE analysis at α = 0.05, an iterative adjustment procedure was implemented for α 

until the number of selected features approximately matches K. 

3.1.5. Lasso Regularization 

Lasso (Least Absolute Shrinkage and Selection Operator) regularization represents a regression analysis method 

that performs both variable selection and regularization to enhance prediction accuracy and interpretability of the 

resulting statistical model. The Lasso estimator for the regression problem in this study is formulated as shown in 

Equation 13: 

�̂�lasso = ar g 𝑚𝑖𝑛
𝛽

  {
1

2𝑛
‖𝑦 − 𝑋𝛽‖2

2 + 𝜆‖𝛽‖1}                                                                                                                  (13) 

where y represents casualties, X is the feature matrix, β is the coefficient vector, and λ is the regularization parameter. 

The optimal λ is selected using 5-fold cross-validation to minimize mean squared error. Feature importance scores are 

calculated using Equation 14: 

Importance Score (𝑋𝑖) = |�̂�𝑖
std|                                                                                                                                     (14) 

where �̂�𝑖
std represents the standardized coefficient for feature i. The standardization ensures fair comparison across 

features of different scales. 

(a) (b) 
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3.1.6. Random Forest Feature Importance 

Random Forest Feature Importance leverages the ensemble nature of random forests to provide a robust measure of 

feature significance in predicting crash casualties. This method combines the predictive power of multiple decision trees 

with built-in feature evaluation mechanisms, making it particularly suitable for this mixed-type dataset containing both 

categorical and numerical variables. The importance score for each feature is calculated using the Mean Decrease in 

Impurity (MDI), specifically the decrease in variance for this regression task as of Equation 15: 

Importance(𝑋𝑖) =
1

𝑁𝑇
∑  

𝑁𝑇
𝑇=1 ∑  𝑛∈𝑁𝑇

Δ𝐼(𝑛, 𝑋𝑖)                                              (15) 

where NT is the number of trees in the forest, Δ𝐼(𝑛, 𝑋𝑖) is the impurity decrease at node n where feature Xi is used for 

splitting calculated as of Equation 16: 

Δ𝐼(𝑛, 𝑋𝑖) = 𝑤𝑛𝜎2(𝑛) − 𝑤𝑙(𝑛)𝜎2(𝑙(𝑛)) − 𝑤𝑟(𝑛)𝜎2(𝑟(𝑛))                               (16) 

3.1.7. Integrated Feature Selection Ranking 

The Combined Feature Selection Ranking methodology integrates the results from all five feature selection 

techniques using the Borda Count method, a positional voting system that accounts for the complete ranking information 

from each selection approach. This method provides a comprehensive aggregation of feature rankings while being robust 

to scale differences between different selection techniques. For a dataset with n features, each selection method 

contributes to the final ranking by assigning points based on position. For each feature Xi, the Borda count score is 

calculated as of Equation 17: 

ScoreBorda(𝑋𝑖) = ∑  6
𝑚=1 (𝑛 − 𝑟𝑚(𝑋𝑖) + 1)                                (17) 

where n is the total number of features (12 in this study), rm(Xi) is the rank of feature Xi in method m, and m represents 

each feature selection method (DOE, FSFS, BSFS, IG, Lasso, and RF). The final selection of features (K) is based on 

the ordered Borda scores. 

3.2. Machine Learning Models 

This study implemented twenty-five machine learning models across four categories to predict crash casualties, with 

configurations optimized for the traffic safety domain: 

3.2.1. Linear Models 

Three linear regression variants were implemented: standard Linear Regression, Ridge Regression (𝛼𝑟𝑖𝑑𝑔𝑒  = 1.0), 

and Lasso Regression (𝛼𝑙𝑎𝑠𝑠𝑜  = 0.1). These models established baseline performance and provided interpretable 

coefficients for factor impact assessment. 

3.2.2. Decision Tree Models 

Decision trees with varying complexity levels were implemented: Fine Tree (no maximum depth, minimum split: 2 

samples), Medium Tree (maximum depth: 6, minimum split: 10 samples), and Coarse Tree (maximum depth: 3, 

minimum split: 20 samples). These configurations balanced pattern capture capability with generalization potential. 

3.2.3. Ensemble Methods 

Seven ensemble methods were evaluated: Random Forest (100 trees, maximum depth: 10), Bagged Trees (10 

estimators, 50% sample bootstrapping), Gradient Boosting Regression (50 estimators, learning rate: 0.1), AdaBoost 

Regression (50 estimators), XGBoost, Light Gradient Boosting Machine (LightGBM), and Categorical Boosting 

(CatBoost). Default parameters were used for the last three models except for early stopping set at 10 rounds.  

3.2.4. Neural Network Models 

Fifteen configurations of Multi-Layer Perceptron Regressors were tested, each with a single hidden layer but varying 

neuron counts (10-200 neurons in increments of 10 up to 100, then 150 and 200). All networks used ReLU activation 

for hidden layers, linear activation for output, and a maximum of 500 training iterations with early stopping (patience: 

10). The range of neuron counts (was selected through manual experimentation to explore the relationship between 

model complexity and performance in crash casualty prediction. For comprehensive coverage of different architectural 

complexities, a systematic approach was implemented with 10-neuron increments in the lower range (10-90) to capture 

fine-grained performance differences in simpler architectures. After 100 neurons, we increased the increment to 50 

neurons (150, 200) to efficiently explore more complex architectures while managing computational resources. This 

approach allowed to thoroughly investigate the performance-complexity tradeoff across the spectrum from simple to 

highly complex neural networks while maintaining computational feasibility. 
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3.3. Training Configurations 

The model training process was structured into three distinct scenarios to comprehensively evaluate the effectiveness 
of different feature selection approaches. In Scenario 1 (baseline), all models were trained using the complete set of 12 
factors. Scenario 2 involved training models with top K features identified by each feature selection technique separately, 

where K was determined through the Design of Experiments (DOE) analysis at α = 0.05. This approach allowed for 
direct comparison of the effectiveness of different feature selection methods while maintaining consistent dimensionality 
across experiments. In Scenario 3, models were trained using a combined feature set determined through the Borda 
counting method, which integrated rankings from all six feature selection techniques to create a robust, consensus-based 
feature subset. Model performance was evaluated using multiple metrics to provide a comprehensive assessment: Root 
Mean Square Error (RMSE) for overall prediction accuracy, Mean Absolute Error (MAE) for average magnitude of 

errors, Mean Absolute Percentage Error (MAPE) for scale-independent error measurement, and training time to assess 
computational efficiency. The dataset was split into 70% training, 15% validation and 15% testing sets using Stratified 
Shuffle Split, maintaining the same split across all experiments to ensure fair comparison. 

4. Results and Discussion 

4.1. Feature Selection Results 

4.1.1. Design of Experiments 

The Design of Experiments (DOE) analysis, conducted at α = 0.05, revealed nine significant factors influencing 
crash casualties, as shown in the Pareto chart and Normal plot of standardized effects (Figures 9 and 10).  

 

Figure 9. Pareto Chart at α = 0.05 

 

1*= Number of Vehicles, 2*= Day of Week, 3*= time, 4*= First road Class, 5*= Road type, 6*= Speed limit, 7*= Junction Detail, 8*= light condition, 

9*= Weather Condition, 10*= Road Surface Condition, 11*= Urban or rural area, 12*= Did police officer attend 

Figure 10. Main effects plot for number of casualties fitted means 
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The number of vehicles involved emerged as the most influential factor with the highest standardized effect 

(approximately 60), followed by the day of the week and the time of the crash. The main effects plot demonstrates that 

the number of vehicles has the strongest positive correlation with casualty numbers, showing a marked increase from 

single- to multiple-vehicle crashes. 

4.1.2. Forward Sequential Feature Selection 

The FSFS analysis identified feature importance through an iterative process, as shown in Figure 11. The number of 

vehicles emerged as the most significant predictor with an importance score of 0.095, substantially higher than other 

features.  

 

Figure 11. FSFS feature importance results 

Police officer attendance and speed limit followed as the second and third most important features, with importance 

scores of 0.028 and 0.023 respectively. Temporal and spatial factors showed moderate importance, with time and 

urban/rural classification having scores around 0.01. Environmental conditions such as weather, light conditions, and 

road surface conditions demonstrated minimal predictive power with importance scores below 0.005, suggesting their 

relatively minor role in predicting crash casualties. 

4.1.3. Backward Sequential Feature Selection 

The BSFS, initialized with all features and retaining the top 11 variables, revealed a similar importance pattern to 

FSFS but with some notable differences, as illustrated in Figure 12. The number of vehicles maintained its position as 

the most crucial predictor with a dominant importance score of 0.085, more than twice the importance of the next feature. 

Police officer attendance and speed limit were again identified as significant predictors, with importance scores of 0.025 

and 0.023 respectively. Time and urban/rural classification showed moderate predictive power, with importance scores 

around 0.01-0.015. An interesting distinction from FSFS was the inclusion of road type in the selected feature set, though 

with relatively lower importance (0.005). Environmental factors again demonstrated minimal impact, with weather 

conditions showing the lowest importance score among all features. 

 

Figure 12. BSFS feature importance results 

4.1.4. Information Gain (IG) Analysis 

The IG analysis provided a different perspective on feature importance, quantifying each feature's contribution to 

reducing uncertainty in predicting crash casualties. As shown in Figure 13, the number of vehicles again emerged as the 

most informative feature with a standardized importance score of 0.25, followed closely by the speed limit (0.22).  

K =9 

K =9 
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Figure 13. IG feature importance results 

Notably, the urban or rural area classification showed higher relative importance (0.15) compared to other methods, 

ranking third in importance. Police officer attendance maintained its significance with a score of 0.14. Infrastructure-

related features - road type, first road class, and junction detail - formed a cluster of moderately important features with 

scores ranging from 0.05 to 0.07. In contrast to previous methods, temporal factors (time and day of the week) showed 

relatively lower importance scores (around 0.02), suggesting their limited information content in reducing prediction 

uncertainty. Weather conditions again ranked lowest among all features, confirming its minimal predictive value across 

different feature selection approaches. 

4.1.5. Lasso Regularization Analysis 

The Lasso regularization method provided a unique perspective on feature importance through coefficient 

magnitudes, as depicted in Figure 14. Interestingly, the day of the week emerged as the most influential feature with a 

total importance score of 0.14, slightly higher than the number of vehicles (0.135) which had dominated in other 

methods. Police officer attendance maintained its significance as the third most important feature (0.12), followed 

closely by junction detail (0.115). Speed limit showed moderate importance (0.08), while light conditions and 

urban/rural area classification demonstrated similar influence levels (approximately 0.06). Road-related features - road 

type, first road class, and road surface conditions - showed relatively lower importance scores ranging from 0.02 to 0.04. 

Weather conditions were effectively eliminated by the Lasso regularization (importance score near 0), indicating their 

minimal contribution to the prediction model when accounting for other features. This method's unique ranking pattern, 

particularly the high importance assigned to temporal factors, suggests that Lasso captured different aspects of feature 

relationships compared to other selection methods. 

 

Figure 14. Lasso Regression feature importance results 
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4.1.6. Random Forest Feature Importance Analysis 

The Random Forest method provided a distinct perspective on feature importance through its ensemble-based 

approach, as shown in Figure 15. Time emerged as the most influential feature with an importance score of 0.21, marking 

a significant departure from other methods' rankings. Day of week followed as the second most important feature (0.15), 

reinforcing the significance of temporal factors in crash casualty prediction. Junction detail and speed limit showed 

substantial importance (around 0.11), ranking third and fourth respectively. First road class and number of vehicles 

demonstrated moderate importance (approximately 0.09), with the latter showing notably lower relative importance 

compared to its dominant position in other methods. Environmental factors - weather conditions and light conditions - 

showed higher relative importance (0.07-0.08) in the Random Forest analysis compared to other methods. Interestingly, 

police officer attendance and urban/rural area classification, which ranked highly in other methods, showed the lowest 

importance scores (around 0.02) in the Random Forest analysis, suggesting different feature interaction patterns captured 

by this ensemble method. 

 

Figure 15. Random Forest feature importance results 

4.1.7. Integrated Feature Selection Analysis 

The Borda Count method provided a comprehensive consensus ranking by aggregating results across all feature 

selection techniques, offering a robust final assessment of feature importance. As illustrated in Figure 16, the number of 

vehicles emerged as the most consistently important predictor across all methods, achieving the highest Borda count 

score of 60 points.  

 

Figure 16. Borda Count (Combined Ranking) feature importance results 

Speed limit and police officer attendance followed closely with scores of 52 and 47 points respectively, indicating 

their strong and consistent influence across different selection approaches. The middle-tier features showed 

interesting patterns, with day of the week (42 points) and urban/rural classification (36 points) demonstrating 

substantial importance despite varying rankings in individual methods. Temporal and infrastructure -related features 

- time (35 points), junction details (31 points), and road class (30 points) - formed a cluster of moderately important 

predictors. Environmental and conditional factors consistently ranked lowest in the consensus ranking. Light 
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conditions (20 points), road surface conditions (14 points), and weather conditions (7 points ) received the lowest 

Borda count scores, reflecting their relatively minor contribution to crash casualty prediction across all selection 

methods. This consistent lower ranking suggests that while these factors may have situational importance, they are 

less crucial for overall casualty prediction compared to vehicular, temporal, and infrastructural factors. The Borda 

Count results effectively balanced the different perspectives provided by each selection method, from the sequence -

based approaches of FSFS and BSFS to the statistical foundations of Information Gain and the regularization-based 

insights of Lasso. This consensus ranking provides a robust foundation for feature selection in the subsequent 

modeling phase. 

The consistent identification of vehicle count, speed limit, and police officer attendance as top predictors across 

multiple feature selection methodologies underscores their fundamental role in determining crash casualty outcomes. 

This pattern reflects the physics of traffic crashes, where multiple vehicle involvement increases the number of potential 

casualties, while higher speeds amplify impact forces during collisions, resulting in more severe injuries. The 

prominence of police officer attendance likely represents a proxy variable for crash severity, as officers tend to be 

dispatched to more serious incidents. Interestingly, environmental factors (weather, road surface, and light conditions) 

consistently ranked lowest across all selection methods, challenging conventional assumptions about their primary role 

in crash causation. This finding suggests that while adverse environmental conditions may increase crash probability, 

they play a less significant role in determining casualty counts once a crash occurs. From a policy perspective, this 

implies that interventions focused on vehicle speed management and multi-vehicle interaction points may yield greater 

casualty reduction benefits than those targeting weather-related driving conditions. 

4.2. Machine Learning Models Performance 

4.2.1. Baseline Performance 

Using all available factors, the models established comprehensive benchmark performance levels for predicting crash 

casualties as shown in Figures 17 and 18. XGBoost emerged as the most effective model in the baseline scenario, 

achieving an RMSE of 0.672, MAE of 0.373, and MAPE of 23.57%. This was closely followed by LightGBM with an 

RMSE of 0.672, MAE of 0.373, and MAPE of 23.59%, demonstrating the robust performance of modern gradient 

boosting frameworks. The traditional Random Forest implementation maintained competitive performance (RMSE = 

0.672, MAE = 0.372, MAPE = 23.51%), though requiring significantly more computational resources. The neural 

network architectures showed varying degrees of success, with the 150-neuron configuration achieving the best 

performance among neural networks (RMSE = 0.676, MAE = 0.369, MAPE = 23.05%). This suggests that while 

increased model capacity can capture more complex patterns in the data, the benefits begin to plateau beyond certain 

architectural complexity. Notably, the simpler 50-neuron configuration achieved comparable results (RMSE = 0.678, 

MAE = 0.369, MAPE = 23.06%) with substantially reduced training time. Linear models, while computationally 

efficient, showed moderate performance with Linear and Ridge Regression both achieving an RMSE of 0.679, MAE of 

0.382, and MAPE of 24.22%. Lasso Regression demonstrated slightly diminished performance (RMSE = 0.704, MAE 

= 0.409, MAPE = 25.96%), suggesting that the strong regularization might be oversimplifying the underlying 

relationships in the data. The computational overhead varied significantly across models, ranging from 0.06 minutes for 

Ridge Regression to 69.1 minutes for the 200-neuron neural network. XGBoost demonstrated exceptional efficiency, 

requiring only 1.9 minutes of training time while achieving top performance metrics.  

This represents a significant improvement over the traditional Random Forest's training time of 37.1 minutes, 

highlighting the importance of considering both prediction accuracy and computational efficiency in model selection. 

Gradient Boosting variants showed consistent performance, with the standard Gradient Boosting implementation 

achieving an RMSE of 0.675, MAE of 0.377, and MAPE of 23.83%. CatBoost, while slightly behind XGBoost and 

LightGBM in accuracy (RMSE = 0.673, MAE = 0.375, MAPE = 23.70%), demonstrated robust handling of categorical 

features and moderate training times of 5.3 minutes. From an absolute performance perspective, the best models in the 

baseline scenario achieved RMSE values of approximately 0.672, representing a prediction error of just over half a 

casualty per crash. Considering that the dataset has a mean of 1.28 casualties per crash (σ = 0.71), which is highly 

satisfactory for this challenging prediction domain. The achieved MAE of 0.372-0.373 indicates that predictions deviate 

on average by less than 0.4 casualties from actual values, providing sufficient accuracy for practical traffic safety 

applications such as risk assessment and resource allocation. These absolute performance metrics are particularly 

impressive given the complex, multi-factorial nature of traffic crashes and the inherent randomness in casualty outcomes 

that depend on numerous factors not captured in the dataset (e.g., vehicle safety features, seat belt usage, and individual 

physiological responses to trauma). The superior performance of gradient boosting frameworks, particularly XGBoost 

and LightGBM, demonstrates the importance of ensemble techniques in capturing complex, non-linear relationships 

inherent in crash casualty prediction. 
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Figure 17. Models performance using all the factors 

These methods excel at identifying interaction effects between features, such as how speed limit impacts casualty 

counts differently across various road types or times of day. Furthermore, their robustness to outliers, which are common 

in crash data where unusually severe incidents can skew distributions, contributes to their prediction accuracy. The 

computational efficiency advantage of XGBoost compared to traditional Random Forest while achieving comparable 

accuracy represents a significant practical advancement for real-time traffic safety applications. This efficiency enables 

more frequent model retraining as new crash data becomes available, facilitating adaptive safety systems that can 

respond to emerging patterns in crash characteristics. Neural network performance exhibited diminishing returns beyond 

150 neurons, suggesting an upper bound on the complexity of patterns in the crash data that can be effectively captured 

through deep learning approaches. The competitive performance of the 50-neuron configuration indicates that moderate 

architectural complexity can sufficiently model the underlying casualty mechanisms while maintaining computational 

feasibility for deployment in resource-constrained traffic management systems. 

4.2.2. Feature Selection Impact Analysis 

The implementation of different feature selection techniques revealed varying impacts on model performance and 

computational efficiency across all models as shown in Figures 19-21. Each technique demonstrated distinct 

characteristics in balancing prediction accuracy with computational overhead, while maintaining the integrity of the 

underlying relationships in the data. Figure 19 presents the RMSE values across all models and feature selection 

scenarios. The DOE approach, identifying nine significant factors, maintained comparable accuracy to the baseline 

scenario while reducing the feature space by 25%. XGBoost achieved an RMSE of 0.671 with this reduced feature set, 

showing a slight improvement over its baseline performance of 0.672. 
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Figure 18. Models training time using all the factors 

 

Figure 19. Models RMSE results across all the scenarios 

LightGBM followed closely with an RMSE of 0.672, matching its baseline performance. Among neural network 

configurations, the 150-neuron architecture achieved an RMSE of 0.676 with DOE selection, comparable to its baseline 

performance of 0.676. Linear models showed minimal variation in RMSE with DOE selection (Linear Regression: 

0.679, Ridge: 0.679), suggesting that these models effectively captured the key relationships with reduced 

dimensionality. The FSFS approach produced comparable RMSE values to DOE, with XGBoost achieving 0.672 and 

LightGBM 0.673. The method showed particular strength with ensemble methods, where all gradient boosting variants 

maintained RMSE values within 0.3% of their baseline performance. Neural networks exhibited more variability under 



Civil Engineering Journal         Vol. 11, No. 04, April, 2025 

1260 

 

FSFS, with the 150-neuron configuration showing stable performance (RMSE = 0.676), while smaller architectures 

experienced slight performance degradation (10-neuron: 0.680). BSFS demonstrated robust RMSE performance across 

model types, particularly for XGBoost (0.673) and Random Forest (0.671). An interesting pattern emerged with neural 

networks, where moderate-sized architectures (50-70 neurons) slightly outperformed both smaller and larger 

configurations under BSFS. The 70-neuron configuration achieved an RMSE of 0.676, while the 10-neuron achieved 

0.681 and the 200-neuron reached 0.677. Information Gain selection showed the most variable impact on RMSE, with 

some models experiencing minor degradation while others improved. XGBoost maintained strong performance (RMSE 

= 0.672), while CatBoost showed a similar performance (RMSE = 0.672) compared to its baseline of 0.673.  

Neural networks displayed increased sensitivity to IG selection, with performance variations of up to 0.7% from 

baseline, highlighting the method's impact on feature interactions captured by these models. Random Forest Feature 

Importance selection demonstrated consistent RMSE performance across model types, with XGBoost (0.672), 

LightGBM (0.673), and CatBoost (0.673) all maintaining values close to baseline. The approach showed particular 

strength with decision tree models, where all variants maintained stable RMSE values (Fine Tree: 0.677, Medium Tree: 

0.679, Coarse Tree: 0.680). Lasso Regularization feature selection yielded competitive RMSE values, particularly for 

gradient boosting methods (XGBoost: 0.673, LightGBM: 0.673). The approach demonstrated special synergy with linear 

models, where Ridge Regression achieved an RMSE of 0.679, identical to its baseline performance despite using fewer 

features. The Borda Count method, integrating insights from all feature selection techniques, achieved robust RMSE 

performance across different model architectures. This combined approach produced an RMSE of 0.671 with XGBoost, 

slightly improving over its baseline performance of 0.672, while maintaining strong performance with LightGBM 

(0.672) and Random Forest (0.672). Neural networks showed stable performance under this integrated approach, with 

the 150-neuron configuration achieving an RMSE of 0.676, consistent with its baseline performance. 

Figure 20 illustrates MAE values across all scenarios, revealing subtly different patterns than RMSE analysis. The 

DOE approach maintained competitive MAE values, with XGBoost achieving 0.372 and Random Forest reaching 0.372. 

Neural networks showed less consistent MAE performance under DOE selection, with the 150-neuron configuration 

achieving 0.369, while the 10-neuron architecture reached 0.376. FSFS demonstrated strong MAE performance for 

ensemble methods, with XGBoost (0.373) and LightGBM (0.373) maintaining values consistent with baseline. The 

method showed particular strength with larger neural networks, where the 150-neuron configuration achieved an MAE 

of 0.369. This suggests that sequential forward selection effectively preserved features critical for absolute error 

minimization in complex models.  

 

Figure 20. Models MAE results across all the scenarios 

BSFS yielded competitive MAE results, particularly for Random Forest (0.372) and XGBoost (0.373). Neural 

networks showed varying responses, with the 50-neuron configuration achieving an MAE of 0.369, performing similarly 

to both smaller and larger architectures. This pattern suggests that moderate-sized neural networks achieve optimal 



Civil Engineering Journal         Vol. 11, No. 04, April, 2025 

1261 

 

balance between model capacity and feature efficiency for MAE minimization. Information Gain selection demonstrated 

less consistent MAE performance, with values ranging from 0.372 for XGBoost to 0.393 for the 10-neuron neural 

network. This wider variation suggests that Information Gain selection may prioritize features that reduce variance 

(affecting RMSE) over those that minimize absolute errors (affecting MAE). Random Forest Feature Importance 

selection maintained competitive MAE values for ensemble methods (XGBoost: 0.373, LightGBM: 0.373, Random 

Forest: 0.372), while showing more variable impact on neural networks. The 50-neuron configuration achieved an MAE 

of 0.369 under this selection method, suggesting effective feature identification for intermediate complexity models. 

Lasso Regularization yielded strong MAE performance, particularly for XGBoost (0.372) and Random Forest (0.372). 

Linear models maintained stable MAE under Lasso selection (Linear Regression: 0.382, Ridge: 0.382), demonstrating 

the method's ability to preserve features crucial for these simpler models. The Borda Count method achieved consistent 

MAE performance across model types, with XGBoost reaching 0.372, Random Forest 0.372, and the 150-neuron neural 

network 0.369. This integrated approach demonstrated particular strength in balancing feature importance across 

different error metrics, resulting in robust performance regardless of model architecture. 

Figure 21 presents MAPE values, offering insights into proportional prediction errors across scenarios. The DOE 

approach maintained competitive MAPE performance, with Random Forest achieving 23.51% and XGBoost 23.57%. 

 

Figure 21. Models MAPE results across all the scenarios 

Neural networks showed more variable MAPE under DOE selection, with the 150-neuron configuration achieving 

23.06%, while the 10-neuron architecture reached 23.72%. FSFS demonstrated strong MAPE performance for ensemble 

methods, with Random Forest (23.52%) and XGBoost (23.57%) maintaining values virtually identical to baseline. The 

method showed particular strength with the 150-neuron configuration, achieving a MAPE of 23.06%, matching its 

baseline performance. This consistency suggests that forward selection effectively preserved features critical for 

proportional error minimization. BSFS yielded variable MAPE results, with values ranging from 23.52% for Random 

Forest to 24.38% for the 10-neuron neural network. This wider variation suggests that backward elimination may 

occasionally remove features that contribute to proportional accuracy, particularly for simpler models with limited 

capacity to compensate through feature interactions. Information Gain selection showed the most substantial impact on 

MAPE, with values ranging from 23.57% for XGBoost to 27.93% for the 150-neuron neural network. This significant 

variation highlights that Information Gain may prioritize features that reduce overall error magnitude rather than 

proportional accuracy, potentially affecting prediction quality for smaller casualty values. Random Forest Feature 

Importance selection maintained competitive MAPE for ensemble methods (Random Forest: 23.51%, XGBoost: 

23.58%), while showing more variable impact on neural networks. The 50-neuron configuration achieved a MAPE of 

24.20%, suggesting that this selection method may prioritize features more relevant to larger models' internal structure. 

Lasso Regularization yielded consistent MAPE performance, particularly for XGBoost (23.57%) and Random Forest 

(23.51%). Linear models maintained stable MAPE under Lasso selection (Linear Regression: 24.22%, Ridge: 24.22%), 
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demonstrating the method's effectiveness in preserving proportionally important features. The Borda Count method 

achieved remarkably stable MAPE performance across model types, with XGBoost reaching 23.52%, Random Forest 

23.51%, and the 150-neuron neural network 23.06%. This integrated approach demonstrated particular strength in 

balancing feature importance for proportional accuracy, resulting in consistent performance across different model 

architectures. 

Figure 22 demonstrates the computational efficiency gains achieved through feature selection. The DOE approach 

reduced average training time across all models to 11.3 minutes compared to the baseline average of 12.4 minutes. 

Particularly significant reductions were observed for Random Forest (reduced to 43.9 minutes from the baseline of 58.2 

minutes) and the 200-neuron neural network (reduced to 54.5 minutes from the baseline of 69.2 minutes), demonstrating 

the method's efficiency benefits for computationally intensive models. FSFS demonstrated similar efficiency 

improvements, reducing average training time to 11.1 minutes. The most substantial gains were observed for the 200-

neuron neural network (reduced to 50.1 minutes) and Random Forest (reduced to 41.7 minutes), highlighting the 

method's effectiveness in eliminating computationally expensive features while maintaining predictive performance. 

BSFS achieved the most significant computational efficiency gains among all selection methods, reducing average 

training time to 8.2 minutes. The 200-neuron neural network experienced a remarkable reduction in training time to 36.4 

minutes, while Random Forest training time decreased to 33.8 minutes.  

These substantial improvements demonstrate the method's exceptional capability to identify and remove 

computationally intensive features with minimal impact on prediction accuracy. Information Gain selection reduced 

average training time to 9.5 minutes, with particularly notable reductions for the 200-neuron neural network (reduced 

to 42.1 minutes) and Random Forest (reduced to 37.4 minutes). This efficiency gain combined with competitive RMSE 

performance suggests that Information Gain effectively identifies features that provide substantial information with 

lower computational requirements. Random Forest Feature Importance selection achieved an average training time of 

10.1 minutes, with significant reductions for the 200-neuron neural network (reduced to 44.6 minutes) and Random 

Forest itself (reduced to 35.6 minutes). This substantial self-optimization demonstrates the method's ability to identify 

computationally efficient features within its own algorithmic framework. Lasso Regularization reduced average training 

time to 9.7 minutes, with notable reductions for the 200-neuron neural network (reduced to 43.3 minutes) and Random 

Forest (reduced to 36.7 minutes). The method's strong performance in both accuracy and efficiency metrics highlights 

its effectiveness in identifying truly essential features. The Borda Count method achieved an average training time of 

11.3 minutes, with significant reductions for the 200-neuron neural network (reduced to 54.1 minutes) and Random 

Forest (reduced to 43.5 minutes). While not achieving the maximum possible efficiency gains of specialized methods 

like BSFS, this integrated approach offered the best balance between computational efficiency and robust performance 

across different model architectures and evaluation metrics. 

 

Figure 22. Models training time results across all the scenarios 
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Across all feature selection techniques, XGBoost consistently demonstrated the best balance between prediction 

accuracy and computational efficiency, achieving top-tier RMSE (0.671-0.673), MAE (0.372-0.373), and MAPE 

(23.52-23.58%) values while maintaining training times between 1.6 and 1.9 minutes. This exceptional performance can 

be attributed to XGBoost's gradient boosting architecture that effectively handles both numerical and categorical features 

through its tree-based structure, while its built-in regularization mechanisms prevent overfitting even with reduced 

feature sets. LightGBM followed closely in performance metrics (RMSE = 0.672-0.674, MAE = 0.373-0.374) with 

similar training times (1.5-1.8 minutes), benefiting from its leaf-wise growth strategy for enhanced efficiency. 

Traditional Random Forest, while achieving comparable accuracy metrics (RMSE = 0.671-0.673, MAE = 0.372-0.373), 

required substantially more computational resources (33.8-43.9 minutes) due to its less optimized parallelization 

strategy. Among the neural network configurations, the 150-neuron architecture consistently outperformed both smaller 

and larger networks across most feature selection techniques, suggesting an optimal capacity for capturing complex 

patterns without unnecessary computational overhead. Regarding feature selection approaches, the Borda Count method 

emerged as the most robust technique, providing consistent performance improvements across different model 

architectures while maintaining interpretability. BSFS achieved the most substantial computational efficiency gains but 

with slightly less consistent accuracy metrics. DOE offered a statistically rigorous approach with balanced performance, 

while FSFS demonstrated particular synergy with gradient boosting methods. Information Gain and Random Forest 

Feature Importance exhibited more variable impacts across models but maintained competitive performance for 

ensemble methods. This comparative analysis reveals important considerations for operational implementation, 

suggesting that combining an optimal feature selection strategy (such as Borda Count or BSFS) with efficient model 

architectures (particularly XGBoost or LightGBM) offers the most practical pathway for developing real-time traffic 

safety prediction systems. 

4.2.3. Partial Dependence Plot Analysis 

To better understand the underlying relationships between key features and predicted crash casualties, Partial 

Dependence Plots (PDPs) were generated from the XGBoost model using the combined feature selection approach 

(Figure 23). These plots reveal complex non-linear relationships and important thresholds in the feature-target 

interactions. The number of vehicles show the strongest effect on predicted casualties, with a distinct non-linear 

relationship. The impact increases sharply from 1 to approximately 10 vehicles (partial dependence rising from about 

1.1 to 2.6), followed by a plateau at around 2.6 for crashes involving more than 10 vehicles. This pronounced effect 

aligns with the feature importance results and confirms that multi-vehicle crashes significantly increase casualty risk, 

though the marginal impact diminishes beyond 10 vehicles. The steepest increase occurs between 1-6 vehicles (1.1 to 

2.0), suggesting that each additional vehicle in the early stages of multi-vehicle crashes substantially increases the 

complexity and potential for casualties. Speed limit demonstrates a clear positive correlation with casualty predictions, 

showing a consistent upward trend from 20 mph (1.18) to 70 mph (1.45). The curve shows three distinct phases: a 

moderate increase from 20-30 mph (1.18 to 1.25), a steeper rise from 30-40 mph (1.25 to 1.35), and a more gradual 

increase above 40 mph. This pattern suggests that moderate-speed zones (30-40 mph) represent a critical transition point 

for crash severity, where the risk of casualties increases most dramatically. The continued upward trend at higher speeds 

indicates that while the rate of increase slows, higher speed limits consistently correlate with more severe outcomes. 

The time-of-day PDP reveals interesting temporal patterns, with the lowest casualty predictions around 7:30 AM 

(approximately 1.20) and a gradual increase throughout the day, peaking dramatically in the late evening hours (1.36 at 

22:00).  

This pattern challenges traditional assumptions about rush hour risks and suggests that nighttime driving conditions 

may pose greater risks for casualty crashes despite lower traffic volumes. There's also a smaller peak around midday 

(approximately 1.28 at 15:00), potentially corresponding to lunch-hour traffic patterns. Road class analysis shows 

varying casualty predictions across different road types, with A roads showing the highest predicted casualties 

(approximately 1.4), followed by a significant drop for A(M) roads (1.29), and progressively lower values for B roads 

(1.285), C roads (1.28), and unclassified roads (1.27), with Motorways showing moderate risk (1.30). This non-

hierarchical pattern suggests that A roads, which often combine relatively high speeds with more frequent junctions and 

access points, create particularly hazardous conditions compared to more controlled-access A(M) roads and Motorways. 

The day-of-week PDP reveals a U-shaped pattern with higher casualty predictions on weekends (peaking at 

approximately 1.32 on Sunday and 1.33 on Saturday) and lower predictions mid-week (minimum of about 1.26 on 

Wednesday). This weekend elevation suggests that recreational driving patterns, potentially combined with increased 

alcohol consumption and different trip purposes, may contribute to increased casualty risk despite lower overall traffic 

volumes compared to weekdays. Police officer attendance shows an inverse relationship with predicted casualties, with 

attended crashes showing higher predictions (approximately 1.31 for "Yes") compared to self-reported incidents (around 

1.18 for "Self-Reported"), with "No" attendance falling in between (1.21). This relationship likely reflects the severity-

based reporting system rather than a causal effect, as more severe crashes with higher casualty counts typically require 

police attendance, while minor incidents may be self-reported. This makes this feature an important control variable in 

the prediction model. 
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Figure 23. Partial Dependence Plot showing the relationship between a) day of the week, b) first road class, c) police officer 

attendance, d) speed limit, e) number of vehicles and f) time of the day and predicted crash casualties 

4.3. Comparison with Previous Studies 

This analysis juxtaposes the results of this investigation with existing research in the field of traffic safety analytics. 

Utilizing the XGBoost model, this study achieved exemplary results with an RMSE of 0.671, MAE of 0.372, and MAPE 

of 23.52%, which surpasses the performance metrics reported in contemporary studies. For example, previous research 

achieved a 93% accuracy with XGBoost, outperforming traditional models such as Decision Trees (88%), Random 

Forest (84%), and Logistic Regression (63%), reinforcing this conclusion that ensemble methods surpass the 

effectiveness of conventional models [14]. Additionally, this research not only confirmed high levels of accuracy but 

also demonstrated increased computational efficiency, with training times reduced to just 1.9 minutes. In comparison, 

other researchers achieved an 81.45% accuracy using Random Forest to predict crash severity in New Zealand, with 

noted enhancements of 1-8% when models were retrained with selected features [15]. In contrast, this use of an 

integrated feature selection approach showed consistently slight performance variations of less than 0.3% across 

different methods, suggesting a more stable and dependable feature selection process. Furthermore, a study reported an 

RMSE of 0.64242 with narrowly tailored Neural Networks (10 neurons) for predicting casualties in London's traffic 

scenarios [14]. However, this research indicates that moderately-sized neural networks (150 neurons) perform better, a 

variance likely driven by this more extensive dataset of 517,000 records compared to their 91,200, requiring a greater 

model capacity to decode complex data patterns effectively. 

This research pinpointed five key factors consistently influential across various feature selection methods: the 

number of vehicles involved, speed limit, police presence, day of the week, and whether the area was urban or rural. 

In contrast, these findings showed that weather conditions had minimal predictive value, ranking them lowest in 

this Borda count analysis. Previous studies using SHAP analysis identified road category and vehicle count as top 

predictors, with human factors like drug involvement also emerging as significant [15]. While these results affirmed 
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the critical role of vehicle-related factors, the impact of environmental conditions was notably different, likely 

reflecting regional variations between New Zealand and the UK. The relationship between speed and crash severity 

observed in this partial dependence plots corroborated findings from other research, which indicated that average 

spot speed was a significant predictor of crash density in their multiple linear regression models [3]. This analysis 

adds to this by pinpointing a critical threshold in the 30-40 mph range, beyond which the risk of casualties sharply 

escalates. 

These comparisons demonstrate that this methodology not only validates previous findings regarding the 

effectiveness of ensemble methods and the importance of vehicle-related factors but also extends the current 

understanding of feature selection in traffic crash prediction. This integrated Borda count approach provides a more 

robust framework for feature selection compared to single-method approaches, while this comprehensive analysis 

of computational efficiency across different model architectures offers valuable insights for practical 

implementation in traffic safety systems. Furthermore, this identification of specific transition points in feature 

relationships through partial dependence plots provides more nuanced understanding of risk factors than previously 

documented. 

5. Conclusions 

This study investigated the effectiveness of various feature selection techniques for identifying key predictive factors, 

followed by the application of machine learning models for traffic crash casualty prediction, with a particular focus on 

the benefits of integrating multiple feature selection approaches through the Borda Count method. Through 

comprehensive analysis of six feature selection methods and twenty-five machine learning models, several key findings 

emerged. The Borda Count method demonstrated superior capability in integrating insights from multiple feature 

selection techniques, achieving the best overall RMSE of 0.671 with XGBoost, while maintaining comparable MAE 

(0.372) and MAPE (23.52%) to the baseline scenario. The method's average training time of 11.3 minutes represented 

a significant improvement over baseline performance while offering more stable predictions across different model 

architectures. 

Key findings across model architecture: 

 Ensemble methods consistently demonstrated superior performance (RMSE = 0.671-0.673); 

 Moderate-sized neural networks (150 neurons) achieved optimal performance; 

 Linear models showed the best results when combined with Lasso and FSFS approaches; 

 XGBoost with Borda Count selection provided the best balance of accuracy and efficiency. 

The analysis revealed important insights about feature importance: 

 Number of vehicles, speed limit, and police officer attendance emerged as most influential factors; 

 Environmental factors showed lower importance than traditionally assumed; 

 Temporal patterns revealed unexpected risk distributions across different times of day. 

From a practical perspective, these findings demonstrate that carefully selected features, combined with the Borda 

Count method, can achieve superior performance while maintaining computational efficiency. The systematic 

evaluation of model architectures reveals that moderate complexity often achieves optimal results, suggesting a 

practical pathway for implementing efficient traffic safety systems. Future research should explore dynamic feature 

selection methods that can adapt to temporal changes in crash patterns and investigate the integration of real-time 

traffic and weather data. While this study was limited by geographic specificity and a fixed time period, the 

methodological framework provides a robust foundation for implementing efficient and accurate  crash prediction 

systems. Despite the promising results, several barriers may challenge practical implementation in traffic 

management systems. These include data integration challenges across siloed databases, computational infrastructure 

requirements for deploying ensemble models, technical expertise gaps within traditional traffic departments, 

limitations in adapting this approach for real-time processing, organizational resistance to new methodologies, 

regulatory approval challenges for complex prediction models, and the need for geographic recalibration when 

implementing in different contexts. Future research should address these implementation barriers through 

standardized data integration frameworks, model compression techniques to reduce computational requirements, 

simplified implementation toolkits for traffic safety professionals, and adaptation of the methodology for real -time 

prediction scenarios with explicit consideration of operational constraints, especially in the context of Highway 

Safety Manual development. 
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