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Abstract 

Optimal design considering buckling of compressive members is an important subject in structural engineering. The 
strength of compressive members can be compensated by initial geometrical imperfection due to the manufacturing 
process; therefore, geometrical imperfection can affect the optimal design of structures. In this study, the metaheuristic 
teaching-learning-based-optimization (TLBO) algorithm is applied to study the geometrical imperfection-sensitivity of 
members’ buckling in the optimal design of space trusses. Three benchmark trusses and a real-life bridge with continuous 
and discrete design variables are considered, and the results of optimization are compared for different degrees of 
imperfection, namely 0.001, 0.002, and 0.003. The design variables are the cross-sectional areas, and the objective is to 
minimize the total weight of the structures under the following constraints: tensile and compressive yielding stress, Euler 

buckling stress considering imperfection, nodal displacement, and available cross-sectional areas. The results reveal that 
higher geometrical imperfection degrees significantly change the critical buckling load of compressive members, and 
consequently, increase the weight of the optimal design. This increase varies from 0.4 to 119% for different degrees of 
imperfection in the studied trusses. 
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1. Introduction 

Stability of thin-walled members, such as composite plates, shells, and steel cross-sections, is a major concern in the 

design of lightweight structures [1-4]. For many years, optimal design considering buckling of members under 

compression was an interesting subject in structural engineering. In 1995, Cheng [5] carried out an optimal solution for 

truss members with local buckling constrains using the -relaxed approach. Guo et al. [6] applied a new approach for 

truss topology optimization with stress and local buckling constrains. Many researchers have proposed different methods 

to handle the truss optimization problems with buckling constrains [7-10]. New applications of truss elements in robotics 

to achieve the optimum stiffness-to-weight ratios have brought a new perspective into buckling failure of truss structures. 

It is well-recognized that the strength of compressive members, specifically thin-walled members such as shells and 

pipes, is generally influenced by their initial imperfection due to the manufacturing process [11,12]. Initial steps to solve 

truss optimization problems with local buckling constraints considering sensitivity to geometrical imperfection was 

carried out by Pedersen and Nielson [13], based on the Danish Standards DS409 using Sequential Linear Programming. 

In the recent years, different methods have been proposed to study the effects of geometrical imperfection in optimal 

solution of truss structures. Jalalpour et al. [14] proposed a topology optimization method for the design of trusses with 

random imperfection using a gradient-based optimizer. Madah and Amir [15] studied local and global buckling of trusses 

with geometrical imperfection based on geometrically nonlinear beam modeling using the gradient-based Method of 
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Moving Asymptotes. In this study, geometrical imperfection-sensitivity of members’ local buckling constraints in size 

and shape optimization of small- and large-scale trusses is investigated using a metaheuristic optimization technique. 

Application of metaheuristic optimization techniques in engineering and science has become increasingly common. 

To compare with gradient-based optimization techniques, metaheuristics can be more efficient in solving non-

differentiable functions with many local optima [16]. Many metaheuristic methods have been introduced, each with 

different characteristics, advantages, and relative disadvantages, including: Genetic Algorithm (GA) [17] which is based 

on the process of natural evolution, Ant Colony Optimization (ACO) [18] which is based on the foraging behaviors of 

ant colonies, and Particle Swarm Optimization (PSO) [19] which is based on the interactions among a flock of birds. In 

general, metaheuristics can be divided into two categories: trajectory methods and population-based methods. Teaching-

Learning-Based-Optimization (TLBO) is an innovative population-based optimization method developed by Rao et al. 

[16]. TLBO is inspired from the learning process in schools where the influence of a teacher on learners and the 

interactions between learners lead to improved performance level of students and a better overall performance of the 

class. Correspondingly, this method consists of two main phases: the teacher phase and the learner phase. In section 3, 

the basic methodology of TLBO is explained in detail. 

Although gradient-based optimization techniques have specific applications in structural optimization problems (see 

e.g. [20,21]), metaheuristic optimization methods have a rather extensive application due to the complexity of the search 

space and design constraints. Many researchers have used these evolutionary techniques for size, shape, and topology 

optimization of trusses and frames. Rajeev and Krishnamoorthy [22] used GA for size and shape optimization of trusses 

considering member cross-sections as discrete variables, while Cao [23] took the same approach for framed structures. 

Fourie and Groenwold [24] used PSO for size and shape optimization of trusses and a torque arm, and Gomes [25] added 

frequency constraints to the truss optimization using PSO. Kaveh and Zolghadr [26] improved PSO by enhancing its 

exploration capabilities, and applied the modified PSO for size and shape optimization under frequency constraints. 

Camp and Bichon [27] used ACO for discrete optimization of space trusses. In recent years, many researchers have used 

TLBO for design optimization of trusses, frames, and bridges, and they have shown that in comparison with other 

evolutionary algorithms, TLBO has a competent performance [28-31]. 

In this paper, the effect of manufacturing geometrical imperfection on buckling constraints in design optimization 

problems of space trusses is studied. To this end, three benchmark trusses and a real-life bridge are considered for size 

and shape optimization under the following constraints: tensile and compressive yielding stress, Euler buckling stress 

considering imperfection, nodal displacement, and available cross-sectional areas. As the optimization algorithm, the 

teaching-learning-based-optimization technique is used. 

2. Truss Optimization Formulation 

Size and shape optimization of trusses typically focuses on finding the minimum weight (or cost) of the structure 

while a set of structural constraints are satisfied. In this study, yielding stress, buckling, nodal displacement, and cross-

sectional areas are considered as the strength and serviceability constraints. To this end, the truss optimization problem 

is formulated as follows: 
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Where W is the weight of the truss, m is the number of members, mc is the number of members in compression, and for 

each member i, ρi is the material unit weight, Li is the length, Ai is the cross-sectional area, σi is the stress, σi
l is the stress 

lower bound corresponding to maximum allowable compressive stress, σi
u is the stress upper bound corresponding to 

maximum allowable tensile stress, σj
b is the allowable buckling stress considering imperfection, Amin and Amax are the 

minimum and maximum allowable cross-sectional areas, respectively, n is the number of nodes, and for each node k, δk 

is the displacement, δk
l is the displacement lower bound corresponding to maximum allowable displacement in the 

negative coordinate, and δk
u is the displacement upper bound corresponding to maximum allowable displacement in the 

positive coordinate. The buckling critical stress considering imperfection in Eq. (3) can be obtained by solving the 

following equation for σb [13]: 
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Where for each compressive member j, σj
y is the yield stress, σj

eu is the Euler buckling stress, Ej is the elastic modulus, 

Ij is the second moment of area, Vj is the imperfection (i.e. initial deflection at the center of the member), cj is the distance 

from the neutral axis to the point of maximum compressive stress, and rj is the radius of gyration. Radius of gyration 

can be approximately calculated based on the cross-sectional area as 𝑟 = 𝑎𝐴𝑏 for different available sections. For hollow 

pipes, 𝑎 = 0.4993 and 𝑏 = 0.6777 [32].  

A penalty function is multiplied by the weight of the truss to account for constraint violation. The stress penalty for 

truss design d, Pd
str, is defined as: 
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The buckling penalty for truss design d, Pd
bkl, is defined as: 
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The displacement penalty for truss design d, Pd
dis, in the x, y, and z directions is defined as: 
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The total penalty for truss design d, Pd, is defined as: 

(1 )str bkl dis
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The value of α is set to 2 as suggested in other studies [31]. Thus, the penalized objective function for truss design d 

can be obtained as: 

d d dF W P  (16) 
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3. Teaching-Learning-Based-Optimization 

In the TLBO method, the design variables (or the variable vector) are considered as the students in a classroom. The 

main objective of the algorithm is to improve the performance of each student, and therefore the average performance 

of the class, in each iteration. This is implemented through interactions between students and the teacher and cooperative 

interactions between students. The original structure of the TLBO method consists of two phases: the Teacher Phase in 

which the best student is selected as the teacher (i.e. the best design vector), and the students (i.e. all design vectors) 

update their knowledge (i.e. their values) to move towards the teacher; and the Leaner Phase in which each student finds 

a classmate, and updates its status based on the classmate’s current performance. Below, the detailed steps of the TLBO 

algorithm is explained. 

3.1. Teacher Base 

The teacher phase simulates the influence of the teacher on the students in improving their knowledge. To this end, 

each design variable is regarded as a subject; therefore, each student’s current knowledge in all the subjects is represented 

by a design vector. In truss optimization, the cross-sectional area of each member is a design variable, and a design 

vector is an array consisting of all the members’ cross-sectional areas. In a class with a certain number of students, the 

best student, which is corresponding to the design vector with minimum design weight, is selected as the teacher. All 

other design vectors are then updated based on the design variables of the teacher. This teaching activity can be expressed 

as follows: 

( ) ( ) (i)new old

d dX i X i   (17) 

(i) ( ) ( )FT r M i T i    (18) 

Where for design variable i and design vector d, Xd
old(i) is the current value, Xd

new(i) is the updated value, Δ(i) is the 

difference between the teacher and the class’ mean, TF is the teaching factor, r is a random number uniformly distributed 

in [0, 1], M(i) is the class’ mean, and T(i) is the status of the teacher. In Eq. (17) the sign of Δ(i) should be selected such 

that the student’s performance moves towards that of the teacher. The value of the teaching factor (TF) is either 1 or 2, 

randomly. In this study, a value of 𝑇𝐹 = 2 is selected, as suggested by Rao et al. [16], to provide a balance between 

exploitation and exploration aspects of the search domain. The class’ mean is generally calculated as: 

1
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Where N is the number of students. Camp and Farshchin [31] proposed a weighted mean which improves the 

performance of TLBO by emphasizing on the highly qualified students: 

1

1

( )

( )
1

N
d

d d

N

d d

X i

F
M i

F










 (20) 

Where Fd is the penalized objective function for design vector d  as in Eq. (16). 

3.2. Learner Phase 

The learner phase represents the cooperative learning interactions among students. This procedure is executed as 

follows: (1) randomly select a student p from the class; (2) randomly select a classmate q such that q ≠ p; (3) evaluate 

the penalized objective functions Fp and Fq; and (4) update the state of student p using Eq. (21). 
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(21) 

Where r is a random number uniformly distributed in [0, 1]. 

Equation 21 updates the state of student p towards classmate q if the classmate shows a better performance, and away 

from classmate q if q has a relatively lower performance than student p. Figure 1 illustrates the physics of the learner 

phase. The student-student interaction iterates for N pairs. 
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Figure 1. Schematic illustration of the Learner Phase: (a) if student q performs better than student p; (b) if student 
p performs better than student q 

4. Design Examples 

Three benchmark truss design problems and a real-life bridge are considered: a 10-bar cantilever truss with ten 

continuous design variables; a 25-bar transmission tower with eight discrete design variable; a 72-bar multistory truss 

with sixteen continuous design variables; and a 110-bar truss bridge with continuous design variables for two cases (4 

variable groups and 8 variable groups). For all the design problems, a population of 75 students is set, and the TLBO 

algorithm is implemented for 200 iterations over 100 runs to address possible premature convergence. The results are 

presented in terms of optimal cross-sectional areas and optimal total weight. 

4.1. 10-Bar Truss 

Figure 2 illustrates the configuration of the 10-bar truss. The optimal designs for this truss have been obtained using 

both discrete and continuous cross-sectional areas by means of different optimization techniques [27, 31, 33]. 

 

Figure 2. The 10-bar truss 

The maximum allowable tensile and compressive stresses in all members are ±172.369 MPa, the maximum allowable 

nodal displacement, in both vertical and horizontal directions, is ±5.08 cm, the material mass density is 2767.990 kg/m3, 

the material modulus of elasticity is 68947.573 MPa, and the members’ cross-sectional area could vary from 0.645 cm2 

to 225.806 cm2.   

Table 1 lists the results for different buckling constraints. The optimal weight without the buckling constraints 

corresponds to results of other studies, specifically to that of Camp and Farshchin [31] which achieved a minimum 

weight of 2295.6574 kg using TLBO. However, considering Euler buckling with 0, 0.001, 0.002, and 0.003 

imperfection, the optimal weight increases by 0.4, 0.6, 0.8, and 1%, respectively. Figure 3 shows the results of a typical 

convergence history for the 10-bar truss optimization problem. 

Table 1. Results for the 10-bar truss 

Variables 

 Cross-sectional areas (cm2) 

Camp and 

Farshchin[31] 

Without 

buckling 

With Euler 

buckling 

With 0.001 

imperfection 

With 0.002 

imperfection 

With 0.003 

imperfection 

A1 197.8602 196.9164 194.1093 191.3996 188.7816 186.3841 

A2 0.6452 0.6452 0.6452 0.6452 0.6452 0.6452 

A3 149.4087 149.6745 152.1810 150.7397 149.3649 148.1287 

A4 98.2101 98.2146 92.7708 94.9637 97.5837 100.1508 

A5 0.6452 0.6452 0.6452 0.6452 0.6452 0.6452 

A6 3.4974 3.5568 0.6452 0.6452 0.6452 0.6452 

A7 135.6481 135.7088 144.7591 148.6487 152.4668 156.2197 

A8 48.1638 48.1096 55.7341 56.1773 56.6199 57.0354 

A9 0.6452 0.6452 0.6452 0.6452 0.6452 0.6452 

A10 138.4900 138.9017 131.1984 129.1010 127.0456 125.1856 

Weight (kg) 2295.6574 2295.6032 2305.8023 2308.8493 2313.2686 2318.8336 
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Figure 3. Convergence history for the 10-bar truss problem 

The increase in the optimal weight is mostly due to the increase in the cross-sectional areas of elements 7 and 8. 

Comparing buckling with 0.003 imperfection to the case without buckling constraints, the cross-sectional areas of 

elements 7 and 8 are increased by 15 and 19%, respectively. Figure 4 illustrates the graphical results for these two design 

cases. As the optimal weight considering 0.003 imperfection in buckling is only 1% larger than that without the buckling 

constraints, the final designs do not show significant differences. 

 

Figure 4. Optimal design of the 10-bar truss: left - without buckling constraints; right - with buckling constraints 

considering 0.003 imperfection 

4.2. 25-Bar Truss 

Figure 5 illustrates the configuration of the 25-bar truss. The optimal designs for this truss have been obtained using 

both discrete and continuous cross-sectional areas by means of different optimization techniques [22,23,27,31]. 

 

Figure 5. The 25-bar truss: left - front view with dimensions and node numbers, right - side view with dimensions 

and node numbers 

The applied load on the structure is listed in Table 2. The maximum allowable tensile and compressive stresses in all 

members are ±275.790 MPa, the maximum allowable nodal displacement, in all directions, is 8.89 mm, the material 

mass density is 2767.990 kg/m3, the material modulus of elasticity is 68947.573 MPa, and the members’ cross-sectional 

area could vary from 0.645 cm2 to 21.935 cm2 with increments of 0.645 cm2. 
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Table 2. Single load cases for the 25-bar truss 

Node Fx (KN) Fy (KN) Fz (KN) 

1 4.448 ‒ 44.482 ‒ 44.482 

2 0 ‒ 44.482 ‒ 44.482 

3 2.224 0 0 

6 2.669 0 0 

Table 3 lists the results for different buckling constraints. The optimal weight without the buckling constraint 

corresponds to results of other studies, specifically to that of Camp and Farshchin [31] who used TLBO and achieved a 

minimum weight of 219.9243 kg. However, considering Euler buckling with 0, 0.001, 0.002, and 0.003 imperfection, 

the optimal weight increases by 49, 50, 52, and 53%, respectively. Figure 6 shows the results of a typical convergence 

history for the 25-bar truss optimization problem. 

Table 3. Results for the 25-bar truss 

Variables   Cross-sectional areas (cm2) 

Element 

group 
Members  

Camp and 

Farshchin[31] 

Without 

buckling 

With Euler 

buckling 

With 0.001 

imperfection 

With 0.002 

imperfection 

With 0.003 

imperfection 

1 1  0.6452 0.6452 0.6452 1.2903 2.5806 0.6452 

2 2‒5  1.9355 2.5806 12.9032 12.9032 13.5484 12.9032 

3 6‒9  21.9354 21.9354 14.8387 14.8387 14.8387 15.4838 

4 10,11  0.6452 0.6452 0.6452 0.6452 0.6452 0.6452 

5 12,13  13.5484 14.1935 3.2258 3.2258 3.2258 3.2258 

6 14‒17  6.4516 6.4516 14.1935 14.1935 14.1935 14.1935 

7 18‒21  3.2258 2.5806 17.4193 17.4193 17.4193 18.0645 

8 22‒25  21.9354 21.9354 18.7096 19.3548 19.3548 19.3548 

Weight (kg)  219.9243 219.6915 327.6196 330.3814 333.4297 335.2656 

 

 

Figure 6. Convergence history for the 25-bar truss problem 

The increase in the optimal weight is mostly due to the increase in the cross-sectional areas of element groups 2, 6, 

and 7. Comparing buckling with 0.003 imperfection to the case without buckling constraints, the cross-sectional areas 

of element groups 2, 6, and 7 are increased by 400, 120, and 600%, respectively. Figures 7 and 8 illustrate the graphical 

results for these two design cases. 

 

Figure 7. Front view of the optimal design of the 25-bar truss: left - without buckling constraints; right - with 

buckling constraints considering 0.003 imperfection 
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Figure 8. Side view of the optimal design of the 25-bar truss: left - without buckling constraints; right - with 

buckling constraints considering 0.003 imperfection 

4.3. 72-Bar Truss 

Figure 9 illustrates the configuration of the 72-bar truss. The optimal design for this truss has been obtained using 

continuous cross-sectional areas by means of different optimization techniques [23,27,31]. 

 

Figure 9. The 72-bar truss: (a) front view with dimensions and node numbering pattern, (b) top view of the first 
story with dimensions and node numbers, (c) side view of the first story with dimensions and node numbers. 

Table 4 shows two load cases applied independently on the structure. The maximum allowable tensile and 

compressive stresses in all members are ±172.369 MPa, the maximum allowable nodal displacement, in all directions, 

is 6.35 mm, the material mass density is 2767.990 kg/m3, the material modulus of elasticity is 68947.573 MPa, and the 

members’ cross-sectional area could vary from 0.645 cm2 to 19.355 cm2. 

Table 4. Independent load cases for the 72-bar truss 

Case Node Fx (KN) Fy (KN) Fz (KN) 

1 

17 0 0 ‒22.241 

18 0 0 ‒22.241 

19 0 0 ‒22.241 

20 0 0 ‒22.241 

2 17 22.241 22.241 ‒22.241 

Table 5 lists the results for different buckling constraints. The optimal weight without the buckling constraint 

corresponds to results of other studies, specifically to that of Camp and Farshchin [31] who used TLBO and achieved a 

minimum weight of 172.2011 kg. However, considering Euler buckling with 0, 0.001, 0.002, and 0.003 imperfection, 

the optimal weight increases by 112, 113, 116, and 119%, respectively. Figure 10 shows the results of a typical 

convergence history for the 72-bar truss optimization problem. 
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Table 5. Results for the 72-bar truss 

Variables   Cross-sectional areas (cm2) 

Element 

group 
Members  

Camp and 

Farshchin[31] 

Without 

buckling 

With Euler 

buckling 

With 0.001 

imperfection 

With 0.002 

imperfection 

With 0.003 

imperfection 

1 1‒4  12.1335 11.5877 19.3509 12.6484 18.9474 7.1168 

2 5‒12  3.3174 3.2761 6.5935 6.9387 6.9454 7.5593 

3 13‒16  0.6452 0.6452 3.2458 2.1174 1.0280 2.3452 

4 17,18  0.6452 0.6458 1.1013 5.6839 0.6736 4.1761 

5 19‒22  8.2006 8.0471 7.1613 6.9381 7.6854 7.6110 

6 23‒30  3.3232 3.2858 6.9387 6.9284 7.2666 7.1826 

7 31‒34  0.6452 0.6458 2.5245 2.1581 2.0866 1.8910 

8 35,36  0.6452 0.6452 2.7103 1.5329 2.6906 3.0619 

9 37‒40  3.4303 3.2664 5.5974 5.7426 6.3448 6.0374 

10 41‒48  3.3123 3.3258 6.5290 6.7310 7.1876 8.1348 

11 49‒52  0.6452 0.6452 0.6942 0.6645 0.9570 0.8452 

12 53,54  0.6452 0.6452 1.9768 3.9981 2.1636 4.2161 

13 55‒58  1.0097 3.0245 5.8310 6.7142 10.5936 6.3897 

14 59‒66  3.5026 3.4916 9.2103 8.3322 8.4466 8.6742 

15 67‒70  2.6329 2.4103 5.9761 8.1600 6.4549 7.6277 

16 71,72  3.6987 3.2774 10.0697 9.2355 9.8417 9.4303 

Weight (kg)  172.2011 171.8205 364.7387 365.3958 370.9519 376.6399 

 

 

Figure 10. Convergence history for the 72-bar truss problem 

The increase in the optimal weight is due to the increase in the cross-sectional areas of all element groups, specifically, 

groups 4, 8, and 12. Comparing buckling with 0.003 imperfection to the case without buckling constraints, the cross-

sectional areas of element groups 4, 8, and 12 are increased by 547, 375, and 554%, respectively. Figure 11 illustrates 

the graphical results for these two design cases. As the optimal weight considering 0.003 imperfection in buckling is 

119% larger than that without the buckling constraints, the final designs show significant differences. 

  

Figure 11. Optimal design of the 72-bar truss: left - without buckling constraints; right - with buckling constraints 

considering 0.003 imperfection 
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4.4. The West End Bridge 

The West End is a steel tied-arch bridge which passes over the Ohio River in Pittsburgh, Pennsylvania. Built in 1932, 

the West End Bridge is a braced trussed bridge with pre-stressed hangers between the twin arches and the bottom chords. 

The engineering and aesthetic qualities of the main span (237 m) made the bridge to be recorded in the US National 

Register of Historic Places in 1979 [34]. Figure 12 shows the side view of the bridge. The optimal design for this bridge 

under dead and live loads has been obtained by Makiabadi et al. [29] considering continuous cross-sectional areas and 

buckling load according to AISC ASD using TLBO. Although Makiabadi et al. considered buckling as a constraint, the 

effect of imperfection on structural stability is not addressed. 

 

Figure 12. The West End Bridge (source: http://riverlifepgh.org/riverfront-guide/) 

The total dead and live load on the bridge is 140.539 KN/m, the maximum allowable tensile and compressive stresses 

in all members are ±275.790 MPa, the maximum allowable nodal displacement, in all directions, is 29.56 cm, the 

material mass density is 7929.139 kg/m3, the material modulus of elasticity is 201.097 GPa, and the minimum value of 

members’ cross-sectional area is 139.355 cm2. Figure 13 depicts the configuration of the West End truss bridge. 

 

Figure 13. Mid-span dimensions and configuration of the West End Bridge 

The members are grouped into 4 and 8 groups for case I and case II, respectively. The member groups are shown in 

Table 6. 

Table 6. Element groups for case I and II 

Element groups 
Member numbers 

Case I Case II 

1 2,5,9,13,17,21,25,29,33,37,41,45,49,53 25,29,33,37,41,45,49,53 

2 1,4,8,12,16,20,24,28,32,36,40,44,48,52 24,28,32,36,40,44,48,52 

3 3,7,11,15,19,23,27,31,35,39,43,47,51,55 27,31,35,39,43,47,51,55 

4 6,10,14,18,22,26,30,34,38,42,46,50,54 26,30,34,38,42,46,50,54 

5  2,5,9,13,17,21 

6  1,4,8,12,16,20 

7  3,7,11,15,19,23 

8  6,10,14,18,22 

Tables 7 and 8 list the results for different buckling constraints for case I and case II, respectively. The optimal weight 

considering the AISC ASD buckling load is obtained previously by Makiabadi et al. [29] using TLBO to be 250.0423 

Ton for case I and 229.5349 Ton for case II. Comparing the optimal weight without buckling constraints with those 

considering Euler buckling with 0, 0.001, 0.002, and 0.003 imperfection, the optimal weight increases by 10, 22, 32, 

https://en.wikipedia.org/wiki/Bowstring_arch_bridge
https://en.wikipedia.org/wiki/Ohio_River
https://en.wikipedia.org/wiki/Pittsburgh,_Pennsylvania
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and 41%, respectively, for case I, and 7, 20, 30, and 39%, respectively, for case II. Comparison of the results with [29], 

where the AISC ASD buckling load was used for buckling constraints, reveals that considering 0.003 imperfection, the 

optimal weight is 6% larger for case I and 5% larger for case II. This implies that the AISC ASD buckling load may 

underestimate buckling loads of members with 0.003 or larger imperfection. Figure 14 shows the results of a typical 

convergence history for the West End Bridge optimization problem. 

Table 7. Results for the West End Bridge (case I) 

Variables 

 Cross-sectional areas (cm2) 

With AISC-ASD 

buckling [29] 

Without 

buckling 

With Euler 

buckling 

With 0.001 

imperfection 

With 0.002 

imperfection 

With 0.003 

imperfection 

A1 185.2858 139.3546 152.0823 165.9248 177.9093 189.0577 

A2 1455.8928 1406.5520 1406.5520 1556.5904 1678.9437 1786.4326 

A3 139.3546 139.3546 139.3546 139.3546 139.3546 139.3546 

A4 434.4796 139.3546 313.4549 378.4870 425.0314 465.2584 

Weight (Ton) 250.0423 189.1140 207.3344 231.0034 249.7523 266.2179 

Table 8. Results for the West End Bridge (case II) 

Variables 

 Cross-sectional areas (cm2) 

With AISC-ASD 

buckling [29] 

Without 

buckling 

With Euler 

buckling 

With 0.001 

imperfection 

With 0.002 

imperfection 

With 0.003 

imperfection 

A1 174.4255 170.6629 354.4251 464.7010 528.8970 579.9008 

A2 139.4103 139.3546 139.6333 141.7700 141.1197 139.3546 

A3 1142.0942 1406.6449 1408.0385 1556.5904 1679.7799 1786.5255 

A4 207.0251 139.3546 169.7339 194.0745 210.1467 225.1970 

A5 552.2807 178.8384 356.0044 488.5771 559.1834 614.4607 

A6 139.3546 139.5404 139.3546 139.3546 142.3275 139.3546 

A7 1702.0394 1060.9527 926.2433 982.3567 1060.7669 1127.3784 

A8 465.0447 139.3546 139.3546 139.4475 139.3546 139.3546 

Weight (Ton) 229.5349 173.2873 184.8508 208.1232 226.0310 240.6893 

 

 

Figure 14. Convergence history for the West End Bridge truss problem (case II) 

The increase in the optimal weight is mostly due to the increase in the cross-sectional area of element group 4 for 

case I and element groups 1 and 5 for case II. Comparing buckling with 0.003 imperfection to the case without buckling 

constraints, the cross-sectional area of element group 4 in case I is increased by 234%, and the cross-sectional areas of 

element groups 1 and 5 in case II are increased by 240 and 244%. Figures 15 and 16 illustrate the graphical results for 

these two design cases. 

  

Figure 15: Optimal design of the West End Bridge (case I): left - without buckling constraints; right - with buckling 

constraints considering 0.003 imperfection 
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Figure 16: Optimal design of the West End Bridge (case II): left - without buckling constraints; right - with buckling 

constraints considering 0.003 imperfection 

5. Conclusion 

In this study, a metaheuristic optimization method is applied for size and shape optimization of space trusses to study 

the effect of manufacturing geometrical imperfection on members’ buckling constraints. The Teaching-Learning-Based-

Optimization (TLBO) algorithm is applied to tackle truss optimization problems under different constraints including 

tensile and compressive yielding stress, buckling stress considering imperfection, nodal displacement, and available 

cross-sectional areas. Different geometrical imperfection values are considered in the Euler critical buckling loads of 

compressive members as the local buckling constraints for three benchmark trusses and a real-life bridge. The 

optimization problems are solved and the results are compared for different imperfection ratios. The optimization results 

indicate that higher geometrical imperfection degrees make significant changes to the critical buckling load of 

compressive members, and consequently, increase the weight of the optimal design. This increase in the optimal weight 

ranges from 0.4% to 119% for the studied structures. Hence, considering geometrical imperfection in the optimal design 

of truss structures provides solutions that are less sensitive to manufacturing errors and furnish a reliable starting point 

for design engineers. 
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