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Abstract 

Roads are vital arteries and main links between and within cities. They are considered the main auxiliary factor in 

shortening travel time and achieving users’ comfort and safety. Governments strive to provide ideal conditions on the roads 

to achieve the highest levels of satisfaction, which are reflected in the quality of rides provided. Despite the variety of 

monitoring and evaluation methods, achieving the best and most accurate diagnosis of the condition of the roads and 

determining the severity of defects and appropriate and rapid maintenance methods are still lacking. This study aims to 

monitor and evaluate the state of some roads in Aswan City, Egypt, to identify defects and address them promptly. To 

achieve this goal, a laser scanner was used to evaluate pavement conditions by measuring the coordinates of the road 

surface and determining the differences in the measured values on the three axes. A built-in camera was also used in the 

laser device to monitor the type and severity of defects and match them with the measurements of the laser scanner device. 

Finally, a deep machine learning system, including LSTM, GRU, RF, SVM, and DT, was used to identify and classify the 

type and severity of defects. The prediction models showed significant accuracy with about 93%, 91%, 85%, 84%, and 

82%, respectively. 
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1. Introduction 

Highways are a fundamental element of industrialized societies. They serve a crucial function in connecting cities, 

districts, states, and even nations. The frequent and substantial vehicular stress on roadways typically results in surface 

flaws in the pavement. Pavement flaws are typically referred to as distresses, which are classified into many categories 

that affect both the quality and roadway performance. These distresses could be assorted and described as follows: 

cracking, which is the predominant distress type on primary roads, whereas minor roads suffer more from pits, patches, 

and rutting [1-4]. In fact, there are nineteen varieties of distress that are present in flexible pavement. Nevertheless, the 

main focus of this investigation is to evaluate and assess longitudinal fractures and rutting. 

In order to maintain the functionality of roadways, it is imperative to conduct routine maintenance that is based 

on precise pavement observations and surveys. Professionals who are capable of observing, capturing images, 

gathering data, and evaluating road distresses can conduct this type of inspection. This conventional method of data 
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collection is characterized by numerous limitations and drawbacks, including its tendency to be time-consuming, 

labor-intensive, and hazardous, particularly on highways, and its susceptibility to personality. [1, 5-8]. Accordingly, 

for almost 50 years, numerous researchers have implemented automatic distress data collection through digital 

imaging technology. This approach mitigates the hazards to human evaluators and the inconvenience to traffic during 

the survey [9]. High-speed complementary metal–oxide–semiconductor (CMOS) industrial cameras were used by 

Zhang et al. (2014) [10] to automatically detect cracks in a subway tunnel by applying thresholding operations and 

the technique of morphological image processing, while Zhang et al. (2016) [11] employed neural networks to detect 

road pavement cracks. Shatnawi (2018) [12] analyzed images captured by drones with neural networks to identify 

pavement distresses on secondary roads. 

Laser scanning is an automated, direct measurement of three-dimensional points, as opposed to image-based methods 

[13]. The Mobile Mapping System (MMS) is often classified into either laser-based or image-based [14]. In 

transportation mapping and surveying, image-based mobile mapping has significantly enhanced traditional evaluation, 

such as the assessment of roadway borders for roadway safety support and modeling [15, 16]. This noteworthy advantage 

is due to the nature of photos containing texture and vibrant color information, which facilitates road recognition and 

automated distress extraction. Al-Durgham et al. (2021) [17] provided a computerized approach for assessing the level 

of accuracy and quality of cloud data obtained from mobile mapping systems utilizing consumer-grade 

microelectromechanical systems (MEMS) sensors with portable laser scanners. The study's conclusions demonstrated a 

high degree of accuracy suitable for the precise evaluation of mobile mapping systems. 

A wide range of transportation applications, including automatic road distress extraction, model-based road design, 

and monitoring, have been made possible by the development of 3D laser scanning technology. Compared to 

photogrammetry and field inspections, laser scanners could gather extremely precise point clouds in three dimensions 

that have high density over a short period of time [18]. Additionally, laser scanner systems give additional implicit data, 

including scanning patterns, intensity, and rutting depth, which all contribute to road extraction, in addition to collecting 

clear, extremely precise elevation information. In addition, the use of LIDAR data for road environment monitoring and 

road fault detection has grown in recent years. The high point density LIDAR data sets may be used to derive rut depths 

[19]. It is possible to color LIDAR point clouds, which might provide some insight into the locations of ruts from data 

sets with lower point densities. Laser scanning technology may be used to acquire precise and efficient rutting data at 

the network level for different highway speeds [20]. Obaidat et al. (2020) [21] employed a highly accurate positioning 

system (RTK) and a smartphone to evaluate rutting on secondary roads in the north of Jordan. Additionally, rutting and 

lateral displacement models were developed using a variety of characteristics, including lane width, truck percentage, 

pavement age, pavement thickness, and annual average daily traffic (AADT). The study found that, in comparison to 

the manually operated process utilizing Root Mean Square error (RMSE), the adopted approach provided accurate and 

fair findings. Data collection by laser technologies on highways is best performed at light to medium traffic conditions; 

avoiding rush hours is advised. In summary, compared to human techniques, laser scanning technologies are more useful 

for longitudinal cracking and rut depth measuring. On the other hand, these technologies reduce the data collection time 

and safety risks on site, yet they are accurate. 

The fractured pavement has distinct textural qualities. Most studies obtain the texture elements of photos from 

diverse locations and use machine learning classification methodology to automatically extract fractured pavement. Hu 

et al. (2010) [22] proposed an automated fracture pavement extraction approach based on form and texture descriptions. 

It is concluded that the texture of the fractured pavement is uneven. So, the study report recommended using two 

translation-invariant shape descriptors and six texture features to portray the picture's irregular texture and uneven 

lighting properties, followed by an SVM classifier to categorize the image as cracks or no cracks. Cord & Chambon 

(2012) [23] utilized a universal crack detection algorithm based on supervised learning, which may be used for any type 

of distress in those pictures. 

The research concluded that fractures in pavement require substantial texture information. The textural elements of 

the fracture pavement exhibit two behaviors: (1) varying within the local range; (2) demonstrating homogeneity over 

the global range. As a result, this research employs linear and nonlinear filters to analyze the texture of images. 

Morphological transition, linear filtering, and non-linear filtering were all employed to examine picture attributes at 

various scales. Finally, the AdaBoost classifier was used to learn and categorize the aforementioned textural information, 

as well as to determine the extent of pavement damage. Finally, while this technology improves crack extraction 

efficiency up to a point, it is unable to identify fine crack extraction. Shi et al. (2016) [24] present the crack forest 

approach, which uses a random structure forest to extract asphalt fracture pavement. 

The intensity-thresholding methodology has been extensively proposed for fracture detection [25-28]. However, the 

background illumination and pavement texture had a substantial impact on the performance of this methodology, 

resulting in an ambiguous crack segmentation. The OTSU algorithm is frequently implemented by researchers in the 

context of low noise-signal image ratio [29]. Satisfactory detection results can be achieved through the implementation 

of an effective segmentation algorithm [30, 31]. A histogram-based classification algorithm was proposed by Prasanna 
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et al. (2012) [32] and was combined with Support Vector Machines (SVM) in order to extract fractures on the concrete 

surface. The outcomes indicated that the precision of practical predictions needed to be upgraded. Hoang & Nguyen 

(2019) [33] conducted a comparison of various machine learning-based classification algorithms. The findings indicated 

that the maximum accuracy level of classification was achieved by SVM (80.50%), followed by ANN (84.25%), and 

then RF (70%). Gavilan et al. (2011) [34] proposed a road fracture detection system that utilized Support Vector Machine 

(SVM). The results indicated that a linear SVM classifier could differentiate amongst ten varieties of pavements that are 

present on Spanish roads. The segmentation methodology of the SVM-based method considers neighboring pixel 

information. 

Chen et al. (2022) [35] reviewed the computer vision techniques, from image processing to machine learning 

methods, across different challenge-focused works of automatic road damage detection. The different classifications of 

road defects were identified, and the most up-to-date data collection technologies were discussed. Finogeev et al. (2024) 

[36] developed an approach to detect and classify pavement defects in images of road sections obtained from 

photographs and video frames in the process of road scanning and Deep Machine learning methods. This approach 

includes two methods: a) a method using IoU-HOG-ACM-BoVW algorithms for recognition and classification of high 

noise images; b) a method of segmentation and recognition using convolutional neural network MaskR-CNN for 

recognition and classification of low noise images. The algorithms were used for solving the problems of segmenting 

road pavement images into parts with detected damages, determining the boundaries and geometric dimensions of 

defects, classifying damages by type, and clustering and ranking road segments according to the operational condition 

of the road pavement. Hassan et al. (2022) [37] proposed an automatic patch detection system using object detection 

techniques and advanced pavement inspection systems such as LCMS (Laser Crack Measurement System). Results 

showed that the object detection model can successfully detect patches inside LCMS images and suggested that the 

proposed approach could be integrated into the existing pavement inspection systems. Mihoub et al. (2023) [38] provided 

a novel application for data collection regarding road states, entitled “Road Scanner”. It allows onboard users to tag four 

types of segments in roads: smoothness, bumps, potholes, and others. For each tagged segment, the application records 

multimodal data using the embedded sensors of a smartphone. The collected data concerns mainly vehicle accelerations, 

angular rotations, and geographical positions recorded by, respectively, the accelerometer, the gyroscope, and the GPS 

sensor of a user's phone. Moreover, a medium-size dataset was built, and machine learning models were applied to detect 

the right label for the road segment. The results were very promising since the SVM classifier (Support Vector Machines) 

recorded an accuracy rate of 80.05%. 

Cui et al. (2024) [39] adopted a semi-supervised learning approach to train ResNet-18 for image feature retrieval 

and then classification and detection of pavement defects. The resulting feature embedding vectors from image patches 

were retrieved, concatenated, and randomly sampled to model a multivariate normal distribution based on the only one-

class training pavement image dataset. The calibration pavement image dataset was used to determine the defect score 

threshold based on the receiver operating characteristic curve, with the Mahalanobis distance employed as a metric to 

evaluate differences between normal and defect pavement images. Then, a heat map derived from the defect score map 

for the testing dataset was overlaid on the original pavement images to provide insight into the network’s decisions and 

guide measures to improve its performance. The results demonstrate that the model’s classification accuracy improved 

from 0.868 to 0.887 using the expanded and augmented pavement image data based on the analysis of heatmaps. Another 

method was proposed by Daneshvari et al. 2024 [40] to detect asphalt pavement bleeding using a one-class support 

vector machine (SVM) algorithm, with a reported F1-score of 80.29%. 

Han et al. (2024) [41] introduced a two-stage segmentation framework to detect pavement cracks using both 

supervised and unsupervised strategies, reporting that their model surpassed other state-of-the-art neural networks in 

intersection over union (IoU) scores. Isradi et al. (2024) [42] applied the Markovian probability operational research 

process to develop a decision support system for predicting future pavement conditions. The process determines 

effective policies for managing and maintaining roads by observing the history of pavement damage from year to year 

to estimate the transition probability as a Markovian-based performance prediction model. The results showed that the 

application of the model was optimal. Changes in pavement condition after applying the maintenance plan resulted in 

the good condition reaching 92.8% and a stable condition for 95.72% of the pavement by the end of the design life. 

Zafar et al. (2019) [43] categorized the common types of distress that exist on “Lakhi Larkana National Highway 

(N-105)” to estimate the pavement condition index. Using this data, the average PCI for the highway section was 

calculated. to assess the pavement performance; 10 out of 19 defects were recognized in the pavement, as stated by the 

PCI method. Results indicated that the common pavement distress types were depressions, polished aggregate, rutting, 

potholes, block cracking, and alligator cracking. One-Class Support Vector Machine (OCSVM), which is an anomaly 

detection approach, could be beneficial for classifying images of bleeding asphalt. Computer vision techniques are used 

to extract efficient features, which serve as inputs for the OCSVM model. In order to evaluate the suggested model’s 

performance, two separate imbalanced datasets of images are utilized to train and test the model. Finally, in terms of 

F1-Score, the OCSVM achieved 97.29% in the testing dataset [44]. This latter research aimed to achieve pixel-level 
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detection of pavement cracks and proposed the two-stage Crack Diffusion framework, which combines unsupervised 

and supervised learning to achieve superior performance in crack detection. On four public datasets, both the proposed 

multi-blur-based cold diffusion model and the comprehensive Crack Diffusion framework attained the highest 

Intersection over Union (IoU) scores, surpassing the IoU scores of the current state-of-the-practice unsupervised and 

supervised segmentation models [41]. 

Based on 3D laser scanning pavement data, an automatic defect detection method is proposed by Zhang et al. (2018) 

[45] to detect pavement cracks and pavement deformation defects information simultaneously. The experimental results 

showed that, based on the 3D laser scanning data [46], the proposed method could effectively detect typical cracks under 

different road conditions and environments, with the detection accuracy above 78%. Furthermore, different types of 

deformation defects, including potholes, rutting, shoving, and subsidence, were accurately detected with a location error 

of less than 8.7%. 

Azam et al. (2023) [47] proposed an effective assessment method for the evaluation of flexible pavement surface 

distresses using Terrestrial Laser Scanner (TLS). The evaluation was carried out to assess different types of pavement 

distress such as cracking, rutting, roughness, and miscellaneous distresses. Every pavement distress was defined in terms 

of surface area, width of crack, and intensity; then the data from TLS was processed by MAGNET COLLAGE software. 

Hereafter, a designed MATLAB program was developed to match the 26 TLS observational data to plane equations. 

The revealed distresses for the investigated road using TLS observations reveal a significant improvement in 

determining flexible pavement distresses and geometric characteristics. 

The intelligent detection of pavement distress using deep learning methods has consistently been a hot topic in 

pavement maintenance. Zheng et al. (2024) [48] aimed to offer new insights to promote research and application in this 

field through bibliometric analysis. Riid et al. (2018) [49] employed deep learning convolutional neural network models 

towards the implementation of the detector and introduced a manual preprocessing step: sets of orthoframes are carefully 

selected for training and manually digitized to ensure adequate performance of the detector. Pretrained convolutional 

neural networks are then fine-tuned for the problem of pavement distress detection. Corresponding experimental results 

are provided and analyzed and indicate a successful implementation of the detector. 

It is obvious that there are different methodologies for distress detection and classification, like laser scanner and 

image processing techniques, deep machine learning, and traditional PCI procedures. Every methodology has its own 

unique performance, accuracy, and standard deviation based on different factors like the type of distress to be detected, 

the methodology itself, and the drawbacks/limitations associated with it. In conclusion, it is considered case dependent. 

The novelty of this research lies in investigating the integration between potential terrestrial laser scanning systems, 

deep machine learning prediction models, and validation using the standard PCI procedure based on the PAVER system 

for automated prediction, detection, and classification of longitudinal cracks and rutting using actual flexible pavement 

data from the case study highways in Egypt. The present research aims at: 

 Using the laser scanner as a monitoring device to identify coordinates (x, y, z) of the longitudinal cracks and rutting 

in order to quantify and describe qualitatively the pavement cracks along the road sections. Besides, an attempt is 

made to extract the changes in coordinates to understand the pavement cracks and their behavior along the road 

surface.  

 Building and developing five deep-learning prediction models to predict, detect, and classify road conditions based 

on laser scanner data, including Long Short-Term Memory (LSTM), Gated Recurrent Unit Network (GRU), 

Random Forest (RF), Support Vector Machine (SVM), and Decision Tree (DT). The selected prediction models 

focus on deep learning of the behavior and performance of single and sequential data related to the road pavement 

condition. In this study, three main defect classes were taken into consideration in the deep learning prediction 

models: 1) normal (ideal pavement spots), 2) longitudinal cracks, and 3) rutting. All of these defects were visually 

monitored and measured using the laser device. 

 Evaluating pavement distress conditions located on the selected roads of Aswan City using the standard PCI 

procedure based on the PAVER system for validation purposes. 

2. Data 

In this section, all data information and details are presented, including site locations, data collection procedures 

using a laser scanner and pavement condition index, and data analysis. Figure 1 shows the workflow of this research. 

2.1. Description of Case Study Areas 

Two study areas have been scanned in New Aswan City, which is located in the south of Egypt with a latitude of 

(24.15958o N – 24.21470o N) and a longitude of (32.83939o E– 32.86710o E). In Figure 3, the left photo presents the 

layout of New Aswan City, whereas the top right photo presents the first study area location in front of the Faculty 

of Islamic Studies for Girls in Al-Azhar University, and the bottom right one shows the second location opposite 

Bank Misr. 
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Figure 1. . The study workflow  

 

Figure 2. Location of the study areas: New Aswan City, Egypt 

2.2. Data Collected by the Laser Scanner 

A terrestrial 3D laser scanner of FARO FOCUS S has been used to obtain a 360-degree view designed to give an 

accurate position of every pixel in point cloud format. It is a panoramic scanner that is integrated with a tilt sensor, 

barometer, and a magnetic compass. Table 1 describes the technical details of the scanner [46]. 
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Images 

PCI

Data Analysis 
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Processing 

Prediciton  
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LSTM model

GRU model

RF model

SVM model
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Case 1: Longitudinal 

                 Cracks

 

Case 2: Rutting  
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Table 1. Technical specifications of the Faro Focus3D S120 laser scanner 

Architecture Panoramic 

HFOV/VFOV 360o/305o 

Range measurement principle Phase-based 

Maximum Scan rate 976 000 Hz 

Unambiguity interval 153.49 m 

Spot size 3.8 mm + 0.16 mrad 

Range precision @ 25 m (90% albedo) 0.95 mm (0.50 mm) 

Range accuracy @ 25 m (90% albedo) ± 2 mm 

Weight 5 kg 

Size 240 x 200 x 100 mm 

Operating temperature 5oC-40oC 

Levelling sensor Dual-axis tilt sensor 

Heading sensor Electronic compass 

Height sensor Barometer 

RGB Built-in camera 

As shown in Figure 3, the successive stages of terrestrial laser scanning (TLS) procedure are as follows: 

 Specifying the scanning parameters [image resolution and point cloud density].  

 Distributing the black-white checkboards [targets] for data registration later (refer to Figure 4-b).  

 Acquiring the point cloud data using the laser scanner with high resolution (Resolution ¼ & Quality 4X, which 

means 6 mm / 10 m). It is preferred to be no more than 5m away from the crack to obtain 3 mm distance between 

scanned points.  

 Registering the scans using FARO SCENE software. The scans had an overlap between 86 – 96% with point 

error between 1.1-1.7 mm. Further, the registered data was performed in the laser scanner local system. 

 Extracting the oriented data to the suitable format [.e57, .las, and Recap format]. 

 

Figure 3. Successive stages of the terrestrial laser scanning (TLS) procedure 

2.2.1. Case Study 1: Longitudinal Cracks 

As seen in Figure 4, the pavement in front of the Faculty of Islamic Studies for Girls, Al-Azhar University, has been 

scanned to obtain the three-dimensional coordinates of the longitudinal cracks. Figure 4-a depicts the 3D laser scanner 

during the scanning of the longitudinal cracks in New Aswan City. Figure 4-b shows the onsite target for data registration 

using FARO SCENE software, whereas Figure 4-c presents a real photo of the cracks. More than 1.2 million dense 

points were scanned onsite, as shown in Figure 4-d. 

2.2.2. Case Study 2: Rutting Cracks 

Figure 5 shows the details of the rutting cracks of the case study. Figure 5-a shows the 3D laser scanner during the 

scanning of the rutting area. The condition of the pavement distresses due to the rutting was measured manually as 

depicted in Figure 5-b. The selected section for evaluation has more than 4.5 million 3D point clouds. Figures 5-c and 

5-d are the plan and cross-section of the point clouds generated using the CloudCompare software. 

Specify the 
scanning 
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(a) (b) 

  

(c) (d) 

Figure 4. Scanning details of the longitudinal cracks 

  

(a) (b) 

  

(c) (d) 

Figure 5. Scanning details of the rutting cracks 
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2.3. Data Collection and Evaluation using PCI 

The PCI was calculated using the findings from a visual condition assessment that determined the kind, severity, and 

quantity of discomfort. The PCI was created to serve as an indication of the pavement's structural integrity and surface 

operating condition. The designated roads in Aswan city were categorized into branches, determined as recognizable 

segments of the pavement network that serve as singular entities with certain roles. The chosen branches are subdivided 

into smaller units referred to as sections. The subsequent variables were evaluated while partitioning branches into fields:  

 Pavement structure: the structural formulation, including thickness and materials.  

 Traffic: the quantity and severity of vehicular movement.  

 The pavement components must possess identical construction histories.  

 Pavement Rank: the functional categorization (arterial, collector, or local).  

 Drainage facilities: the drainage systems and shoulders must be uniform over the pavement length. 

The database contained three asphalt pavement sections (5 m in total) of the roadway network in Aswan city: the 

"Normal" (perfect pavement places) section, the longitudinal fractures section, and the rutting section. The three 

pavement portions were randomly split into units of 232 ± (10) m². The minimum number of sample units to be examined 

for asphalt concrete AC surfaced pavements is decided based on the whole number of sample units and the PCI standard 

deviation, which is considered to be 10. The Normal (ideal pavement spots) section was divided into 5 random sample 

units, the Longitudinal cracks section was divided into 15 random sample units, and the Rutting section was divided 

into 10 random sample units [50]. A hand odometer was used to measure the length and size of each disturbed patch. A 

straight edge and ruler were used to determine the extent of ruts or depressions. The distress inspection was carried out 

by walking across the sample unit, manually categorizing distress types based on observation and visualization, and 

quantifying distress quantity with a tape and hand odometer. The distress intensity levels were manually assessed using 

visualization and the distress criteria outlined in the PCI distress handbook and PAVER System; these criteria differ 

depending on the type of distress encountered. The severity degree of a distress is a rating index that categorizes the 

distress into three sorts depending on different ranking criteria. There are three severity levels: low, medium, and severe. 

The general elements that determine the severity level of numerous cracks include: 1. Crack width. 2. The crack's state, 

including whether it was previously filled or not. 3. Various fractures surrounding the crack. 4. The condition of the 

region surrounding the fracture [50]. Finally, the gathered data were entered on the flexible pavement survey sheet for 

each sample unit; the Micro PAVER 5.2 version was released by inputting the distress type, quantity, and severity for 

each sample unit in section 1; and PCI and PCI rating were computed automatically, as shown in Table 2. 

Table 2. The collected data for PCI evaluation 

Section Parts 
Number of 

Sample Unit 

Type of 

Sample Unit 

Area of 

Sample Unit 

Distress 

Number 

Distress 

Description 

Distress 

Severity Level 
Quantity 

Unit of 

Quantity 

PCI for each 

sample unit 

PCI 

Rate 

Normal (ideal pavement 

spots) Part 1 

1 Random 230 m2 No Distress - 0 - 100 Good 

2 Random 230 m2 No Distress - 0 - 100 Good 

Longitudinal cracks 

Part 2 

1 Random 230 m2 

Longitudinal crack L 0.3 m 

50 poor 
Alligator cracking M 0.8 m2 

Bleeding H 0.2 m2 

Edge cracking H 1.2 m 

2 Random 230 m2 

Block cracking H 1.7 m2 

35 
Very 

poor 

Bumps L 0.5 m 

Longitudinal crack M 0.4 m 

Pothole H 1 number 

Patching M 0.9 m2 

Polished aggregate M 1.5 m2 

Block cracking H 1.7 m2 

Rutting 

Part 3 

1 Random 230 m2 

Rutting H 0.5 m2 

53 Poor 
Pothole L 2 number 

Polished aggregate M 1.7 m2 

Block cracking M 2.4 m2 

2 Random 230 m2 

Polished aggregate M 2.0 m2 

28 
Very 

poor 

Alligator cracking H 2.5 m2 

Pothole H 1 number. 

Rutting L 0.2 m2 
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2.4. Data Analysis 

This section describes the created models, which include LSTM, GRU, RF, SVM, and DT, for predicting, detecting, 

and classifying pavement fault data gathered by a laser scanner. The prediction model was built using scanned data 

separated into training and testing sets in proportions of 70% and 30%, respectively. Python software was used to build 

and develop the prediction models, which were subject to rigorous quality control and operation. Table 3 displays the 

acquired laser data for pavement abnormalities on chosen road segments in Egypt. The results revealed a sample of the 

laser measurements taken in a damaged area with longitudinal fractures. The laser scanner determined the coordinates 

(x, y, z) of longitudinal fractures and rutting in order to quantify and subjectively describe pavement cracks along road 

sections. Aside from that, an attempt was made to extract coordinate changes in order to better understand pavement 

cracks and their behavior on the road surface. In Table 3, the first three columns summarize the coordinates, while 

columns 4-6 show the color intensity of the point clouds. 

Table 3. Collected data by the laser scanner 

X-axis Y-axis Z-axis Red Green Blue 

0.2313 -5.1021 66.2135 170 174 160 

0.2367 -5.0989 66.2137 152 156 148 

0.2319 -5.1061 66.2151 172 175 162 

0.2349 -5.1038 66.215 164 167 155 

0.2322 -5.0999 66.2154 163 166 154 

0.2366 -5.1026 66.215 154 158 149 

0.2344 -5.0995 66.2158 157 160 150 

0.2406 -5.1046 66.2142 158 158 154 

0.2429 -5.1037 66.2144 160 159 157 

The data showed differences in the x, y, and z axes. Nevertheless, according to the visual inspection and captured 

images from the field (refer to Figures 6-a to 6-c), the changes in the data resulted from anomalies on the selected 

road pavement. Basically, the differences in x values indicated offsets in the pavement surface to the left or right, 

which means an event (defect) existed on the pavement surface with a specific width. More clearly, the width of 

defects was represented to be measured on the x-axis. On the other hand, the y-axis represented the length of the 

defects. At the same time, the z-axis was more significant in terms of identifying the depth of the cracking and 

rutting. 

Figure 6 presents different cross-sections of the longitudinal cracks located at the selected road in Aswan. 

Figure 6-a shows four different cross-sections captured to be later analyzed and plotted to understand the behavior 

profile. In Figure 6-b, the heat map technique was applied to the laser scanner data using MATLAB to identify 

and detect the exact edges of the cracks along the road segment. As shown in Figure 6-c, the cross-section profile 

of the longitudinal crack in the selected section was plotted using the data in Table 3. The x-axis data represents 

the road section width, which could also describe the width of the cracks. In contrast, the z-axis represents the 

elevation of the road surface, which highlights pavement defects and their depth. According to Figure 6-c, the 

graph indicates a slight depression to the right, which can be interpreted as the natural slope of the road for drainage 

purposes.  

However, approximately 3.5 to 6.0 m from the width of the road, a sharp drop was noticed in the road level, which 

was interpreted as a defect in the road surface. The subsidence on the cross-section profile indicated that a longitudinal 

crack was detected and identified after matching the laser data and captured images. On the other hand, Figure 6-d 

presents the cross-section profile of the selected segment, indicating the transverse length of the rutting on the cross-

sectional road surface. Moreover, the elevation of the road surface was taken into consideration as shown in the vertical 

axis. A slight to moderate subsidence could be noticed in the selected segment. This subsidence indicates that there was 

rutting at that section with a transverse length of about 1 m and a depth of 2 cm. 

A matching process was also performed among collected laser scanner data, captured images, and PCI data to 

identify the location, type, and severity of each pavement distress type, as shown in Figures 7 and 8 for longitudinal 

cracks cross sections and rutting cross sections, respectively. 
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Figure 6. (a) Longitudinal crack cross-sections; (b) Longitudinal crack heat map; (c) Longitudinal crack profile; (d) Rutting profile 
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Figure 7. PCI values for longitudinal crack cross-sections 

 

Figure 8. PCI values for rutting cross-sections 

Figure 7 presents the trend and relationship between the number of sample units and associated PCI for each sample 

unit for four different cross-sections of the longitudinal cracks located at the selected road in Aswan city. Figure 7 was 

plotted using the collected visual inspection data for PCI Evaluation from Table 2, where the x-axis data illustrates the 

number of sample units. At the same time, the y-axis describes the PCI for each sample unit, which can easily give an 

indication about the situation of the pavement. Based on the drawing, the sample units No. 1 and No. 2 represent section 

1, the sample units from No. 11 to No. 15 represent section 4, while the remaining sample units from No. 3 to No. 10 

were distributed between sections 2 and 3. In general, the curve of sections 1 and 4 indicates a slight depression and 

drop with the values of the PCI (down from 50 to 35 for section 1; from 66 to 22 for section 4), which is interpreted as 

the presence of defects and problems in the road surface. According to Shahin et al. [3], the PCI rate was rated as "Poor" 

at a PCI value of 50 and then dropped to a PCI value of 35 with a rating of "Very Poor". The same drop in PCI values 

occurred in section 4, where the PCI rate was (Fair) at PCI value (66) and dropped to (Very Poor and Serious) at PCI 

values (25) and (22), respectively, for the last two sample units of section 4. The same comparison for rutting cross 

sections was done using Figure 7. 

Figure 7 was plotted based on Table 2 between the number of sample units (x-axis) and PCI for each sample unit (y-

axis). Sample units No. 1 and 2 represent section 1, while section 4 is shown by the sample units (7, 8, 9, and 10). The 

situation for rutting data showed that there is a depression and drop in the values of the PCI, like the longitudinal cracks. 

The PCI rate was poor at PCI value (53) and then dropped to PCI value (28) with a rating of (very poor). The same drop 

for the PCI rate occurred at section 4, where the PCI rate was (fair) at PCI value (66) and approximately dropped to 

(serious) at PCI values (22) for the last sample unit of section 4. The reason for the drop of PCI of longitudinal cracks 

and rutting cross sections is due to the existence of other types of distresses with high and medium severity levels in the 
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same area of longitudinal cracks or rutting as seen in Table 2. This situation decreased the values of the PCI, and the 

pavement became worse. This means that this pavement needs maintenance and repair. In conclusion, the results from 

Figures 7 and 8 are consistent and in agreement with collected laser scanner data and captured images for the validation 

process. As for determining the shape of cross-sections, the output of laser-measured data proved that the use of laser 

scanner technology gives a great opportunity to increase the efficiency of road condition assessment and to identify the 

location, type, and severity of defects in the pavement surface. Besides, defects can be represented in a three-dimensional 

image, through which the severity of defects can be automatically determined with high accuracy. Thus, all dimensions 

of defects can be identified. 

Before applying the prediction models to the scanned data, pre-processing techniques were performed in order to 

prepare, organize, and manage the data for detection and classification processes. The data were manually labeled into 

three main groups: normal, cracking, and rutting. Normal data indicates that the pavement was in an ideal condition and 

no defects had been measured. In comparison, the other groups were identified using images from the same laser device 

and visual inspection reports. After that, an attempt was made to extract samples of the data to be tested using the 

selected prediction models and used later for training the models. 

3. Results and Discussion 

Pavement defects play a crucial role in the deterioration of the road service condition and, thus, its inability to provide 

comfort to road users. It may also cause economic losses due to damage to vehicles and human losses due to poor road 

conditions. To achieve permanence and sustainability of the road condition, many researchers resort to exploring how 

to monitor the road condition and then develop appropriate prediction models to determine the road performance over 

the operational life of the road. Likewise, many researchers use prediction models that focus heavily on identifying and 

classifying road defects automatically based on digital data in all its forms, whether images, vibration data, or laser data. 

In this study, three main defect classes were taken into consideration in the deep learning prediction model: 1) normal 

(ideal pavement spots), 2) longitudinal cracks, and 3) rutting. All these defects were visually monitored and measured 

using the laser device. Regarding data, 70% of the datasets were trained, and 30% were tested for each model 

development process. In addition, other data samples from the laser were trained using the selected models to keep them 

ready for later validation and testing. Table 4 shows the performance of the selected prediction models in detecting and 

classifying longitudinal cracks using a laser scanner. 

Table 4. Detection and classification of the longitudinal cracks using deep learning models 

Model name Precision Recall F1 score Accuracy 

LSTM 92.97 91.38 92.17 94.67 

GRU 91.37 90.32 90.84 92.37 

RF 85.35 82.93 84.12 85.83 

SVM 84.77 83.82 84.29 84.19 

DT 83.86 81.22 82.52 82.55 

Table 4 presents the effectiveness of deep-learning prediction models, including LSTM, GRU, RF, SVM, and DT, 

in foretelling pavement conditions. The models' results show significant performance in detecting and classifying the 

longitudinal cracks among different distress types located at the selected road segment surface. More clearly, the 

artificial neural network models, including LSTM and GRU, show excellent accuracy in detecting and classifying the 

longitudinal cracks with about 94.6% and 92.3%, respectively. These recurrent neural network models have special 

advantages in providing strength and efficiency in detecting and classifying defects in road pavement. On the other hand, 

the supervised machine learning models, including RF, SVM, and DT, present acceptable results in identifying and 

classifying the longitudinal cracks among other distress types on the selected road at accuracies of about 85.8%, 84.2%, 

and 82.5%, respectively. Moreover, other model metrics such as precision, recall, and F1-score show high and significant 

values for each prediction model. This allows for the substantial use of the selected models in detecting and classifying 

pavement condition performance. Table 5 shows the performance of the recurrent neural network models and supervised 

machine learning models in predicting rutting on pavement surfaces at different spots on the selected road. 

Table 5. Detection and classification of rutting using deep learning models 

Model Precision Recall F1 score Accuracy 

LSTM 91.55 91.21 91.37 91.44 

GRU 91.02 90.83 90.92 90.27 

RF 84.13 83.61 83.86 84.11 

SVM 85.12 83.19 84.14 84.01 

DT 82.62 81.04 81.82 81.25 
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According to Table 5, the prediction accuracies in detecting and classifying rutting were about 91.4% for using the 

LSTM model and about 90.3% for using the GRU model. The LSTM and GRU models' precision metric shows 

significant values in predicting the pavement condition in terms of rutting. Also, recall and F1-score values confirm the 

performance of the selected prediction models to detect and classify rutting. In contrast, the machine learning models 

provide acceptable accuracy ranges in predicting the functioning of pavement conditions in terms of detection and 

classification of the rutting cases among many different defect types. 

In summary, all the prediction models demonstrate accurate detection and classification for normal cases (ideal 

pavement), with about 95.7% using LSTM, 95.4% for GRU, 94.8% for RF, 94.9% for SVM, and about 93.6% using 

DT. Besides, the results in Table 5 indicate that the artificial neural network models, including LSTM and GRU, were 

more efficient than the machine learning models, including RF, SVM, and DT, in terms of prediction, detection, and 

classification of the pavement conditions. The recurrent neural network (LSTM and GRU) uses a comprehensive 

detection and classification system, while the supervised machine learning models focus on using a binary system to 

detect and classify pavement degradation. Besides, the results indicate that the LSTM model was more significant in 

detecting and classifying the longitudinal cracks than other model types. In addition, the LSTM model was excellent in 

predicting the rutting cases, among many other defect types, on the selected road surface. Besides, the metric values of 

the LSTM model provided excellent ranges in the prediction of the pavement condition with a precision average of 

about 92% and about 91% for recall and F1-score, respectively. 

Regarding the GRU, the model showed excellent ability to predict the condition of pavement surfaces in terms of 

existing longitudinal cracks and rutting with an overall accuracy of about 91%. Also, the average metric values of the 

GRU in the detection and classification of the pavement defects were about 91%, 90.6%, and 90.9% for precision, recall, 

and F1-score, respectively. At the same time, the results revealed that the longitudinal cracks and rutting were accurately 

predicted using the RF and SVM, with an overall prediction average of about 84.9% and 84.1%, respectively. Also, the 

high values of the models' metrics were provided at about 84.7% for precision, 83.3% for recall, and 84% for F1-score. 

Meanwhile, the SVM metrics values, including precision, recall, and F1-score, showed acceptable ranges of about 

84.9%, 83.5%, and 84.2%, respectively. Finally, the DT models showed less accuracy than the previously selected 

prediction models, averaging 81.9% for detecting and classifying pavement distresses. The model metric values were 

close and corresponded to the accuracy target with about 83.2% for precision, 81.1% for recall, and 82.2% for F1-score. 

Figure 9 presents the loss, accuracy, and validation of the LSTM model. 

  

 

Figure 9. The loss and accuracy of the LSTM prediction model 
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Figure 9 presents the loss during the model development process, which indicates the LSTM model's behavior in 

detecting and classifying the pavement condition. Moreover, the train and validation accuracy are provided to show the 

model's performance in predicting the longitudinal cracks and rutting among other defect types on the selected road 

segment. Although all the prediction models provided accurate predictions for the three cases of pavement distress, the 

recurrent neural networks significantly predicted the pavement condition performance compared to the supervised 

machine learning models. The fluctuations in prediction accuracies between the neural network models and machine 

learning models are due to several reasons, including the fact that the machine learning models need large dataset sizes 

and limitations in variables and parameters. In addition, several factors may affect the accuracy of the proposed 

prediction models, such as the scanning location (set-up device spot), where the device was not fixed on a strength line 

along the selected road segment. More clearly, there were bit offsets during turning points from one position to another. 

Also, some longitudinal cracks were skinny and not clearly detected or measured using the laser scanner. Slight rutting 

cases were not detected as well due to a combination of two or more distress types at the same spots. Table 6 shows a 

comparison between the results of this research work and those of previous studies. 

Table 6. Comparison between the results of this research work and those of previous studies 

Work Type of defects Techniques Performance Detection Problem Drawbacks/Limitations 

Prasanna et al. 

(2012) [32] 
Road defects Support Vector Machines (SVM) Accuracy (60%) Detection 

The outcomes indicated that the precision of practical 

predictions needed to be upgraded 

Hoang & Nguyen 

(2019) [33] 
Road defects 

Support Vector Machines (SVM) 

and Random Forest (RF) 

SVM (80.50%), followed 

by ANN (84.25%), then 

RF (70%). 

Classification Hard to detect rare types of damage 

Mihoub et al. 

(2023) [38] 

Smoothness, bumps, 

potholes, and others 

Road Scanner and SVM classifier 

(Support Vector Machines) 
Accuracy rate of 80.05%. Detection Hard to detect rare types of damage 

Daneshvari et al. 

(2024) [40] 
Bleeding 

One-class support vector machine 

(SVM) algorithm 
F1-score of 80.29%. Detection Doubles computational time 

Daneshvari et al. 

(2024) [44] 
Road defects SVM 

97.29 % in the testing 

dataset 
Classification Hard to detect rare types of damage 

Zhang et al. 

(2018) [46] 

Potholes, rutting, 

shoving 
3D laser scanner 

Detection accuracy above 

78%. 
Classification Hard to detect rare types of damage 

Azam et al. 

(2023) [47] 

Cracking, rutting, 

roughness, and 

miscellaneous distresses 

Terrestrial Laser Scanner 

(TLS)+PCI 

Significant improvement 

in determining flexible 

pavement distresses and 

geometric characteristics 

Classification Hard to detect rare types of damage 

Gopalakrishnan 

et al.(2017) [51] 

Pavement longitudinal 

cracks 
Transfer learning & VGG Accuracy = 80% Classification 

Fails to learn to distinguish cracks from joints in PCC-

surfaced pavements 

Rajadurai and 

Kang (2021) [52] 

Surface longitudinal 

cracks 
AlexNet Accuracy = 81–89% Classification 

Accuracy degraded by shadows, surface roughness, 

scaling, edges, holes, and background debris 

Stricker et al. 

(2019) [53] 
Road defects GAN & Auto-decoder Accuracy = 60% Classification The performance can be improved 

Chaiyasarn 

(2014) [54] 
Road defects SSD Precision > 75% Classification The performance can be improved 

Present Study 

Three main defect 

classes: longitudinal 

cracking; rutting and 

normal (ideal pavement 

spots). 

Integration between potential 

1- Terrestrial laser scanning systems 

2- PCI Procedure for automated 

prediction, detection and 

classification of longitudinal 

cracks and rutting. 

3- Deep Machine learning prediction 

models including (LSTM), 

(GRU), (RF), (SVM), (DT). 

The prediction models 

showed significant 

accuracy with about 

1-LSTM 93%,  

2-GRU 91%,  

3-RF 85%, 

4-SVM 84%, 

5- DT 82%, 

Some longitudinal cracks 

were skinny and not clearly 

detected or measured using 

the laser scanner. 

Moreover, slight rutting 

cases were not detected due 

to a combination of two or 

more distress types at the 

same spots. 

The fluctuations in prediction accuracies between the 

neural network models and machine learning models are 

due to several reasons, including the fact that the machine 

learning models need large dataset sizes and limitations in 

variables and parameters. In addition, several factors may 

affect the accuracy of the proposed prediction models, 

such as the scanning location (set-up device spot), where 

the device was not fixed on a strength line along the 

selected road segment. More clearly, there were bit offsets 

during turning points from one position to another. 

Table 6 summarizes a sample of previous studies. Evidently, there are different methodologies for distress 

detection and classification, like laser scanner and image processing techniques, deep machine learning, and standard 

PCI procedures. Every methodology has its own unique characteristics regarding performance, accuracy, and 

standard deviation based on different factors like the type of distress to be detected, the methodology itself, and the 

drawbacks/limitations associated with it. In conclusion, each methodology is considered case dependent. As 

highlighted by Table 6, the novelty of this research work lies in the integration of different methodologies like 

terrestrial laser scanning systems, five deep machine learning prediction models, and traditional PCI procedures for 

validation. This integration allows detecting and classifying the required three main defect classes automatically and 

achieving excellent results with higher accuracies compared to previous studies due to the five deep machine learning 

prediction models. 

https://www.mdpi.com/1424-8220/24/18/6130#B8-sensors-24-06130
https://www.mdpi.com/1424-8220/24/18/6130#B8-sensors-24-06130
https://content.iospress.com/articles/journal-of-smart-cities-and-society/scs230001#ref027
https://content.iospress.com/articles/journal-of-smart-cities-and-society/scs230001#ref014
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4. Conclusion 

This study focused on introducing a new pavement monitoring technique using a laser scanner device. The 

monitoring method aimed to evaluate the pavement conditions in terms of the existing two defect types: longitudinal 

cracking and rutting. The research also studied the use of the pavement condition index to evaluate the same pavement 

sections to validate the proposed monitoring technique. Besides, computation of the PCI depended on the visual 

condition survey in which distress type, severity, and quantity are evaluated for the distressed spots (as described in 

section 3.3) in order to verify the exact defect locations, types, and severities and to compare and validate the proposed 

monitoring technique. The PCI results indicated that the average PCI for 15 sample units of the longitudinal crack section 

is 48.13 (the PCI rate is poor), whereas the average PCI for 10 sample units of the rutting section is 37.3 (the PCI rate 

is very poor). Most of the severity levels were medium and high, as shown in Table 2, which indicates that these sections 

of the pavement need maintenance and rehabilitation. 

After monitoring the pavement condition, several noise-canceling techniques were performed on the data to remove 

outliers and confirm that the data was clear and consistent. Subsequently, other processing techniques were applied 

using labeling technology to identify the locations of each type of pavement defect on the collected laser data. These 

pre-processing techniques were used to ensure greater quality in the pavement condition prediction process. The deep 

machine learning system was used to determine the efficiency of the measured data in identifying and classifying the 

types and severity of road defects using different machine learning models such as LSTM, GRU, RF, SVM, and DT. 

The results concluded that the LSTM and GRU models accurately detected and classified the two defect types among 

other types of pavement distresses located on the road segment. Finally, the other machine learning algorithms, including 

RF, SVM, and DT, provided acceptable ranges of prediction accuracies for the pavement defects. 

Future studies could apply deep image processing techniques on the panoramic images taken by the laser device 

with the use of video recordings from a specialized camera to assess the condition of the road surface and automatically 

determine the type and severity of defect using a cellular application. 
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