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Abstract 

The Global Navigation Satellite System facilitates efficient agricultural initiatives, resolving land ownership and precise 

plantation monitoring issues. The oil palm sector is deeply integrated into various economies due to the world's use in food 

supplies, cosmetics, and oil biodiesel production. However, local farmers have trouble managing the plantation’s condition 

and land ownership due to the underdeveloped modern technology at their disposal. The Normalized Difference Vegetation 

Index was employed in order to assess the NDVI camera oil palm tree growth, utilizing a MAPIR Survey3 RGN 

Multispectral Camera integrated with red, green, and near IR sensors. Images were taken directly on the surface level to 

enable focused analysis on the palm trees. This included the use of an MPAR calibration ground target placed beside the 

leaves for data accuracy and an operator that held the camera to the trees. Utilizing this strategy allowed for a more intricate 

and detailed analysis of each oil palm tree, and due to the coordination of the trees, aerial images were produced to create 

a detailed image. Low-cost GNSS instruments alongside RTK technology were employed in determining the coordinate 

position of the oil palm trees. Considerable relationships were found between NDVI and content in chlorophyll: NDVI-G 

and Chl a (r = 0.679), NDVI-B and Chl a (r = 0.618), and NDVI-B and Chl b (r = 0.657). The positional errors obtained 

varied within –0.105 to 0.166 meters for low-cost GNSS and –0.159 to 0.083 meters for geodetic GNSS, the latter recording 

the least MAE of 0.053. This research work found a cheap and accurate oil palm growth monitoring system using 

multispectral sensors. This method overcomes the technological gap of local farmers and provides an alternative strategy 

for the management of plantations. 

Keywords: Oil Palm; NDVI; Multispectral Camera; GNSS; Monitoring. 

 

1. Introduction 

Technological advancement is increasingly becoming a major focus in various industries, including oil palm, to 

efficiently monitor plant health and productivity. Monitoring plant development, mapping plantation areas, and 

identifying environmental changes play a crucial role in maintaining health and increasing productivity. However, one 
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of the major challenges faced by local farmers is the limited access to technology for monitoring plant conditions and 

the high cost. This study focuses on developing a low-cost multispectral camera and a Real-Time Kinematic (RTK) 

observation method to improve positioning accuracy and overall oil palm health monitoring by the chlorophyll. 

Several studies have been conducted using satellite imagery, including [1-3], which focused on monitoring the health 

of pine plants in the New Zealand region. These studies showed that by using NDVI spectral index modeling, an 

accuracy value of above 70% was obtained for changes in tree canopy color. NDVI measurements were carried out 

using RapidEye satellite imagery with a spatial resolution of 5 m. Multispectral imagery from Unmanned Aerial 

Vehicles (UAVs) was also used in the study by Dash et al. [1]. The UAV technology used was the MicaSense RedEdge 

3 camera with a flight height during data acquisition of around 90 meters, which produced a Ground Sample Distance 

(GSD) of 6 cm. This study focused on tree areas in the forest. Hence, it was not able to assess the health of each tree 

individually [1]. UAV methodology can monitor each tree individually but requires low flight altitudes, increasing the 

risk of flight accidents [4, 5]. 

Considering that positioning is generally carried out separately from plant health monitoring, the coordinates 

obtained are not accompanied by information on oil palm health. In contrast, plant health is generally analyzed using 

NDVI values presented in the form of areas [6]. The use of NDVI refers to data transformation that allows the 

identification of oil palm plant health conditions by measuring vegetation cover in the canopy. This information does 

not provide details about the specific position of the plant, underscoring the need for integration with positional data, so 

the use of navigation technology is needed to improve the result. Therefore, a technology is needed to connect aspects 

of plant health, position, and oil palm GIS, which would be useful for detecting the health condition of each tree 

individually. This study aimed to conduct an analysis of oil palm plant health in smallholder oil palm plantations in 

Malang Regency and integrate this information with position data for accurate monitoring. The method is expected to 

provide more comprehensive and appropriate information for detecting the health condition of each oil palm tree 

individually and provide better information on position on plant area. 

In a different context, Septiarini et al. [7] performed an analysis of palm oil leaf diseases containing image 

processing, involving the pixel counting function and color feature extraction. In this context, Otsu thresholding was 

employed in the Lab color space to identify areas of the leaf that are diseased, and the k-NN model was used to classify 

the leaves of the tree as healthy or non-healthy. It can be seen from the findings that diseases were successfully traced 

to the leaf level, but there was a failure to capture the geo-spatial nature of the data to geo-reference the diseased trees. 

Low-cost NDVI technology has been developed by previous studies as an alternative solution to save operational 

costs for crop monitoring. Mazeh et al. [8] developed a low-cost multispectral NDVI sensor to detect weeds and estimate 

grape health, producing accurate NDVI values with an R² value of 0.87 but still found several different biases for each 

waveband. Low-cost NDVI developed by Stamford et al. [9] for analyzing plant health used a dual-camera system sensor 

priced at 380 USD connected to a Raspberry Pi, producing low-cost images, commonly referred to as NDVI. However, 

the study was limited to testing small plants such as Phaseolus vulgaris (French Bean). The method used Near-Infrared 

(NIR) and red wavebands from the camera sensor. NDVIpi observations were validated with a spectrometer, and a 

statistical analysis yielded R² values ranging from 0.54 to 0.80. Additionally, the low-cost tool was compared to the 

Micasense RedEdge system, a commercial NDVI camera, which resulted in an R² of 0.70 to 0.90. The NDVIpi camera 

sensor demonstrated good leaf measurement performance compared to standard spectrometric NDVI and commercial 

cameras [9]. 

Marzukhi et al. [10] highlighted that remote sensing technologies can be advanced to assess nutrient extent in oil 

palm, reinforcing the significance of multi-spectral images in health assessment. Tugi et al. [11] noted the use of UAVs 

for oil palm monitoring in smallholder plantations. However, the authors noted several drawbacks; high operational 

costs and technical expertise requirements for UAVs limit their adoption. More recent developments, such as affordable 

NDVI sensors like the NDVIpi system, offer hope but are often limited to certain environments and small-scale settings. 

The results of the NDVI transformation can define plant health conditions in a broad context. The NDVI value refers 

to the vegetation cover of oil palm, which is presented in the form of areas. Wang et al. [12] visualized health conditions 

based on the correlation between the NDVI value and validation of actual data using the spectrometer method with an 

R-value of 0.67. A common limitation across these approaches is the lack of integration between health data and precise 

spatial positioning. For instance, while NDVI data can effectively measure vegetation cover and health [6, 12], it is often 

presented as aggregated area-level information rather than tree-specific data. This limitation hinders targeted 

management strategies that require both positional accuracy and individual health analysis. 

The advancement of monitoring technology has become a major focus in various industries, including agriculture. 

Technology continues to develop rapidly, providing better capabilities for monitoring plant health and productivity 

efficiently [13]. In the context of oil palm cultivation, monitoring technology should provide innovative solutions to 

track plant development, map plantation areas, and identify environmental changes that can affect plant health. The 

application of monitoring technology is key to increasing productivity and sustainability [14]. Plant health management 



Civil Engineering Journal         Vol. 11, No. 03, March, 2025 

990 

 

in the oil palm industry plays an important role in ensuring optimal growth and production. Various problems faced in 

cultivation include limited water for growth due to geological or weather factors. In addition, sanitation problems are 

also a serious concern because poor conditions can trigger the spread of disease and inhibit overall growth [15]. 

To address these gaps, this study combines low-cost GNSS technology with multispectral imaging to provide a 

comprehensive solution for monitoring oil palm health and spatial positioning. By leveraging a multispectral camera to 

calculate vegetation indices such as NDVI and integrating GNSS RTK for positional accuracy, the proposed approach 

offers a dual benefit. It enables precise mapping of individual tree health and position, thus supporting better decision-

making in plantation management. The integration of these technologies is expected to enhance monitoring efficiency, 

reduce operational costs, and empower smallholder farmers with actionable insights for sustainable and efficient 

plantation practices [16, 17]. 

Positional databases are essential in the oil palm industry for managing the health of each plant. By monitoring the 

position and condition of each tree accurately, plantation managers can identify the trees that need special attention for 

watering, fertilization, or pesticide treatment. Information about plant positions also helps optimize the use of resources 

such as water, fertilizers, and pesticides, leading to reduced environmental impacts and increased production efficiency 

[18]. The positional database also enables managers to monitor changes in tree growth patterns and health over time. 

This helps in making better decisions for long-term planning and risk management strategies. Geographic information 

technology (GIS) and remote sensors allow for the collection of positional data more quickly and accurately. The NDVI 

analysis will help to ensure the condition of oil palm trees. This empowers plantation managers to develop more effective 

solutions to maintain the health of oil palm and ensure the sustainability of the industry [19]. Smallholder or plasma 

farmers require the use of technology to accurately assess the condition of oil palm plants. Accessible tools such as 

multispectral cameras can be a practical alternative to photographing objects and analyzing conditions visually. 

Therefore, this study aimed to perform health checks on plants using multispectral cameras and to track the location of 

oil palm trees using low-cost GNSS. Based on the previous research that NDVI can indicate the health condition of the 

tree coverage, not only the health condition that can be known by the research but also the information of such locations 

of the oil palm trees. The data collected from the cameras and GPS were combined to provide smallholder farmers with 

easily understandable information about the condition of oil palm trees. This research also added information on the 

position of the palm tree area that has such case conditions. The health of oil palm plants can be influenced by various 

factors, including soil nutrients and the presence of other crops [11, 15]. 

2. Research Methodology 

In this study, the methodology involved several stages that utilized specific tools and technologies. Detailed 

specifications of these tools are presented in the following subsections. 

2.1. Tool Specifications 

To acquire accurate and relevant data, several tools with specific specifications were employed in this research. Each 

tool has a distinct role and characteristics that support data collection. 

2.1.1. Multispectral Camera MAPIR Survey3 RGN 

This study used images from the multispectral camera MAPIR Survey3 RGN, captured on 30 September 2023. The 

MAPIR Survey3 Cameras carry a triple band, namely, Red, Green, and NIR (Near-Infrared). The wavelengths for these 

bands are 550 nm, 660 nm, and 850 nm, respectively. MAPIR Survey3 Cameras, commonly referred to as Survey3, 

feature a no-fisheye lens with very low distortion, providing excellent results for aerial surveys [16]. The detailed images 

and specifications are shown in Table 1. 

Table 1.Specifications of Multispectral Camera MAPIR Survey3 RGN 

Image Resolution 12 MegaPixel (4000 × 3000 px), dan 8 MegaPixel 

Image Format RAW + JPG, (RAW is 12-bit, and JPG is 8bit) 

Weight 50g (Without battery) 76g (With Battery) 

Dimension 59 × 41.5 × 36 mm 

ISO 50/ 100 / 200 / 400, Auto 

Shutter Speed 1/2000, 1/1000, 1/500, 1/250, 1/125, 1/90, 1/60, 1/30, 1/15, 1/8, 1, 2, 3, 5, 10, 15, 20, 30, 60, Auto 

Sensor Red= 660 nm; Green = 550 nm; NIR= 850 nm 
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2.1.2. GNSS Geodetic – SinoGNSS T300 

The SinoGNSS T300 is a geodetic-quality GNSS receiver. It supports navigation signals from multiple satellite 
systems, including GNSS (Global Navigation Satellite System), GPS (Global Positioning System), GLONASS, BeiDou, 
and Galileo, providing high-precision positioning. The available modes of the SinoGNSS T300 include Static, RTK, 
and RTK N-TRIP, with accuracy reaching centimeter-level fractions. The specifications of the SinoGNSS T300 are as 
follows. 

Table 2. Spesifications SinoGNSS T300 

Satellite Signals 

GPS L1 C/A, L1C, L2P, L5 

BeiDou B1, B2, B3 

GLONASS L1, L2 

Galileo Reserved 

SBAS WAAS, EGNOS, MSAS, GAGAN 

Performance Specification 

Cold starts <50s 

Warm start <30s 

Hot start <15s 

Initialization time 10s 

Signal re-acquisition <2s 

Initialization reliability Typically>99.9 

Positioning Specification 

Post Processing Static 

Horizontal: 2.5mm+0.5 ppm RMS 

Vertical 4: 5 mm+0.5 ppm RMS 

Real-Time Kinematic 

Horizontal: 8 mm+1 ppm RMS 

Vercital: 15 mm+ 1 ppm RMS 

E-RTK (<100 km) 

Horizontal: 0.2 mm+1 ppm RMS 

Vertical: 0.4 mm+ 1 ppm RMS 

2.2. Data Collection 

The oil palm plantation studied was owned by local farmers in Selorejo, Blitar Regency, East Java, as shown in 
Figure 1. The location featured sloping terrain; hence, there was a wet area on the west side and a dry area on the east 
side. This condition arose because the water flow, directed by the farmer, originates from a source on the west side of 
the study area. The irrigation method used by farmers consisted of water pipes directed under the oil palm trees in the 
form of irrigation channels. The total area of the oil palm plantation was 1 hectare, with an average spacing of 8–10 
meters between trees. Other plantation crops surrounded the study area. The oil palm had 7 years of planting age, and 
the fertilizer used during initial planting was chemical fertilizer, which was later replaced with organic fertilizer. 

 

Figure 1. The location of this study was in Blitar, East Java. The yellow boxes indicate the sample area of oil palm analyzed 

in this study 
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Figure 2 shows the methodology flowchart, outlining the key steps. This study began with measuring the distance 

between oil palm trees using three methods: low-cost GPS, geodetic GPS, and a roll meter. The collected data were 

processed to determine the coordinates of each tree. Additionally, multispectral images of the oil palm trees were 

obtained using a MAPIR camera, which was calibrated and processed to produce Normalized Difference Vegetation 

Index (NDVI) data. These values were subsequently utilized to evaluate the health of the vegetation of each oil palm 

tree. The analysis results were amalgamated with the GPS coordinates to generate a comprehensive dataset that 

incorporated vegetation health data with the geographical location of each tree in the study area. 

 

Figure 2. Study Methodology Flowchart 

The methodology integrated the selection of trees based on environmental factors, the use of multispectral 

technology, and leaf sampling for chlorophyll analysis to identify the health of oil palm trees in the study area. Wet 

areas experienced frequent water flow, while dry areas received water flow only during rainfall.  

2.2.1. The Oil Palm Tree Image Sampling 

This research was conducted on oil palm trees in Blitar and in relation to the existence of water flow over the region. 

Such trees, which had access to water flow, were given the code W, while those such deprived were coded D. Leaf 

segmentation classified the leaves as good G and bad B. Good health-quality samples were green in color and hence 

possessed high levels of chlorophyll, while bad-quality ones had characteristics of yellow. 

This dataset was also constructed by taking photographs of the oil palm trees with a multispectral camera with red, 

green, and NIR sensors. The integration of multispectral technology enhanced and broadened the approach taken 

towards data collection. Unlike some studies that employ UAVs for airborne imagery, this research did not make use of 

UAVs. Rather, the measurements were carried out by taking pictures of the trees looking up from the ground, struggling 

to capture individual trees. Validation of the results was carried out using a special calibration tool, MAPIR Calibration 

Ground Target, which was placed around the leaves such that the data obtained was able to be calibrated correctly, as 

shown in Figure 3. Leaf sampling was carried out using a calibration vehicle, as demonstrated by Siswantoro et al. [20] 

and Gantimurova et al. [21]. This calibration vehicle was positioned in front of the leaf using a special tool called the 

Calibration Ground Target. Figure 3 shows some pictures illustrating the methodology in use: 
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Figure 3. Application of MAPIR calibration to trees 

Figure 3 shows how the MAPIR calibration approach was implemented on trees. The device was situated above the 

bare soil next to a dry leaf litter, and it was also interspersed with a healthy plant for purposes of data gathering. It was 

also used in different locations in the region of study to achieve complete calibration. The pixel values of the selected 

target images were contrasted to the reflectivity values of the calibration target images that are known. The pixel values 

were calibrated, and the survey images were taken using the MAPIR Camera Control (MCC) application. This was done 

in this manner so that the resultant multispectral data would be of high quality and thus suitable for analysis of plant 

health.  

The approach in this study avoided UAV-based tree measurement and multispectral data collection techniques, 

which enabled it to avoid complications related to flight paths, altitude, and width adjustments. The baseball pattern, 

often present in UAV studies to calibrate the sensor and align it spatially, is one of the missing elements that prevented 

the tool from being classified in the other category. For this research, the MAPIR Survey3 RGN Multispectral Camera 

was used, which is a specialized stereo camera for close-sight ground-based measurements. 

This helped put down the spatial control points needed to link the various images of the study area, further aiding 

the overall understanding of the system as demonstrated by the diagrams. This detail should facilitate further 

comprehension of the UAV-based multispectral camera approach regarding the measurement of trees and specific areas. 

Leaf analysis is useful in diagnosing nutrient deficiencies before they become detrimental to the plant’s employment. 

A deficiency in nutrients will cause the plant to have some symptoms like yellowing of the leaves and change of leaf 

color as well as reduced yield [7, 10, 22]. To determine the concentrations of chlorophyll a (Chl a) and chlorophyll b 

(Chl b) in the palm oil tree leaves, samples were taken from every tree that had been photographed. Chlorella content 

was selected for this purpose because it is one of the most important elements of the plant growth and oil palm tree 

health and productivity assessment. Two leaves were sampled from each photographed tree, one for each of the two 

conditions: good, i.e., G (good/green/healthy) health, and the other for bad yellowish, i.e., B (bad/yellowish). Leaves 

that were in good condition were marked G and marked B in those that were in poor condition. The examination was 

carried out by locating the trees and ‘eyeballing’ the samples for their health status. 

2.2.3. Data Collection of Tree Position  

Data collection of oil palm tree positions was conducted to analyze the performance of the low-cost Ublox F9R, 

which would be integrated into a smartphone. The coordinate results were used as positional information for each tree. 

The data collection analysis was performed by comparing the measurement results using GNSS Geodetic and low-cost 

GNSS in the Real-Time Kinematic (RTK) method with the static post-processing measurement using a GNSS Geodetic 

receiver [17]. 

The RTCM corrections from two observations using low-cost GNSS and the GNSS geodetic receiver were tied 

to the nearest national CORS point. Both measurements were conducted at the same point and generated consistent 

accuracy. RTK measurement was conducted at each oil palm tree sample, and static measurement was performed 

for 1 hour using the radial coordinate processing method. To obtain consistent measurement results between the 

geodetic receiver and low-cost GNSS, data from the same point were taken alternately. The SinoGNSS T300 geodetic 

GNSS provides very high accuracy, with a precision of fractions of a centimeter. On the other hand, the low-cost 

Ublox F9R GNSS provides quite adequate results compared to a geodetic receiver. It can be used as an effecti ve 

alternative for positioning measurements that require cost efficiency without neglecting the need for relatively high 

accuracy [17]. 

2.2.4. Data Processing 

In this chapter, various data processing steps are conducted, including NDVI calculation, chlorophyll analysis, and 

the measurement and analysis of the accuracy of oil palm tree positions. These steps are essential for understanding the 

condition of the vegetation and the distribution of oil palm trees based on remote sensing data. The following sub-

chapters will explain each stage in detail, from the calculation of vegetation indices to the statistical tests of the accuracy 

of the oil palm tree position measurements. 
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2.2.5. NDVI Calculation 

The health level of oil palm trees in this study was detected using the NDVI classification method, which was 

obtained by calculating the ratio between NIR and Red (R) values. NDVI is used to monitor vegetation health based on 

the difference between the absorption and reflectance of green leaves in the red and NIR bands of the light spectrum. 

The value for each pixel was estimated by dividing the difference in reflectance by the sum of NIR and red bands. NIR 

ranges from 0.7 to 1.1 µm, while the red band ranges from 0.58 to 0.68 µm. Usually, NDVI values range from -1 to +1, 

indicating healthy vegetation cover, with lower values indicating stressed vegetation and negative values suggesting 

open water or high-water content. The higher the NDVI values, the healthier the vegetation. The range of NDVI values 

during the rainy season is significantly broader compared to the dry season. 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅−𝑅𝐸𝐷

𝑁𝐼𝑅+𝑅𝐸𝐷
  (1) 

where NDVI is Normalized Difference Vegetation Index, NIR is Near Infra-Red Band, and RED is Red Band. 

2.2.6. Chlorophyll Calculation 

To authenticate and statistically correlate, the study employed the use of a spectrophotometer to compute the 

chlorophyll a (Chl a) and chlorophyll b (Chl b) content and the NDVI data obtained from processing the multispectral 

camera. The chlorophyll-a, chlorophyll-b pigments, and total carotenoid content were evaluated principally via the 

method of Wellburn. It has been shown in numerous research studies that this technique is both accurate and reliable 

regardless of the environments, whether different solvents or spectrophotometer types were used [23]. Leaf samples 

from oil palm trees growing in the research location were used. Each sample was examined using three replicates for 

robust and reliable results. The samples were weighed and placed into 1.5 µL of microtubes, subsequently added with 1 

mL of 80% acetone, and stored at 4°C for 16 hours. The solution was measured using the Genesys 10S UV-Vi 

spectrophotometer in several wavelengths, namely 470 nm, 646 nm, and 663 nm. The obtained absorbance was 

calculated using the formula [24]: 

Chl 𝑎 (
𝑚𝑔

𝐿
) = 12.21𝐴663 − 2.81646  (2) 

hl 𝑏 (
𝑚𝑔

𝐿
) =  20.13𝐴646 −  5.03663  (3) 

𝐶𝑎𝑟𝑜𝑡𝑒𝑛𝑜𝑖𝑑𝑠 (
𝑚𝑔

𝐿
) = (1000𝐴470 − 3.27𝐶ℎ𝑙𝑎 − 104𝐶ℎ𝑙𝑏)/198  (4) 

𝑇𝑜𝑡𝑎𝑙 𝐶ℎ𝑙𝑜𝑟𝑜𝑝ℎ𝑦𝑙𝑙 (
𝑚𝑔

𝐿
) = Chl 𝑎 +  Chl 𝑏  (5) 

where Chl a is Concentration of chlorophyll a (mg/L), Chl b is Concentration of chlorophyll b (mg/L), Carotenoids is 

Concentration of carotenoids (mg/L), Total Chlorophyll is Total concentration of chlorophyll (mg/L), 𝐴663  is 

Absorbance at 663 nm, 𝐴646 is Absorbance at 646 nm, and 𝐴470 is Absorbance at 470 nm. 

2.3. Analysis Method 

2.3.1. Correlation Analysis 

In the analysis method, the correlation between the NDVI results from the multispectral camera as well as Chl a 

and b content obtained from the spectrophotometer was examined [25]. The initial step was collecting NDVI data 

and the Chl a and b content from the same location and time, and then the correlation was calculated. Pearson 

correlation coefficient was the statistical method utilized, which determines the level of a linear relationship between 

the two variables [26, 27]. A number generated by the coefficient ranges from –1 to 1. Positive values reflect positive 

correlation, negative values reflect negative correlation, and zero values show no correlation at any meaningful level 

[28]. The results of correlation analysis will help to prove the degree of closeness that exists between NDVI and Chl 

a and b content [29], thus enabling the determination of representative information with respect to oil palm tree 

health status. 

2.3.2. Accuracy of Oil Palm Tree Positions 

The RTK observation method was used in conjunction with inexpensive and geodetic devices to determine the 

coordinate positions of oil palm trees. The study assessed the accuracy of oil palm tree positions using a range of 

instruments and measuring techniques, with the static approach utilizing GNSS geodetic serving as the reference 

value. The position measurement using other methods was evaluated for differences compared to the static -GNSS 

geodetic method. Data analysis was performed using the method described by  Janos & Kuras [30], comparing the 

accuracy results of RTK measurements from geodetic receivers and low-cost devices with static measurements using 

the equation: 

𝑅𝐷 =  𝑎𝑅𝑒𝑓 − 𝑎𝑂𝑏𝑠  (6) 
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where 𝑅𝐷  is difference between the reference and the measured coordinates, 𝑎𝑅𝑒𝑓  is reference coordinates (static 

positioning), and 𝑎𝑂𝑏𝑠 is observed coordinates (RTK positioning). 

The accuracy values were analyzed against the tree canopy density, which could affect the satellite signals received 

by the receiver. To understand the quality of the measurement results using geodetic and low-cost receivers, a calculation 

of the distance from the coordinates of the observation to the reference point was carried out. 

𝛥 𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 =  √𝑑𝑥2 + 𝑑𝑦2  (7) 

where 𝛥𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 is Horizontal distance of observation coordinates to reference, 𝑑𝑥 is The difference between the 

coordinates of the observation to the reference on the x-axis, and 𝑑𝑦 is The difference between the coordinates of the 

observation to the reference on the y-axis. 

2.3.3. Statistic Test of Accuracy Measurement of Palm Tree Positions 

The accuracy difference between low-cost and geodetic RTK observations on oil palm tree positions was assessed 

using a statistical test. The analysis was performed using a paired t-test commonly used when the data is not independent 

(paired) [31]. The common characteristic in paired cases is when one individual (study object) receives two different 

treatments. Despite using the same individual, two types of sample data will be obtained, namely from the first and 

second treatments [32]. 

The paired t-test was selected in this case due to the ability to compare two related or paired data sets. In the 

context of positioning measurement, each tree was measured twice using two different RTK methods. Considering 

low-cost GNSS and geodetic RTK observations originated from the same object (the same tree), the data were not 

independent and paired. The paired t-test is very suitable because it considers the relationship between pairs of data, 

thereby providing more accurate results in assessing the differences between the two measurement methods [33-

35]. 

3. Results and Discussion 

3.1. The Measurement Results of Oil palm Tree Samples with Multispectral Camera 

Photographing oil palm tree samples with a multispectral camera was conducted at the study area to obtain vegetation 

index (NDVI) values. The results of the NDVI calculation and transformation were visualized to represent the greenness 

level. Figure 4 shows the visualization of NDVI results for several tree samples. 

 

Figure 4. Several NDVI visualizations of tree samples near the water flow (W) and healthy leaf conditions (D) 

Healthy leaf samples near the water flow (W-tree) tended to have high NDVI values, also characterized by bright 
green color throughout the tree. Tree samples with yellowish leaves far from the water flow (D-tree) tended to have 
relatively low NDVI, especially in the trunk. Lack of water and nutrients, as well as possible pest or disease attacks, can 

cause a decrease in chlorophyll content and inhibit growth. 
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(a) (b) 

Figure 5. Comparison of NDVI, Chlorophyll a, and Chlorophyll b values (a) W-tree (b) D-tree 

Based on the NDVI, Chl a, and Chl b graphs, significant differences were observed between oil palm trees located 
near water flow (W-tree) and those farther from water flow (D-tree), as well as between leaves in good condition (blue 
line) and those in poor condition (red line) (see Figure 5). NDVI values for leaves in good condition were relatively 
stable, ranging from 0.4 to 0.6 for the 1st to 5th trees, then dropping sharply to around -0.2 at the 6th tree and slightly 
increasing at the 7th tree, whereas leaves in poor condition showed greater fluctuation, ranging from 0.4 to 0.8 for the 

1st to 5th trees before decreasing sharply to around -0.4 at the 6th tree. 

Chl a value for leaves in good condition exhibited an upward trend, peaking near 1000 at the 6th tree and indicating 

high photosynthetic activity; in contrast, leaves in poor condition had lower and more volatile Chl a values, peaking 
around 400 at the 3rd tree. For Chl b, leaves in good condition followed a fluctuating trend with a peak near 200 at the 
6th tree, suggesting good vegetative health, whereas leaves in poor condition were lower and more volatile, peaking 
around 150 at the 1st tree. Overall, oil palm trees located near water flow consistently showed higher and more stable 
NDVI, Chl a, and Chl b values—especially in leaves deemed to be in good condition—thereby indicating that proximity 
to water flow positively influences tree health and photosynthetic activity. The result is compatible with the result from 

the correlation of the water flow distance impact on soil fertility; when the water level decreases, the plants in the coastal 
area have low value NDVI [29]. 

3.2. Leaf Chlorophyll Content Observation Using Spectrophotometer 

Data collected provided insights into the chlorophyll concentration across different samples, offering a quantitative 

understanding of photosynthetic efficiency. These results are crucial for evaluating the health and vigor of the plants, 
contributing to a deeper comprehension of physiology and growth dynamics in various environmental conditions. 

The leaf samples from each oil palm tree have two conditions, namely healthy and yellowish, both having different 
levels of Chl a and Chl b pigments. As shown in Figure 6, the content of each pigment varied between oil palm trees. 
Healthy leaves showed Chl a content above 500 µg/g, while Yellowfish leaves had values below 300 µg/g. The Chl b 
content in healthy leaves had a concentration above 100 µg/g, while Yellowfish leaves had values below 100 µg/g. 
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Figure 6. The measurement of pigment content. A) Various color of sample; B) The Chl a content; C) The Chl b content; D) The 

carotenoids content; and E) The total of Chlorophyll. The pigment value was the average from three biological replications 

The colors in Figure 5a represent different shades of the leaf samples taken. These were categorized as B1 Healthy, 

B1 Yellowish, B3 Yellowish, B4 Healthy, B5 Yellowish, Young Leaves, K1 Yellowish, K2 Healthy, and K3 Yellowish. 

The samples labeled K were taken from a dry environment, while those labeled B were collected from a wet plant 

environment or had fairly wet soil content. 

Environmental factors such as light intensity, water availability, and soil conditions affect the quality of chlorophyll 

in plants. Light is the main source of energy for the process of photosynthesis. Sufficient light intensity will increase 

photosynthesis activity, making plants produce more chlorophyll to absorb light. However, extremely high light intensity 

can cause damage to chlorophyll pigments and inhibit photosynthesis. The previous study showed that NDVI will 

slightly decrease in summertime, as it is known that the daylight is longer than night [36] with decreasing NDVI trends 

around 0.42 to 0.41. This causes chlorophyll degradation and decreases the levels. Water is also essential for the process 

of photosynthesis as it serves as a nutrient for plants. An adequate water supply is necessary for the formation and 

maintenance of chlorophyll. Insufficient water inhibits the process of photosynthesis and reduces chlorophyll 

production. In addition, drought can damage leaf structures and reduce the ability to absorb light. Soil contains various 

elements that affect plant growth, including nutrients, pH, and structure. Nutrients such as nitrogen, magnesium, and 

iron are crucial for chlorophyll synthesis. Extremely acidic or alkaline soil pH can impact nutrient availability. In 

general, soil with a neutral or slightly acidic pH is best for plant growth and chlorophyll production. Soil structures such 

as loose soil and good aeration support the efficient absorption of water and nutrients by plant roots, leading to increased 

chlorophyll production. 

3.3. Correlation Analysis of NDVI and Chlorophyll Content of Palm Trees 

The NDVI value is a calculation of the vegetation index obtained from a multispectral camera after transformation 

processing from the Red and NIR bands at wavelengths of 660 nm and 850 nm. The results of Chl a and Chl b were 

obtained from laboratory tests using a spectrophotometer on the leaf samples taken. Code G is a leaf object in good 

condition, and B is a leaf object in a yellowish state. The results of calculating the NDVI and chlorophyll content of 

each leaf sample on each tree are presented in Table 3. 
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Table 3. NDVI calculation results and chlorophyll content of leaf samples 

Tree Code 
NDVI Chlorophyll a (µg/g) Chlorophyll b (µg/g) 

G B G B G B 

W01 0.5349 0.6139 305.91 849.22 77.86 164.39 

W02 0.4854 0.4407 254.60 182.92 76.45 51.02 

W03 0.5402 0.6069 591.29 438.85 114.57 107.04 

W04 0.4672 0.5643 133.73 241.77 38.24 68.92 

W05 0.5269 0.5473 291.68 239.56 76.08 56.16 

W06 0.7723 -0.2698 924.14 337.07 206.82 82.44 

D01 0.3582 0.1910 209.41 159.52 61.45 48.01 

D02 0.1376 0.3442 63.55 180.82 23.09 55.53 

D03 0.5093 0.5269 433.20 340.40 101.70 106.49 

D04 0.4929 0.4854 536.64 279.69 76.07 88.66 

D05 0.6088 0.4061 941.07 252.07 124.02 39.57 

D06 0.3277 -0.1045 612.87 126.44 134.67 28.66 

Mean 0.4801 0.3627 441.51 302.36 92.58 74.74 

Based on Table 3, healthy leaf samples (G) on the W-tree had relatively high NDVI values, ranging from 0.46 - 0.77. 

Meanwhile, samples in the D-tree had a smaller minimum NDVI value (range 0.13 - 0.60). This is shown in Figure 7, 

where the average NDVI value for trees close to the water flow is higher than for those far from the water flow. This 

value is also directly proportional to the average chlorophyll content in the leaf samples of each tree. Leaf samples on 

the W-tree contain more Chl a and Chl b than those on the W-tree. In addition, leaf sample G generally had a higher 

chlorophyll content than B. We utilized a multiple linear regression model with NDVI G as the independent variable 

and chlorophyll content, represented by Chl a G and Chl b G, as the dependent variables. This approach yielded an R² 

value of 51%, indicating a modest improvement in the explanatory power of the model compared to the previously stated 

correlation. This suggests that while the relationship between NDVI G and chlorophyll content (Chl a G and Chl b G) 

remains moderate, the integration of a regression-based approach enhances the predictive capability of NDVI G for 

chlorophyll content monitoring. Future studies could explore the incorporation of additional vegetation indices or 

advanced modeling techniques to further strengthen this relationship. 

 

 

Figure 7. Graph of the average NDVI value (a) and chlorophyll content in leaf samples (b) 
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Additionally, leaf samples categorized as G generally displayed higher chlorophyll content than those labeled as B. 

This discrepancy can be attributed to the presence of soot on the surface of B leaves, which hinders photosynthesis and 

subsequently results in lower chlorophyll content. The soot acts as a physical barrier, reducing light penetration and 

impairing the leaves' ability to synthesize chlorophyll effectively. NDVI demonstrates variation in increases and 

decreases between symbols G and B. The average NDVI decline of -14.15% indicates that the vegetation condition in 

the B group tends to be more degraded compared to the G group. 

Figures 8 and 9 show line fit plots and Pearson correlation results between NDVI values for Chl a and Chl b. 

Correlation results were calculated for each condition of the same leaf sample (healthy and yellowish), as shown in 

Figures 7 and 8. 

  

(a) (b) 

Figure 8. Correlation graph between (a) Chl a content and NDVI (G) and (b) Chl b content and NDVI (G) 

  

(a) (b) 

Figure 9. Correlation graph between (a) Chl a content and NDVI and (b) Chl b content and NDVI (B) 

Correlation analysis aims to evaluate the relationship between the vegetation index and the chlorophyll value in plant 

leaves. The vegetation index value shows the greenness of the vegetation/canopy obtained from the image processing 

results on the MAPIR Survey3 RGN multispectral camera. The results of the correlation between the good condition 

plant index value (NDVI-G) and the Chl a value in plant leaf samples obtained a value of r = 0.679, where the plant 

vegetation index had a positive relationship with the Chl a value in plant leaf samples (Figure 8a). Other results also 

show a correlation between the good condition plant vegetation index (NDVI-G) value and the Chl b content value of 

plant leaf samples, with a value of r = 0.705. This suggests a positive relationship between the good condition plant 

vegetation index and the Chl b content value (Figure 8b).  
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The linear regression graph in Figure 7a shows the relationship between the vegetation index value and Chl a in 

plant leaves, which gives the equation y=1254.9x-161, and R² is 0.462 or 46.2%. This implies that the good condition 

vegetation index (NDVI-G) has a weak relationship with Chl a in plant leaves because the R² value is ≤0.5. Meanwhile, 

the linear regression graph in Figure 7b gives the equation y=220.78×-13.416, and R² is 0.498 or 49.8%. This shows 

that NDVI-G has a weak relationship with Chl b in plant leaves. The NDVI-G correlation to Chl b is stronger than Chl 

a. These results are consistent with other studies. For example, Wu et al. (2008) stated that more complex vegetation 

indices, including TCARI/OSAVI [705,750] and MCARI/OSAVI [705,750], can provide higher correlation coefficients 

(R² = 0.8808 and 0.9406, respectively) for chlorophyll estimation. This implies that integrated indices could enhance 

the accuracy of chlorophyll content estimation [37]. 

The relationship between the plant vegetation index was also analyzed on leaf samples in poor condition (NDVI-

B) with chlorophyll content. These results show a correlation between the bad condition plant index value (NDVI-

B) and the Chl a value in leaf samples, with a value of r = 0.618. The plant vegetation index has a positive 

relationship with the Chl a value in plant leaf samples (Figure 9a). Other results also show a correlation between 

the plant vegetation index in poor condition (NDVI-B) and the Chl b content of plant leaf samples, with a value of 

r = 0.657. This shows a positive relationship between the plant vegetation index in good condition and the value of 

Chl b content (Figure 9b). The linear regression graph in Figure 8a describes the relationship between the vegetation 

index value and Chl a content in plant leaves, which gives the equation y=960.22x-137.41, and R² is 0.382 or 38.2%. 

The interpretation is that the poor vegetation condition index (NDVI-B) has a weak relationship with Chl a in plant 

leaves because the R² value is ≤0.5. The linear regression graph in Figure 8b gives the equation y=192.37x-12.354, 

and R² is 0.431 or 43.1% between the bad condition vegetation index (NDVI-B) value and Chl b. This shows that 

NDVI-B has a weak relationship with Chl b in plant leaves. However, the correlation of NDVI-B to Chl b is stronger 

than that of NDVI-B to Chl a. 

The results indicate that the correlation between the vegetation index under good conditions (NDVI-G) and 

chlorophyll content is significantly stronger than under poor conditions (NDVI-B), demonstrating an improvement over 

previous findings [36, 38]. This study also reveals that Chl b content has a stronger relationship with vegetation indices 

in both good and poor conditions. With the value of r = 0.705 on Chl b of NDVI-G, offering a more detailed perspective 

compared to earlier research, which primarily focused on general correlations. 

Compared to earlier studies, the findings offer enhanced insights into the role of canopy coverage and environmental 

factors in shaping NDVI trends by satellite image in each DOY. It shows that the chlorophyll was the most affected by 

the trends. The integration of these findings with previous work underscores the robustness of NDVI as a proxy for 

chlorophyll content and its capacity to capture variations in plant vigor under different environmental conditions; the 

canopy is one important factor. Based on the vine canopy volume reflected the vigor of each group of samples per DOY, 

which showed a good correlation between the measured canopy volume and the UAV estimated one was found in 

research [36]. While the previous study used both Chl a and Chl b, the recent study improved the conclusion that the 

most dominant type of chlorophyll in this research is Chl b. 

The chlorophyll that indicates NDVI has also been tested on wheat. There has been a clear association between 

the chlorophyll content (SPAD) and NDVI with the grain yield and agronomic traits, making chlorophyll itself 

usable in the identification of plant N deficiency [38]. Coyne et al. [39] stated that the correlation between NDVI 

and Chl b was more significant than with Chl a, suggesting Chl b may be more sensitive to changes in the 

vegetation index. This implies that the evaluation of vegetation indices should consider the overall condition and 

emphasize the importance of detailed analysis of both chlorophyll types to obtain a more accurate picture of plant 

health [40]. 

3.4. Tree Position Data Analysis 

3.4.1. Analysis of Tree Position Accuracy using the RTK Method 

Determining the coordinate position of each palm tree sample was carried out using the RTK method. The objective 

was to examine the extent of the difference between geodetic and low-cost receiver devices for the position in forest-

like obstruction conditions. The position results from the two receiver devices were validated by static differential 

observations using a geodetic receiver as a reference and post-processing using the radial method. Figure 10 shows the 

result of coordinates using the static method. 
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Figure 10. Coordinates of palm trees from static GNSS observations 

Table 5 shows the coordinate results for 12 palm trees measured using 3 measurement methods. The differences with 

static-geodetic coordinates as a reference are presented in Table 4. 

Table 4. Table of palm tree coordinates results using 3 measurement methods 

Tree ID 
Geodetic Static Low-cost GNSS Geodetic RTK 

Easting (m) Northing (m) Easting (m) Northing (m) Easting (m) Northing (m) 

W1 660064.876 9102271.638 660065.036 9102271.668 660065.030 9102271.657 

W2 660067.330 9102280.073 660067.483 9102279.960 660067.427 9102280.200 

W3 660068.319 9102288.642 660068.314 9102288.678 660068.257 9102288.747 

W4 660071.097 9102301.089 660070.940 9102301.267 660071.062 9102301.231 

W5 660077.816 9102300.214 660077.857 9102300.373 660077.802 9102300.229 

W6 660080.215 9102308.332 660080.095 9102308.221 660080.129 9102308.270 

D1 660222.678 9102198.913 660222.745 9102198.981 660222.763 9102198.968 

D2 660234.411 9102188.745 660234.555 9102188.848 660234.555 9102188.734 

D3 660233.421 9102182.986 660233.579 9102183.054 660233.576 9102183.106 

D4 660226.273 9102184.081 660226.445 9102184.223 660226.356 9102184.150 

D5 660233.231 9102174.428 660233.402 9102174.472 660233.383 9102174.374 

D6 660236.998 9102180.004 660236.898 9102180.087 660236.894 9102180.078 

An analysis was conducted to compare the accuracy of observations using Geodetic RTK, Low-cost GNSS, and 

static observations. The differences in coordinates produced by the three methods were examined. Table 5 shows 

variations in coordinates in the easting and northing axes between the measurements obtained using Geodetic Static and 

Low-cost GNSS, as well as the differences between Geodetic Static and Geodetic RTK. These results provide insights 

into the variations in measurement outcomes from each method and enable a more comprehensive assessment of the 

accuracy and consistency of low-cost devices compared to Geodetic RTK. The low-cost GPS device relies solely on 

RTK NTRIP CORS BIG for corrections, which presents certain limitations compared to more advanced geodetic 

technologies. The accuracy differences between Geodetic RTK and Low-cost GNSS are influenced by factors such as 

the number of satellites, antenna quality, multipath mitigation, and resistance to cycle slip. Geodetic RTK benefits from 

tracking more satellites, using multi-band antennas supporting L1, L2, and L5 signals, and employing advanced 

algorithms to mitigate signal interference. In contrast, the Low-cost GNSS device only supports L1 and L2 signals, 

limiting its ability to achieve the same level of precision and making it more susceptible to errors in challenging 

environments. 
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Table 5. The difference in coordinates between Geodetic and Low-cost GNSS to static observations 

Tree ID 

Difference between Geodetic Static and Low-cost GNSS Difference between Geodetic Static and Geodetic RTK 

Easting (m) Northing (m) Easting (m) Northing (m) 

W1 -0.160 -0.030 -0.154 -0.019 

W2 -0.153 0.113 -0.097 -0.127 

W3 0.005 -0.036 0.062 -0.105 

W4 0.157 -0.178 0.035 -0.142 

W5 -0.041 -0.159 0.014 -0.015 

W6 0.120 0.111 0.086 0.062 

D1 -0.067 -0.068 -0.085 -0.055 

D2 -0.144 -0.103 -0.144 0.011 

D3 -0.158 -0.068 -0.155 -0.120 

D4 -0.172 -0.142 -0.083 -0.069 

D5 -0.171 -0.044 -0.152 0.054 

D6 0.100 -0.083 0.104 -0.074 

MAE 0.123 0.096 0.097 0.071 

 0.155 0.120 

As shown in Table 5, the error in the low-cost GNSS coordinate results (Easting and Northing) ranges from -

0.178 to 0.157, reflecting a wider variability compared to Geodetic RTK. Meanwhile, the error in Geodetic RTK 

has a relatively narrower range, namely -0.155 to 0.104, indicating higher precision. Geodetic RTK measurement 

results generally have a lower error, as indicated by the smaller Mean Absolute Error (MAE) value in the Easting 

and Northing directions. This demonstrates its ability to maintain consistency across measurements. Lower errors 

in Geodetic RTK occur in almost all tree position measurements (Figure 10), with eight absolute error values in 

Easting coordinates better in Geodetic RTK, three slightly better in low-cost GNSS, and the remaining showing no 

significant difference between the two methods. Northing coordinates, nine absolute error values were better in 

Geodetic RTK, while the rest were slightly better in Low-cost GNSS. These results highlight the advantages of 

Geodetic RTK in terms of stability and reliability, especially in challenging environments. Previous studies have 

also examined the accuracy of low-cost GNSS compared to geodetic RTK, showing that while low-cost coordinates 

can achieve comparable quality in specific conditions, they are generally less consistent under complex 

environmental factors [41]. 

The performance of Geodetic was generally better than Low-cost GNSS for measuring the position of palm trees. 

However, the MAE value between the two is not significantly different (0.155 m for Geodetic and 0.120 m for Low-

cost). Statistical tests were carried out to evaluate whether there was a significant difference between the errors in 

geodetic RTK and low-cost GNSS measurements. 

The larger range of differences observed in the Geodetic RTK method compared to the Static Geodetic GNSS 

can be attributed to environmental factors and equipment limitations. Multipath effects, caused by the reflection 

of GNSS signals on nearby surfaces such as leaves, tree trunks, or wet ground, are particularly significant in oil 

palm plantation environments. These reflections introduce delays in signal travel time, leading to inaccuracies in 

position measurements [6, 17]. This phenomenon is more pronounced in Geodetic RTK due to its reliance on real-

time corrections, which are sensitive to such disturbances. Additionally, the hardware quality of the Geodetic RTK 

receivers plays a critical role. Devices with suboptimal antenna configurations struggle to mitigate multipath 

signals compared to Static Geodetic GNSS systems, which typically employ more robust antennas and post-

processing techniques [26]. It is important to note that atmospheric factors, such as ionospheric or tropospheric 

disturbances, have a minimal impact in this study due to the differential correction capabilities of the RTK method 

[17]. 

To further analyse whether these differences were statistically significant, a Paired T-test was conducted, comparing 

the error measurements of each method on the same tree positions. The Paired T-test was used, where one individual 

received two different treatments (Table 6). 
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(a) 

 

(b) 

Figure 11. Absolute error graph on Low-cost GNSS (a) and Geodetic RTK (b) positioning results 

Table 6. Paired Test 

Null hypothesis H₀ : μ_difference = 0 

Alternative hypothesis H₁ : μ_difference ≠ 0 

T-Value P-Value 

2.14 0.043 

Based on the results of the Paired Test conducted to evaluate the differences between Geodetic and Low-cost GNSS 

in measuring the position of oil palm trees, a T-value of 2.14 was obtained with a P-value of 0.043. This suggests at a 

significance level of 5% (α = 0.05), there is sufficient evidence to reject the null hypothesis (H₀ ), stating that there is 

no difference between the two measurement methods. However, considering the significance level used in this analysis 

is 2.5% (α = 0.025), the P-Value of 0.043 indicates that the difference is not significant enough to reject the null 

hypothesis at the 97.5% confidence level. The difference in the measurement results between Geodetic and Low-cost 

GNSS cannot be considered significant at this higher confidence level. 

Building on these findings, statistical analysis further validates the practicality of Low-cost GNSS systems. At a 

2.5% significance level (α = 0.025), the Paired T-test yielded a P-value of 0.043, indicating no significant difference at 

the 97.5% confidence level. MAE values of 0.155 m for Geodetic RTK and 0.120 m for Low-cost GNSS show minimal 

error differences. With a margin of error of approximately ±10 cm, Low-cost GNSS remains a reliable and economical 

alternative. In the case of oil palm applications, this system is particularly suitable, as the average trunk diameter of oil 

palm trees exceeds 10 cm, ensuring that such small errors will not significantly impact the positioning or management 

of the trees. These findings highlight the cost-effectiveness and reliability of Low-cost GNSS systems, making them a 

practical choice for agricultural and forestry applications, where high-precision geodetic measurements are not critical. 

To further optimize performance, calibration techniques such as Antenna Phase Center Calibration can improve 
accuracy in Low-cost GNSS systems. In oil palm plantations, where large and dense trees frequently obstruct GPS 

signals, GNSS reception is often poor. In such environments, where GNSS signals are frequently weak or unavailable 
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due to dense tree cover, IMU technology on the F9R module is essential for reliable positioning, ensuring accurate 
location determination when the antenna cannot optimally receive GNSS signals. Proper IMU calibration, including 
accelerometer and gyroscope adjustments, is crucial to ensuring accurate and stable positioning by minimizing sensor 

bias and drift. 

3.2.4. Analysis of Distance Measurements Between Trees 

Measuring the distance between trees using several GNSS measurement methods (Static Geodetic, Geodetic RTK, 

Low-cost GNSS ) and a distometer aimed to estimate the optimal distance for planting oil palm trees. The GNSS results 

were validated with distometer measurements. Table 7 shows the results of GNSS measurements (Static Geodetic, 

Geodetic RTK, and Low-cost GNSS) and distometer. 

Table 7. Comparison of distance measurements using several GNSS methods and differences with distometers 

Distance 

Horizontal Distance Calculation & Measurement (m) Difference to Distometer (m) Standard Deviation 

Static 

Geodetic 

Low-cost 

GNSS 

Geodetic 

RTK 
Distometer 

Static 

Geodetic 

Low-cost 

GNSS 

Geodetic 

RTK 

Low-cost 

GNSS 

W1 - W2 8.785 8.646 8.873 8.780 -0.033 0.134 -0.093 0,093641 

W2 - W3 8.626 8.758 8.587 8.670 0.044 -0.088 0.083 0,073459 

W3 - W4 12.753 12.860 12.795 12.770 0.017 -0.090 -0.025 0,04695 

W4 - W5 6.776 6.975 6.814 6.870 0.094 -0.105 0.056 0,086585 

W5 - W6 8.465 8.161 8.371 8.390 -0.075 0.229 0.019 0,130313 

D1 - D2 15.526 15.561 15.614 15.500 -0.026 -0.061 -0.114 0,049304 

D2 - D3 5.843 5.876 5.713 5.790 -0.053 -0.086 0.077 0,071117 

D3 - D4 7.231 7.229 7.295 7.260 0.029 0.031 -0.035 0,030934 

D4 - D5 11.899 11.978 12.039 11.880 0.096 -0.098 -0.159 0,075888 

D5 - D6 6.729 6.614 6.698 6.780 -0.063 0.166 0.082 0,069596 

Mean Absolute Error (MAE) 0.053 0.109 0.074  

As shown in Table 7, GNSS measurements using the Static Geodetic method have a difference range of -0.075 to 

0.096 meters, while Low-cost GNSS method has a difference range of –0.105 to 0.166 meters to the distometer. The 

Geodetic RTK GNSS measurement method has the largest difference range of -0.159 to 0.083 meters. The Geodetic 

RTK method was more accurate than measurements using Low-cost. Measurement using Low-cost GNSS produced 

less accurate results, while Static GNSS measurements had the highest accuracy indicated by the lowest MAE GNSS 

value of 0.053. 

Low-cost GNSS measurements have a significant absolute difference, as shown in the orange graph in Figure 12. 

Although some measurements have results close to Geodetic RTK (W2-W3, D2-D3, and D3-D4), the performance is 

more accurate. Based on 10 samples of horizontal distance measurements (Figure 13), optimal planting of oil palm trees 

requires approximately 9.2 meters. A previous study on the position of trees explained that planting oil palm at optimal 

spacing requires 8-10 meters. 

 

Figure 12. Graph of distance measurements between oil palm trees using several GNSS methods (Static Geodetic, Low-cost 

GNSS, and Geodetic RTK) and distometer 
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Figure 13. Graph of the absolute difference in horizontal distance measurements between oil palm trees using GNSS (Static 

Geodetic, Low-cost GNSS, and Geodetic RTK) to the distometer 

3.5. Integration between Low-Cost GNSS and Multispectral Cameras 

Determining the position of a tree using Low-cost GNSS produces a point with a global coordinate system. The 
integration of global tree position and the health condition of oil palm plants aims to monitor the condition in real-time 

by farmers using multispectral cameras. The results show the state of the oil palm plants through the spectrum from the 
camera with the NDVI vegetation index. This integration will produce a point position that contains information 
regarding the condition of oil palm plants. Table 8 shows the integration results, which can be monitored directly through 
a smartphone. 

Table 8. Integration Result between Low-cost GNSS and Multispectral Camera 

Tree W1 Tree W2 

Easting (m) 660065.036 Easting (m) 660067.330 

Northing (m) 9102271.668 Northing (m) 9102279.960 

NDVI Image 

 

NDVI Image 

 

Condition Healthy Condition Healthy 

Tree W3 Tree W4 

Easting (m) 660068.314 Easting (m) 660070.940 

Northing (m) 9102288.678 Northing (m) 9102301.267 

NDVI Image 

 

NDVI Image 

 

Condition Healthy Condition Healthy 
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Tree W5 Tree W6 

Easting (m) 660077.857 Easting (m) 660080.095 

Northing (m) 9102300.373 Northing (m) 9102308.221 

NDVI Image 

 

NDVI Image - 

Condition Healthy Condition UnHealthy 

Tree D1 Tree D2 

Easting (m) 660222.745 Easting (m) 660234.555 

Northing (m) 9102198.981 Northing (m) 9102188.848 

NDVI Image 

 

NDVI Image 

 

Condition Healthy Condition UnHealthy 

Tree D3 Tree D4 

Easting (m) 660233.579 Easting (m) 660226.445 

Northing (m) 9102183.054 Northing (m) 9102184.223 

NDVI Image 

 

NDVI Image 

 

Condition Unhealthy Condition Unhealthy 

Tree D5   

Easting (m) 660233.402   

Northing (m) 9102174.472   

NDVI Image 

 

  

Condition Unhealthy   

The integration is the result of data collection points from Low-cost GPS that take points using N-TRIP mode with 

UTM datum coordinates according to the location zone. NDVI images from multispectral cameras can show the health 

conditions of oil palm plants with each tree observed from the correlation with the chlorophyll contained in the leaves. 
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To enhance the low-cost GNSS-based monitoring system and multispectral cameras for large-scale plantations, a 
well-designed system is essential to integrate multispectral cameras and GNSS into a portable device that can be carried 
by oil palm harvesters. The system operates automatically with a single click on a smartphone, generating one data point 

per click, ensuring efficiency, accuracy, and user convenience. When the harvester presses the button, the GNSS device 
automatically detects the tree's position, while the multispectral camera captures the tree's image. Each tree requires less 
than 10 seconds, and for oil palm plantations in Indonesia, with an average density of 45 trees per hectare, the estimated 
time required is approximately 20 minutes per hectare. Figure 14 presents the proposed system design, which integrates 
GNSS devices, multispectral cameras, and a smartphone-based application to ensure efficient and accurate data 
collection. 

 

Figure 14. System design for integrating GNSS devices, multispectral cameras, and a smartphone-based application 

The collected data, which includes multispectral images and GNSS coordinates, is then combined into a single file 

format with additional attributes such as data acquisition time and tree ID to facilitate the analysis and tracking process. 

Furthermore, the GNSS infrastructure must be enhanced by installing GNSS base stations at strategic locations within 

the plantation to improve measurement accuracy on a larger scale. Additionally, the use of low-cost GNSS devices that 

support N-TRIP mode with broader coverage ensures the accuracy of coordinate data. 

Furthermore, GNSS infrastructure improvement is crucial, including installing GNSS base stations in strategic 

locations within plantation areas to enhance measurement accuracy on a larger scale. The use of low-cost GNSS devices 

supporting N-TRIP mode with broader coverage areas can also ensure that coordinate data remains accurate. To ensure 

accessibility for farmers with limited technological resources or training, a user-friendly application with a simple 

interface can be developed to visually display information such as color-coded maps. This should be accompanied by 

step-by-step guides for data interpretation and recommended actions. Basic training on using GNSS devices and 

interpreting multispectral data should also be provided. Additionally, training modules in the form of videos or manuals 

that can be accessed anytime are essential to support ease of use and understanding of this technology. 

4. Conclusion 

In conclusion, the findings of the study show that multispectral cameras can be employed for monitoring oil palm 
health. The use of NDVI as an indicator calculated from the obtained images from the multispectral camera was found 
to be a useful way of evaluating the oil palm trees' health by relating it to the chlorophyll of the palm leaves. Correlation 

analysis confirmed that the normalized difference vegetative index (NDVI-G) is valued positively with Chl a (r = 0.679) 
and Chl b (r = 0.705) in the plant leaves. Despite these positive correlations, the relationships were relatively weak, with 
the coefficient of determination (R²) being 46.2% for Chl a and 49.8% for Chl b. This suggests that although NDVI-G 
is relatively stronger for Chl b compared to Chl a, it is weak for both. Of all GNSS measurement methods used, Static 
Geodetic was the most precise in distance measuring between the oil palm trees, with the minimum MAE being 0.053 
meter and the smallest difference range –0.075 to 0.096 meter. On the contrary, although Geodetic RTK had the widest 

difference range from -0.159 to 0.083 meters, it performed better than the Low-cost GNSS, where the difference range 
was -0.105 to 0.166 meters. To enhance low-cost GNSS-based monitoring systems with multispectral cameras for large-
scale plantations, a portable device for oil palm harvesters is essential. Working automatically thanks to a GNSS system, 
the user only needs to press their smartphone once, and the system will fetch tree locations as well as grab pictures using 
a multispectral camera. The process that each tree requires to complete is under ten seconds, meaning oil palm 
plantations would take an estimated twenty minutes per hectare. The information, together with the pictures, coordinates, 

and other extra definitional features requested by the user, is stored and processed for easier later analyses and geo-
tracking. Moreover, base stations and low-cost GNSS devices able to work in N-TRIP mode should be installed for 
optimum NRTK running efficiency. Low-cost, farmer’ -friendly applications and hands-on tutorials also have to be 
developed to assist farmers who lack adequate training or resources. 
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