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Abstract 

Accurate navigation systems are important in various vehicle applications, both indoors and outdoors. Global Navigation 

Satellite System (GNSS) and Inertial Measurement Unit (IMU) are sensors that are often used in vehicle navigation 

systems. GNSS has the advantage of providing accurate position and speed information, IMU is able to make 

measurements without being affected by environmental conditions, and LiDAR sensors can model the environment; 

however, the limited signal on GNSS in indoor environments results in decreased position accuracy. The development of 

GNSS-IMU integration has been widely carried out, one of which is by adding a LiDAR sensor. In this study, an 

improvement will be made to the integration algorithm on Vision RTK2, which produces GNSS-IMU coordinate data, and 

Backpack Lidar, which can display 3D visualization on the traversed path using the Unscented Kalman Filter (UKF) 

method to improve navigation accuracy, especially in indoor environments. The results of the study showed that the UKF 

simulation and free outage conditions showed high accuracy with RMSE of 0.00308 m and 0.00175 m for the Easting and 

Northing positions and MAE of 0.00088 m and 0.00024 m. However, in outage conditions, the RMSE values were 4.0881 

m and 8.6317 m, and MAE of 5.9871 m and 7.4182 m. The results of the 3D point cloud of the LiDAR model that had 

been georeferenced using the UKF fusion results and the KKH calculation results were validated using a rolling meter. 

Validation of point cloud processing from the 3D LiDAR model using a rolling meter and georeferencing with KKH 

calculations showed a small RMSE value, which was 0.3420 m, and 0.0354 m for the distance dimension with a rolling 

meter. 0.6358 m for georeferenced RMSE using UKF fusion data, and 0.0779 for distance dimension using roll meters. 

The small RMSE results indicate a high level of agreement between point cloud data and measurements using a rolling 

meter used as reference data. This study shows that the integration of GNSS-IMU sensors with LiDAR using the UKF 

method can improve the accuracy and reliability of indoor navigation systems. 

Keywords: Backpack LiDAR; Kalman Filter; Fusi GNSS/IMU; Model 3D; Indoor Positioning. 

1. Introduction 

The development of indoor navigation technology has advanced rapidly in recent years. This progress has been 

driven by the growing demand for accurate and reliable navigation systems, both outdoors and indoors, such as in 

industrial buildings, office complexes, and shopping malls [1]. Although Global Navigation Satellite Systems (GNSS) 
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can provide accurate absolute positioning over long periods, their performance is often affected by signal interference, 

equipment limitations, and environmental factors such as atmospheric bias and multipath effects [2-4]. One of the main 

challenges faced in urban or densely populated environments is GNSS Signal Outage, where the system is unable to 

connect to at least four satellites, resulting in reduced accuracy. This problem often occurs in areas with tall buildings, 

under bridges, or locations surrounded by dense trees. 

Many studies have been conducted to address this challenge, one of which is by integrating GNSS with Inertial 

Measurement Units (IMU). The fusion of GNSS and IMU systems is an effective solution to improve position accuracy 

in environments with GNSS signal interference. Data fusion using the Unscented Kalman Filter (UKF) has been shown 

to significantly enhance position accuracy, especially in autonomous vehicles [5-7]. Additionally, the integration of 

LiDAR (Light Detection and Ranging) into navigation systems has made a significant contribution to generating highly 

accurate 3D point clouds, which are essential for indoor mapping and modeling [8]. 

Although many studies have been conducted to improve the accuracy of navigation systems using various Kalman 

filter techniques, most of these studies focus more on outdoor applications. Mousazadeh [9] used the Extended Kalman 

Filter (EKF) with GNSS and IMU sensors for agricultural autonomous vehicles, and Strandberg et al. [10] used UKF 

for sea surface height estimation using GNSS-R data. Meanwhile, Kaczmarek et al. [11] used EKF for 2D position 

estimation with GNSS, IMU, and odometer sensors but did not include the vertical dimension (Z/elevation). These 

studies generally focus on simpler position measurements and have not addressed the challenges of 3D indoor mapping 

in environments where GNSS signals are inaccessible. Furthermore, Tondaś et al. [12] and Hu et al. [13] developed data 

fusion methodologies with Kalman Filters, but their focus was more on data processing for land deformation monitoring 

and autonomous vehicle applications in outdoor conditions [12, 13]. These studies also did not discuss the use of 

integration between GNSS, IMU, and LiDAR for 3D indoor mapping that requires Ground Control Points (GCPs) for 

LiDAR data georeferencing.  

This research aims to develop and analyze the integration of GNSS, IMU, and LiDAR using the UKF method for 

3D indoor mapping purposes. This system is designed to overcome the limitations of the 3D models generated by 

Backpack LiDAR, which often lack position information because they cannot receive GNSS signals indoors. Without 

GCPs for georeferencing the three-dimensional data, the 3D model will only produce a local coordinate system that 

cannot be linked to a global reference frame, limiting its use for large-scale applications. Therefore, the GNSS, IMU, 

and LiDAR integration system will use IMU as a GCP in indoor environments to generate a more accurate 3D model 

that can be linked to the global reference frame. This research proposes an affordable solution that combines GNSS, 

IMU, and LiDAR technology, which has traditionally relied on expensive commercial equipment. By utilizing cheaper 

technology and precise sensor integration, it is hoped that 3D mapping for indoor environments can be performed 

effectively without relying on expensive equipment. 

The main objective of this research is to develop and analyze the integration of GNSS, IMU, and LiDAR using the 

UKF method for 3D mapping in indoor environments. By combining data from various sensors, this system is expected 

to replace GNSS signals in indoor areas that are unreachable and provide the necessary GCPs for more accurate 3D 

mapping. With this technology, it is hoped that it will meet the broader indoor mapping needs without relying on 

expensive commercial systems. 

The structure of this article is organized as follows. The first section, Methodology, will describe the approach and 

techniques used in this research, as well as the steps taken to achieve the research objectives. Next, the Materials and 

Methods section will explain the equipment used, data collection processes, and the analysis methods applied in this 

study. The GNSS-IMU Sensor Integration Algorithm section will discuss the algorithms and computational techniques 

used to integrate GNSS and IMU data for accurate geospatial positioning. Finally, the Results section will present the 

findings of this study, including data analysis, visualizations, and the interpretation of the results obtained. 

2. Research Methodology 

This research was conducted through several stages, beginning with data collection and followed by data fusion and 

analysis of the results. Data collection took place in an indoor environment using a Backpack LiDAR device, which was 

equipped with GNSS and IMU technology, as well as a Vision (Real-Time Kinematic) RTK2 device. The LiDAR sensor 

provided data in the form of point clouds that represent the geometry of the space, while the GNSS and IMU recorded 

information on position and orientation. The next stage involved data processing, where the raw data collected from the 

three sensors was processed. Notably, data from the IMU tends to drift or deviate from its actual position over time, so 

appropriate correction methods are necessary. Once the data has been processed, it will undergo a data fusion process 

utilizing the UKF [14]. The UKF method was selected due to its ability to manage non-linear uncertainties from sensor 

data. At this stage, data from GNSS and IMU will be combined to provide more accurate position estimates, even in 

conditions where GNSS may be unreliable. The final stage is Result Analysis, where the outcomes of data fusion will 

be evaluated to determine the system's accuracy [15]. The position and orientation results obtained will be compared to 

reference data or ground truth to assess the accuracy and reliability of the developed integration system.  
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Figure 1 shows the flowchart of the research methodology through which the objectives of this study were achieved. 

 

Figure 1. Technical framework of the system 

The methodology used in this study aims to improve positioning accuracy in GNSS signal outage conditions by 

utilizing the IMU sensor. GNSS data is projected into UTM coordinates, IMU data undergoes unit conversion to 

the required format, and LiDAR data is processed through preprocessing steps. Afterward, the data from all three 

sensors is aligned through alignment and scan matching processes, aiming to match the visual features in the LiDAR 

data and improve position data congruence. The next step involves the Measurement Update System, where position 

information from GNSS is integrated with IMU data using scene filtering methods. This aims to update position 

estimates more accurately based on the processed data. Then, the results from this system are processed in the filter 

refinement stage to optimize position estimates, followed by applying the UKF method to reduce error covariance 

and further improve position estimate accuracy. After position estimates are obtained, this data is used for 

georeferencing LiDAR data, which then produces more accurate 3D maps. The georeferenced data obtained is then 

used in mapping to generate the final map with a high level of precision. By combining GNSS-IMU sensor fusion 

and LiDAR data, and using the UKF technique, this system successfully overcomes challenges posed by GNSS 

signal outage and urban environments that block GNSS signals, while enhancing the accuracy of position estimates 

in various conditions. The scheme adopts a “prediction + update” filter structure overall, with the number of updates 

specifically designed.  

Additionally, GNSS is chosen directly as the update quantity in open areas, ensuring simple and effective accuracy 

in open spaces. In unobstructed open areas, differential GNSS can provide high-precision position information up to 

centimeter level, which is fully maintained and utilized in this scheme [2]. In urban environments, where GNSS signals 

are often obstructed by tall buildings or other structures, IMU can function more broadly and effectively. IMU measures 

acceleration and rotation, helping to estimate position and orientation even when GNSS signals are lost [3, 7]. In this 

scenario, the IMU works independently to track motion, providing continuous position estimates. However, while IMU 

is highly useful, the position accuracy it generates tends to degrade over time due to cumulative errors. Therefore, to 

improve overall accuracy, high-precision GNSS position data is integrated with IMU data. By combining both in a 

sensor fusion system, the position predicted by IMU is corrected using GNSS data when signals are available. This 

ensures that the system remains accurate even when GNSS signals are interrupted, and the quality of UKF filter updates 

is maintained, particularly in areas with weak or intermittent GNSS signals. This integration allows for higher 

positioning accuracy and system stability under various conditions. 

3. Material and Methods 

The data used in this study were collected from Vision RTK and Backpack LiDAR measurements conducted during 

outage conditions at the ITS Research Center Building, located at coordinates 7°16'52.10" south latitude and 

112°47'50.91" east longitude. This dataset includes information recorded by GPS and IMU sensors from both the Vision 

RTK and Backpack LiDAR devices. The components of the Backpack LiDAR sensors are situated at the top of the 

Backpack frame, as illustrated in Figure 2. 
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Figure 2. Backpack LiDAR uses GPS and IMU sensors as a navigation system  

Vision-RTK2 is a development of RTK that combines computer vision, RTK-GNSS, inertial sensors (IMU), and 

odometer data as seen in Figure 3. The horizontal and elevation positioning accuracy of Vision-RTK2 is 1.0 cm + 1 ppm 

under fixed positioning conditions. 

 

Figure 3. Vision RTK2 uses GPS and IMU sensors as a navigation system (Vision RTK, 2023) 

4. GNSS-IMU Sensor Integration Algorithm 

GNSS/IMU integration produces reliable position and navigation data. Sensor fusion increases productivity related 

to data availability during GNSS signal disruptions. In this study, sensor integration involves the use of 3 main 

parameters or 3 DOF. The 3-DOF car movement model for data collection was carried out at the Research Centre 

building of Institute Sepuluh Nopember, Surabaya for mapping purposes in indoor positioning with an average 

pedestrian speed of < 4.3 km/h. These attributes determine the location and direction of each observed epoch (Figure 4). 

 

Figure 4. Three Degrees of Freedom of Motion for research  
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The following are the kinematic Equations used. 

𝐸̇ = 𝑢 sin(𝜓) + 𝑣 𝑐𝑜𝑠 (𝜓)  (1) 

𝑁̇ = 𝑢 cos(𝜓) − 𝑣 sin (𝜓)  (2) 

𝜓̇ = 𝑟  (3) 

In those equations ‘E’ is for the position thelocal-level coordinate position at local-level coordinate on east direction 

and ‘N’ north is for northu’ is the linear velocity on the ‘E’ and ‘v’ is thedirection. N’ axes.‘u/ yaw (rad) is symbolize 

by ‘𝜓 is the the rotation on z-axes speed at n-frame (rad/s) is ‘r’linear velocity on the dot notation (  )̇ Eshows the 

derivative with respect to time’ axes and ‘v’ is the linear velocity on the ‘N’ axes. The heading/ yaw (rad) is symbolize 

by ‘𝜓’ and the rotation on z-axes speed at n-frame (rad/s) is ‘r’. The dot notation (  )̇  shows the derivative with respect 

to time.  

The RTK position is determined in the northeast direction based on measurements from the accelerometer, 

which have been rotated into an n-frame. During epochs when GNSS data is available, the position estimated 

from the accelerometer measurements will be adjusted using the position obtained from GNSS observations. 

The yaw angle is determined from the rotational speed measured by the gyroscope. Data from the GPS and 

IMU sensors will be transmitted based on the movement of 3 DOF, which follows a kinematic model. The 

kinematic technique represents the movement of an object without considering the underlying reasons for that 

movement. 

5. Result 

This study utilized two primary methods for data acquisition: Vision RTK and Backpack LiDAR. Additionally, 

terrestrial measurements were conducted to determine the coordinates of the Ground Control Points (GCPs). The 

terrestrial measurements, carried out using a Total Station, are crucial for this study as they provide accurate reference 

points in the field. These GCPs are essential for validating the data obtained from Vision RTK and Backpack LiDAR, 

ensuring that the information is both accurate and reliable. A total of 8 GCP points were used, distributed throughout 

the research area (Figure 5). The coordinate data collection involved using a Total Station to establish tie points, which 

served as reference coordinates known beforehand. The control point coordinate data used to obtain position information 

can be found in Table 1. 

Table 1. Easting and Northing coordinates from KKH calculations 

Point Easting (m) Northing (m) 

GCP-1 698471.187 9194804.499 

GCP-2 698477.892 9194772.488 

GCP-3 698462.720 9194725.672 

GCP-4 698443.154 9194738.583 

GCP-5 698418.770 9194727.195 

GCP-6 698423.835 9194757.132 

GCP-7 698415.504 9194771.372 

GCP-8 698439.401 9194770.273 

Sensor fusion processing using the UKF method is conducted with MATLAB software. The data processing in this 

study is divided into two parts: GNSS and IMU data processing. For GNSS data processing, e-frame coordinates are 

transformed into n-frame coordinates. In the case of the IMU, gyroscope measurements are integrated to obtain Euler 

angles. Additionally, coordinate transformation is applied to accelerometer measurements, followed by double 

numerical integration of the accelerometer data. 
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Figure 5. Distribution of Ground Control Points (author's property) 

The mathematical model of the movement shown in Equations 1 to 3 is a continuous time system model. In order to 

define the system model and measurement model in the UKF simulation, the mathematical model needs to be discretized. 

Discretization is carried out using the Forward Finite Difference method because the UKF simulation to be carried out 

in this study aims to estimate the future time k. The Forward Finite Difference equation is written as follows: 

𝑑𝑎

𝑑𝑡
=

𝑎𝑘+1−𝑎𝑖

∆𝑡
  (4) 

𝑎𝑘+1 =
𝑑𝑎

𝑑𝑡
∆𝑡 + 𝑎𝑘  (5) 

where 𝑥𝑘+1 is the estimate of the state variable (X) at time k+1 observed at k. 
𝑑𝑎

𝑑𝑡
 is shows the rate of change of the first 

derivative of variable ‘a’ with respect to time ‘t’. The results of the mathematical model discretization that states the 

easting, northing, and yaw coordinate positions are: 

[

𝐸𝑘+1

𝑁𝑘+1

𝜓𝑘+1

] = [

∆𝑡 (u𝑘 sin(𝜓) + 𝑣𝑘  cos (𝜓) + 𝐸𝑘

∆𝑡 (𝑢𝑘 cos(𝜓) − 𝑣𝑘  sin (𝜓)) + 𝑁𝑘

∆𝑡 𝑟𝑘 + 𝜓𝑘

]  (6) 

The results of the discretization indicate that a single-variable equation depends on multiple variables, which is 

characteristic of nonlinear equations. The model initially overlooks the presence of noise or disturbances. Although the 

noise is minimal, it is essential to consider its effects. By incorporating the noise term 𝑤𝑘into Equation 6, we can express 

the equation in a state space format that aligns with the system model of the UKF method, as shown in the following 

Equation. 

𝑋𝑘+1 = 𝑓(𝑥) + 𝑤𝑘  (7) 

So, the UKF system model can be written as: 
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[𝑥𝑘+1] = [

𝑓1

𝑓2

𝑓3

] + 𝑤𝑘  (8) 

[𝑥𝑘+1] = [

𝐸𝑘+1

𝑁𝑘+1

ψ𝑘+1

] + 𝑤𝑘   (9) 

[

𝐸𝑘+1

𝑁𝑘+1

𝜓𝑘+1

] = [

∆𝑡 (u𝑘 sin(𝜓) + 𝑣𝑘  cos (𝜓) + 𝐸𝑘

∆𝑡 (𝑢𝑘 cos(𝜓) − 𝑣𝑘  sin (𝜓)) + 𝑁𝑘

∆𝑡 𝑟𝑘 + 𝜓𝑘

] + 𝑤𝑘  (10) 

In the equations above, 𝑋𝑘+1 is the unknown parameter that being estimated in this research. The 𝐸𝑘+1 is the 

unknown parameter for east axes. UKF, while more accurate for nonlinear systems than EKF, is still sensitive to 

initial condition settings and covariance matrix tuning. Improper configurations can degrade performance, 

especially under degraded signal conditions. The effectiveness of UKF heavily depends on data quality and initial 

conditions [16]. In scenarios where GNSS corrections are unavailable, particularly during signal outages, the UKF 

algorithm must rely solely on the IMU data. This reliance can lead to increased errors, as the IMU’s drift 

accumulates without the benefit of GNSS corrections, resulting in higher RMSE and MAE values observed during 

outages.  

Moreover, UKF is particularly effective in handling nonlinearities inherent in sensor data. However, its 

performance remains contingent on the accuracy of the data it receives. During outages, when the UKF is forced 

to rely on less accurate IMU data, the results can be significantly compromised. This dependency on IMU data 

during outages often contributes to the elevated RMSE and MAE values observed in the system's performance 

[17]. 

5.1. Positioning During Outage Conditions  

This study conducted a simulation using the UKF method under two conditions: free outage and outage conditions, 

by crossing the same location. During the outage conditions, data from IMU processing was utilized to obtain east and 

north positions. The results from this analysis will be compared with field data. In this study, IMU data was used to 

estimate positions during the outage period. The IMU provides acceleration and angular velocity data, which can be 

integrated to estimate changes in position and orientation. However, due to the inherent drift of the IMU, errors in 

position estimation will increase over time if no external data corrections are applied. 

The large RMSE and MAE values observed during outage conditions can be attributed to several factors, primarily 

stemming from sensor limitations. First, IMU drift becomes a significant issue when GNSS corrections are unavailable. 

The IMU, relying solely on its internal accelerometer and gyroscope sensors, tends to accumulate errors over time, with 

small initial inaccuracies becoming magnified, resulting in increasingly larger positioning errors. This drift is 

particularly evident during outage conditions, where the IMU operates without the benefit of GNSS corrections, leading 

to substantial errors as reflected in the high RMSE and MAE values [16, 18]. Moreover, in indoor environments or areas 

where GNSS signals are blocked or weakened, the IMU operates in isolation, further exacerbating the accuracy loss. 

The absence of GNSS signals forces the IMU to operate independently, but without external corrections, the positioning 

accuracy degrades significantly over time [19, 20]. 

 To address these limitations, The UKF method is used to combine data from the IMU with the last data received 

from the GPS before the outage occurred. The UKF has better performance in non-linear estimation problems due to its 

use of the unscented transform, this also improve the estimation accuracy [20]. The UKF method was more accurate in 

captures the mean and covariance of a probability distribution than linearization techniques in the EKF. UKF does not 

require the derivation of Jacobian matrices, that was why it more robust and easier to implement in complex systems 

such as GNSS-IMU integration [3]. The UKF method that can handle nonlinearities without linearization contributed to 

this significant improvement. During the outage period, position predictions are obtained by integrating IMU data and 

using UKF to update position estimates based on a 3 DOF kinematic model. The following are the trajectory results 

from IMU data processing using the Euler method in the Research Center Building Area in Simulation II presented in 

Figure 6. 

In Figure 7, the accuracy of the IMU data processing during outage conditions remains poor. To quantitatively assess 

the level of accuracy, we calculate the Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). The RMSE 

value is derived from the average of the estimation results compared to the measurement data, allowing us to evaluate 

the accuracy of the estimates. 
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Figure 6. Trajectory of data collection path by walking, the red city is the start, and the yellow city is the stop  

 

Figure 7. Trajectory of the Research Center Building during GNSS Signal Outage (author's property) 

In this study, we employed Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) as evaluation metrics 

to assess the accuracy of the GNSS-IMU data fusion system utilizing the UKF method, as previously demonstrated in 
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similar research. These metrics were specifically selected due to their ability to quantify the discrepancy between 

estimated and reference (ground truth) positions, a method widely used in geospatial studies [16, 19].  

RMSE is particularly sensitive to large errors, as it gives greater weight to outliers. A higher RMSE value typically 

indicates substantial deviations between the estimated and true positions, which can be attributed to significant errors 

during data collection, sensor limitations, or environmental interference, as noted by Yang et al. [16]. Conversely, MAE 

measures the average magnitude of errors without considering their direction, offering a simpler representation of the 

overall error across all data points. 

In Free Outage Conditions, where GNSS signals are uninterrupted, the results showed low RMSE values of 0.00308 

m for Easting and 0.00175 m for Northing, along with MAE values of 0.00088 m for Easting and 0.00024 m for 

Northing. These values indicate very high accuracy in positioning estimates, consistent with expectations given the 

availability of both GNSS and IMU data for fusion without external interference [17, 20]. 

The RMSE and MAE values during the outage conditions, as presented in Table 2, indicate that positioning using 

the IMU has not resulted in position estimates with errors exceeding 1 meter. The trajectory generated by the IMU 

closely resembles the reference trajectory and follows the same pattern. However, as shown in Table 4.7, the RMSE and 

MAE values are significantly large, measuring 4.0881 meters and 8.6317 meters at the easting, and 5.9871 meters and 

7.4182 meters for the northing.  

Table 2. RMSE and MAE values under GNSS Signal Outage conditions 

Positioning 
RMSE (m) MAE (m) 

Easting (E) Northing (N) Easting (E) Northing (N) 

IMU Processing during Outage 4.0881 8.6317 5.9871 7.4182 

In this context, several factors contribute to the increased RMSE and MAE values during signal outages. First, the 

IMU sensor is subject to drift over time, which becomes more pronounced when external corrections from GNSS are 

unavailable. This drift accumulates, leading to larger positional errors during the outage period. Additionally, the 

environmental factors such as physical obstructions, multipath effects, and GNSS signal interference also exacerbate 

these errors. Research by Cahyadi et al. [3] found that the fusion of GNSS and IMU data during outage conditions 

resulted in a relatively large error of 34.49 meters. According to Cahyadi et al. [4], loosely coupled integration has 

limitations in providing accurate position estimates because, when stand-alone GNSS does not provide any position 

information, no external data is available to correct the IMU measurements. As a result, the IMU error accumulates even 

further, leading to larger errors, as seen in this study.  

The performance of the UKF method, while generally superior to the EKF in handling non-linearities and sensor 

noise, is still influenced by the initial configuration and the choice of parameters. For example, the process and 

observation noise covariance matrices, which are crucial to the UKF’s performance, can affect the accuracy of the fused 

results. In the absence of real-time GNSS updates during outage conditions, relying solely on IMU data leads to 

accumulating errors, as evidenced by the significantly large RMSE and MAE values. While the UKF method shows 

better performance, its effectiveness depends on the quality of input data and the configuration of noise parameters. At 

this stage of the research, the proposed approach is still offline or post-processing, where data processing is carried out 

after all data is collected in the field. This is being done to validate the effectiveness of the UKF method in improving 

the accuracy of position estimation, especially in complex indoor environments [21]. Theoretically, the UKF algorithm 

has a level of computational complexity that still allows it to be implemented in real-time systems [22], such as 

autonomous drones or robotic navigation. 

5.2. Positioning During Free Outage Conditions 

Environmental conditions, such as indoor settings with obstacles or reflective surfaces, can significantly impact the 

reception of GNSS signals. Multipath effects, where GNSS signals reflect off surfaces and cause erroneous readings, 

can degrade the accuracy of GNSS measurements. In situations with poor satellite visibility (e.g., indoor environments 

with obstructed lines of sight), GNSS measurements may become highly unreliable, further increasing the error in the 

system [17, 23]. Similarly, physical obstructions in densely built areas, GNSS signals can also be blocked by walls or 

other large structures, making it difficult for the system to maintain accurate position estimates. This explains the 

increase in RMSE and MAE during the signal outage conditions [23].  

In free outage conditions, GNSS signals are continuously available without interruption. Sensor fusion combines 

data from GNSS and IMU to enhance the accuracy of position and orientation estimates. The UKF updates these 

estimates in real-time, using GPS data as a correction to minimize the cumulative errors of the IMU. At each time step, 

position data from GPS is utilized to refine the position predictions derived from the integration of IMU data, thereby 

reducing drift and other errors that may arise in the IMU. 
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The validation results indicate that the UKF method effectively integrates data from GNSS and IMU, yielding 

robust and accurate estimates of position and orientation even in conditions where GNSS signals are unavailable. 

As shown in Figure 8, the trajectory generated by the Vision RTK2 tool is quite impressive, successfully estimating 

the position during GNSS signal outages in a parking lot obstructed by tall buildings. The UKF estimation, utilizing 

GNSS and IMU data from Vision RTK2, combined with 3 DOF modelling, produces a highly accurate trajectory 

that closely aligns with the measurement data. In the UKF calculations, a comparison is made between each 

measurement variable and the results of the UKF estimations (Figure 9). This comparison is illustrated in the 

following graph. 

 

Figure 8. Trajectory of the Research Center Building when Free Outage Conditions 

 

Figure 9. Comparison Graph of Observation Variables and UKF Estimation 
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Based on the UKF simulation results displayed in the graph, the position estimates obtained are close to the 

measurement data with relatively small deviations. This shows that the UKF method is able to provide accurate results 

under certain conditions. To provide a clearer picture of the system performance, Table 2 presents the RMSE and MAE 

values under Free Outage conditions. 

Table 3 presents the RMSE and MAE values as 0.00308 m and 0.00088 in easting, which are close to the values 

of 0.00175 and 0.00024 in northing. According to the RMSE and MAE Interpretation Guidelines mentioned earlier, 

these values fall within the error level of 0.000 m - 0.299 m, indicating a small error. The MAE and RMSE values 

generated by the UKF method are very low, nearly approaching zero. This highlights that the estimation results from 

the UKF are qualitatively very good and accurate. Furthermore, the MAE value aligns with the RMSE results: in the 

easting measurement, the value is greater than that in northing, which is also observed in the corresponding MAE 

values. 

Table 3. RMSE and MAE values under GNSS conditions when the condition is Free Outage 

Variable RMSE (m) MAE (m) 

Easting (E) 0.00308 0.00088 

Northing (N) 0.00175 0.00024 

Following Table 3, the performance of the GNSS-IMU data fusion system under Free Outage Conditions 

demonstrated high accuracy, with very low RMSE and MAE values for both Easting and Northing. These results 

indicate a close alignment between the estimated positions and the reference positions, as expected when both GNSS 

and IMU data are available for fusion without external interference However, when GNSS signals were unavailable 

during Signal Outage Conditions, a noticeable increase in the RMSE and MAE values was observed. Specifically, 

RMSE values rose to 4.0881 m for Easting and 8.6317 m for Northing, while MAE values reached 5.9871 m and 

7.4182 m, respectively. This significant increase underscores the challenges of relying solely on IMU data during 

outages. Without GNSS corrections, the IMU data, which tends to drift over time, resulted in substantially larger 

positional errors [20].  

While this study demonstrates improved accuracy, the practical implementation of the GNSS and IMU data 

fusion system for real-time vehicle navigation systems faces several challenges. One of the key issues is the 

requirement for fast data processing, which can be a limitation when using hardware with limited computational 

capacity. Additionally, the performance of the UKF method is highly dependent on the quality of the sensor data 

and the initial system configuration. Environmental factors, such as GNSS signal interference or poor satellite 

visibility, can also affect the accuracy of the system. However, with advancements in processing speeds and better 

management of signal disruptions, this data fusion approach shows potential for application in vehicle navigation 

systems, especially in areas with limited GNSS signal availability, such as urban canyons or areas with dense 

buildings [24, 25]. 

5.3. 3D Visualization of Backpack LiDAR Model 

3D visualization of the model generated from Backpack LiDAR data provides a detailed picture of the 

topography and surface features of the mapped area. The 3D visualization process of Backpack LiDAR data 

includes the georeferencing process of point cloud results with trajectories resulting from previous UKF processing 

and KKH calculations. From the IMU sensor, data is obtained in the form of accelerometers, gyros, and 

magnetometers where the program has carried out data integration between data obtained from LiDAR (distance 

data and angle to the sensor) with IMU data, time is used as a link which is called SLAM (Simultaneous Localization 

and Mapping). The data acquisition process involves first observing the area to be surveyed. If the area is dynamic, 

the data collection will be divided into several segments, which will later be merged. The LIOSAM algorithm assists 

the system in handling long-duration data collection by performing corrections based on previous and current data 

timestamps [26, 27]. 

The 3D model processing is preceded by the LiDAR data georeferencing process with data obtained from Total 

Station measurements. Point cloud georeferencing is carried out to produce accurate spatial data, as well as to register 

data to have the desired UTM reference. The georeferencing process is carried out at the point in the KKH calculation 

which is used as the GCP as a control point (see Figure 10). After georeferencing, the RMSE value is obtained as in 

Table 9. 
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(a) (b) 

Figure 10. Georeferencing: a) placement of points on the point cloud and b) GCP points as references 

After obtaining the error value of each point, the RMSE calculation is carried out, namely taking the square root of 

the average square error of all GCPs. To provide a clearer picture of the error value, Table 4 presents the RMSE value 

after georeferencing. 

Table 4. Georeferenced RMSE Values  

Variable RMSE (m) 

Georeferencing LiDAR Data with Total Station Measurement Data 0.3420 

Georeferencing LiDAR Data with UKF Sensor Fusion Measurement Data 0.6358 

During the LiDAR data processing for georeferencing, several limitations were encountered, including signal 

interference and data noise due to moving objects, as well as the lack of GCP in indoor environments where GNSS 

signals were unavailable. These challenges were addressed by performing noise-cleaning on the point cloud data to 

remove irrelevant objects, and by integrating GNSS and IMU data using the UKF for sensor fusion, which allowed 

for the estimation of positions and provided the necessary GCPs. Additionally, the georeferencing process was 

enhanced by combining KKH calculations and UKF fusion data, yielding accurate results with RMSE values of 

0.3420 m for KKH and 0.6358 m for UKF fusion, demonstrating high alignment with reference measurements. 

These steps ensured the accuracy and reliability of the georeferenced LiDAR data, effectively addressing the 

observed limitations. 

Further enhancing this approach, the integration of LiDAR, IMU, and GNSS sensors using the LIO-SAM method 

has shown promise for indoor mapping in GNSS-denied environments. In the study conducted by Triawan et al. [28], 

the accuracy achieved using the LIO-SAM method with the integration of LiDAR, GNSS, and IMU sensors showed 

excellent results. Based on the comparison of tree diameter and height measurements between direct and LiDAR-based 

methods, the study reports a RMSE (Root Mean Square Error) of 0.0003 meters for horizontal measurements and 0.0004 

meters for vertical measurements. Furthermore, the standard deviation (STDV) for horizontal measurements was 0.014 

meters, while for vertical measurements, it was 0.011 meters. These results demonstrate very high accuracy, with errors 

on the millimeter scale, making the system highly reliable for applications that require high precision, such as tree 

inventory and forest mapping. While this method improves mapping performance over traditional TLS and ALS 

methods, the addition of camera-based SLAM or barometers can further improve robustness in challenging 

environments. 

The accuracy of LiDAR data is tested according to the ASPRS Positional Accuracy Standards for Digital Geospatial 

Data, Edition 1, November 2014, as well as PERKA BIG No. 6 of 2018, which amends the Regulation of the Head of 

the Geospatial Information Agency Number 15 of 2014 concerning Technical Guidelines for Base Map Accuracy. The 

analysis of accuracy testing includes both absolute accuracy and relative accuracy. The LE value is determined after 

calculating the RMSE value. Once the RMSE value has been obtained, you can proceed to calculate the LE value using 

the following formula. 

𝐶𝐸90 = 1,5175 × 𝑅𝑀𝑆𝐸  (11) 
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Based on the georeferencing results obtained, namely RMSE of 0.3420 meters for KKH and 0.6358 meters for UKF 

results, we can calculate the vertical accuracy (LE90) using the BIG standard conversion factor. 

𝐶𝐸90𝐾𝐾𝐻 = 1,5175 × 0,3420 = 0.5189 (12) 

𝐶𝐸90𝑈𝐾𝐹 = 1,5175 × 0,6358 = 0.9648 (13) 

Based on Equation 12 and 13, the RMSE value of 0.3420 meters with a value of 𝐿𝐸90 = 0,5189 is suitable for map 

scales between 1:1,000 and 1:2,500. This number shows that the georeferencing results on KKH meet the criteria for 

high accuracy and are suitable for map scales with very good detail. However, the RMSE value of 0.6358 with a value 

of 𝐿𝐸90 = 0,9648 is suitable for map scales between 1:2,500 and 1:5,000. This number indicates that the georeferencing 

results on UKF are in the moderate accuracy category and are suitable for larger map scales with lower detail compared 

to KKH. 

For the RMSE on the KKH, which is 0.3420 meters, the conversion of this value into horizontal accuracy in 

centimeters is 34.20 cm, which means that this accuracy is between the map scale of 1:1,200 to 1:1,800, indicating that 

the georeferencing on the KKH has higher accuracy and is suitable for map scales with very good detail. This shows 

that the KKH georeferencing results meet or even exceed the accuracy tolerance required for larger map scales, ensuring 

that the resulting map data is very accurate for applications that require high detail. Meanwhile, for the RMSE on the 

UKF results, which is 0.6358 meters or 63.58 cm, this accuracy is suitable for map scales between 1:2,000 to 1:3,000 

according to the ASPRS standard. This means that the georeferencing performed on the UKF is in the medium accuracy 

category and is suitable for larger map scales, with less detail compared to the results on the KKH. Although the 

georeferencing on the UKF results is still within the acceptable tolerance range, the results show lower accuracy 

compared to the KKH, making it more suitable for applications that do not require the level of detail as high as that 

obtained from the KKH. 

Based on Table 5, the overall georeferencing accuracy, following ASPRS standards and BIG regulations, falls within 

class 2 map geometry accuracy. This indicates that at least 90% of the positional errors or shifts in objects on the 1:1,000 

Scale RBI Map do not exceed one meter in the horizontal position. Furthermore, the results from the KKH demonstrate 

a higher level of detail, meeting the accuracy requirements for a smaller map scale, while the UKF results are within a 

moderate tolerance range, making them suitable for a map scale with lower detail. This analysis ensures that the map 

produced from the georeferencing process satisfies the accuracy needs for its intended application and adheres to the 

established standards for map accuracy. 

Table 5. Map Scale Classification Results 

Data Types Map Scale and Class (BIG) Map Scale (ASPRS 2014) 

LiDAR with Total Station Data 1:1,000 Class 2 1:1,200 

LiDAR with UKF Fusion Data 1:2,500 Class 2 1:2,000 

5.4. Comparison of Distance with LiDAR and Ground Truth  

The measurement data obtained from a meter is regarded as the ground truth. This meter data is compared with 

LiDAR data prior to georeferencing. The LiDAR data is georeferenced using KKH calculation data and also through 

UKF fusion data. This process allows us to calculate the Root Mean Square Error (RMSE), which indicates the amount 

of error present in the LiDAR data. The details of the calculations can be found in Table 5: 

Column a is the LiDAR data before georeferencing, column b is the LiDAR data georeferenced with the GCP points 

calculated by KKH, and column c is the LiDAR data that has been georeferenced with the UKF fusion results. From the 

results of the distance comparison in Table 6, it is known that the distance dimensions are respectively 0.5701 m, 0.0354 

m, and 0.0779. 

Table 6. Comparison table of Point Cloud Distance dimensions 

No Distance Roll Meter (m) 
Point Cloud Difference With Roll Meter (𝑫𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆)𝟐 

a b c a b c a b c 

1 Distance 1 5.97 5.85 5.99 5.88 0.12 -0.02 0.09 0.0144 0.0004 0.0081 

2 Distance 2 9.24 9.59 9.14 9.07 -0.35 0.1 0.17 0.1225 0.01 0.0289 

3 Distance 3 4.67 4.56 4.63 4.69 0.11 0.04 -0.02 0.0121 0.0016 0.0004 

4 Distance 4 3.95 3.96 3.88 3.75 -0.01 0.07 0.2 0.0001 0.0049 0.04 

5 Distance 5 2.2 1.89 2.16 2.19 0.31 0.04 0.01 0.0961 0.0016 0.0001 

6 Distance 6 3.75 3.18 3.62 3.77 0.57 0.13 -0.02 0.3249 0.0169 0.0004 

RMSE 0.5701 0.0354 0.0779 
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The RMSE values indicate that the georeferenced LiDAR measurements, derived from the KKH and Roll Meter 

Calculations, have the smallest RMSE. This suggests a high level of agreement between the point cloud data and the 

measurements taken with the roll meter, which serves as the reference data. To analyze the relationship between the roll 

meter and the LiDAR data, a linear regression plot was created. If the line representing the LiDAR dimensions aligns 

closely with the line from the roll meter, it indicates a strong relationship between the two variables. Therefore, better 

regression fit corresponds to higher accuracy in the LiDAR data. Figure 11 presents the results of the linear regression 

plot for these two datasets. 

 

 

Figure 11. Linear regression graph of LiDAR distance 

Based on Figure 11, both graphs show a very strong linear relationship between the distance measured by LiDAR 

and the roll meter. Although both methods (georeferencing with Total Station and data fusion results) produce a very 

strong linear relationship, the results from Total Station georeferencing are slightly closer to 1 in terms of slope compared 

to the data fusion results. The very high R^2 values in both graphs indicate that both methods are very reliable in 

measuring distance compared to the roll meter. The regression equation shows that the Total Station georeferencing 

method is slightly more accurate in approaching a 1:1 linear relationship with the Roll Meter.  

The 3D LiDAR model is visualized after going through a noise-cleaning process on the point cloud data, which 

previously contained moving objects recorded by the sensor. This process ensures that the visualization results 

only reflect static and relevant objects in the survey area. The final visualization of the processed data, as shown 

in Figure 12. 
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(a) (b) 

Figure 12. 3D LiDAR model results: (a) Top View, (b) Road View  

According to Figure 12, various objects such as trees, buildings, and roads can be observed. The visualization of the 
LiDAR data exhibits a recognizable level of detail, including the shape of roofs, stairs, and text, without reliance on 

thematic objects. The point cloud's density allows for the identification of building details, such as the location of doors, 
fences, and roof shapes. Therefore, it is clear that the object in question is a building.  

In our study on indoor mapping using GNSS, IMU, and Backpack LiDAR, we integrated these sensors using the 
UKF method to improve 3D mapping accuracy in environments where GNSS signals are unavailable. Our results show 
that the UKF method, combined with LiDAR, outperforms traditional methods like EKF. Compared to previous studies, 
such as the one by Cahyadi et al. [29], hich conducted the fusion of GNSS and IMU sensors on vehicle navigation, the 
results of east and north position accuracy at Transmart Sidoarjo and Royal Plaza were 3.556 m and 6.709 m, as well as 
6.364 m and 8.465 m, respectively. Compared to standalone GNSS, in free outage conditions, fusion using SPP/IMU 

increased the accuracy of east and north positions by 68.28% and 66.64%, respectively. Conversely, DGNSS/IMU 
fusion improved the accuracy of east and north positions to 93.02% and 93.03%, respectively. Additionally, previous 
studies, such as the one by Navisa et al. [18], which explored UKF integration for medical drones, show that UKF 
integration outperformed EKF, with an accuracy of 0.022 meters, far surpassing the 8.467 meters achieved by the EKF 
method in similar conditions. By incorporating LiDAR into our fusion system, we have achieved a new level of 
positioning accuracy, especially under signal outage conditions, which has not been fully addressed in the existing 

literature. 

Based on the results and analysis conducted, it can be concluded that the integration of the UKF method with GNSS 
and IMU data fusion has successfully improved position estimation accuracy, especially in free outage conditions. The 
accuracy achieved in these conditions shows very low RMSE values, with 0.00308 m for Easting and 0.00175 m for 
Northing, as well as small MAE values. However, in signal outage conditions, the position estimation accuracy from 
IMU data significantly decreased, with RMSE reaching 4.0881 m for Easting and 8.6317 m for Northing, indicating that 

IMU data alone is less capable of providing accurate position information. Nevertheless, GNSS-IMU fusion with the 
UKF method in signal outage conditions still produces trajectories that are close to the reference, although the accuracy 
obtained is not optimal. Furthermore, the validation of the georeferenced 3D LiDAR model using UKF data fusion and 
KKH calculations showed satisfactory results, with small RMSE values of 0.3420 m and 0.6358 m, indicating a high 
level of agreement between point cloud data and reference measurements. Therefore, this study proves that the use of a 
combination of GNSS, IMU, and LiDAR through the UKF approach is a promising solution to improve 3D mapping 

accuracy in indoor environments, although challenges remain in non-optimal GNSS signal conditions. 

6. Conclusion  

In this study, we explored the integration of GNSS, IMU, and Backpack LiDAR using the UKF to improve indoor 
positioning accuracy, particularly in environments where GNSS signals are limited. The fusion of GNSS and IMU data 
through the UKF method significantly enhanced position estimates during free outage conditions, achieving low RMSE 
values of 0.00308 m for Easting and 0.00175 m for Northing, and small MAE values, indicating highly accurate position 
tracking. However, during signal outages, the performance of the system deteriorated, with RMSE values reaching 

4.0881 m for Easting and 8.6317 m for Northing, as the IMU data alone became less reliable due to drift accumulation. 
Despite this, the UKF method still produced trajectories that were close to the reference data, confirming its potential 
for improving navigation accuracy even under challenging conditions. The integration of LiDAR provided valuable 3D 
point cloud data, which, when georeferenced using UKF fusion data and KKH calculations, showed strong alignment 
with reference measurements, as evidenced by RMSE values of 0.3420 m for KKH and 0.6358 m for UKF fusion results. 
This research highlights the effectiveness of combining GNSS, IMU, and LiDAR technologies to overcome the 

limitations of GNSS signals in indoor environments. While the proposed method significantly improved position 
estimation accuracy, further research is necessary to address the limitations posed by IMU drift during signal outages 
and to enhance the real-time applicability of the system. The findings contribute to the development of cost-effective 
and accurate indoor navigation systems, which can be applied in various settings such as industrial facilities, shopping 
malls, and other environments where GNSS signals are typically unavailable. 
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