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Abstract 

Objectives: This study examines urban-rural differences in electric vehicle (EV) adoption intentions to inform 

geographically targeted policy implementation for Thailand's goal of 30% EV production by 2030. Methods/Analysis: We 

integrated the Technology Acceptance Model, Theory of Planned Behavior, and Unified Theory of Acceptance and Use 

of Technology with environmental identity and trialability constructs. Data from 3,595 respondents (2,311 urban, 1,284 

rural) across Thailand were analyzed using structural equation modeling and measurement invariance testing. Findings: 

Results revealed distinct adoption mechanisms between geographical contexts. Urban areas demonstrated stronger effects 

in system-related perceptions, with perceived ease of use more strongly influencing perceived usefulness (β=0.631 vs. 

0.587) and perceived usefulness having a greater impact on behavioral intention (β=0.445 vs. 0.353). Rural areas showed 

stronger influences of individual characteristics and social factors, with personal innovativeness more strongly affecting 

attitudes (β=0.216 vs. 0.157) and environmental identity showing greater impact on perceived ease of use (β=0.350 vs. 

0.291). Novelty/Improvement: This research uniquely combines established technological adoption theories with 

geographical context analysis, providing evidence-based recommendations for differentiated EV promotion strategies that 

address the specific challenges of urban and rural environments in developing countries. 

Keywords: Measurement Invariance; Personal innovativeness; Technology Acceptance Model; Travel Planned Behavior; Unified Theory 

of Acceptance and Use of Technology; Battery Electric Vehicle. 

 

1. Introduction 

1.1. Research Background 

The global transportation sector has emerged as a critical contributor to environmental challenges, accounting for 

over 20% of worldwide carbon emissions and significantly impacting air pollution levels [1]. In response to these 

pressing environmental concerns and the urgent need for sustainable development, electric vehicles (EVs) have gained 

prominence as a promising solution to reduce reliance on fossil fuels and lower CO2 emissions [2-6]. The transition to 

EVs aligns with the United Nations Sustainable Development Goals (SDGs), particularly SDG 7 (Affordable and Clean 

Energy), SDG 11 (Sustainable Cities and Communities), and SDG 13 (Climate Action) [7]. This shift towards electric 

mobility represents a crucial strategy in addressing climate change while promoting sustainable transportation practices 
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[8]. The growing recognition of EVs as a sustainable alternative to conventional vehicles is driven by increasing 

concerns over petrochemical resource sustainability and environmental pollution [9], making them an essential 

component of global efforts to achieve carbon neutrality and sustainable development targets. 

In alignment with global sustainability initiatives, Thailand has integrated EVs and clean energy into its national 

strategic plan through two key focus areas: "Transportation and logistics industry and services" and "Development of 

energy security and promotion of environmentally friendly energy" [10]. The Thai government has demonstrated its 

commitment to electrifying the transportation sector through various initiatives, including the implementation of the 

"30@30" policy, which aims to achieve 30% of total vehicle production as EVs by 2030, and plans to ban new internal 

combustion engine vehicles by 2035 [11, 12]. However, despite these ambitious policies and the potential environmental 

benefits, EV adoption in Thailand faces significant challenges. Studies have revealed that performance expectancy, 

effort expectancy, social influence, hedonic motivation, and environmental concerns significantly influence purchase 

intentions for EVs in the Thai context [13]. Moreover, Ahmad et al. [14] identified that environmental concerns, hedonic 

motivation, social influence, effort expectancy, trust, and behavioral intentions are crucial factors affecting EV 

acceptance and uptake in Thailand. The contrast between urban and rural areas presents an additional layer of 

complexity, as these regions often exhibit different adoption patterns and face distinct challenges in terms of 

infrastructure availability and consumer preferences [15, 16]. 

1.2. Urban-Rural Differences in Electric Vehicle Adoption Intentions 

Urban areas are characterized by high population density, developed infrastructure, and concentrated economic 

activities, while rural areas typically feature lower population density, greater distances between destinations, and more 

agricultural or natural landscapes [17-19]. These fundamental differences significantly influence transportation needs 

and vehicle adoption patterns. Jiang et al. [20] found that urban conditions, travel patterns, access to green spaces, 

parking availability, and loan accessibility significantly impact EV adoption intentions, highlighting how built 

environment characteristics shape consumer choices. In urban settings, residents primarily use vehicles for shorter 

commutes and daily errands, making current EV ranges sufficient for their needs. Conversely, rural residents often 

require vehicles for longer distances and more diverse purposes, including agricultural and commercial activities [21]. 

A significant challenge in rural EV adoption stems from vehicle type preferences and availability. Rural areas show 

a higher preference for pickup trucks. However, the current EV market lacks pickup truck options, creating a substantial 

barrier to rural adoption [15, 22]. Additionally, the distribution of charging infrastructure presents another critical 

disparity. Urban areas typically have better access to charging stations due to higher population density and developed 

infrastructure networks, while rural areas face limited charging accessibility and longer distances between stations [23, 

24]. This infrastructure gap is particularly problematic given that rural residents often travel longer distances and require 

more frequent charging opportunities [25]. These distinct characteristics and challenges between urban and rural areas 

underscore the need for targeted approaches in promoting EV adoption across different geographical contexts. 

1.3. Theoretical Background 

This study integrates three well-established theoretical frameworks with additional factors to comprehensively 

understand EV adoption intentions across urban and rural contexts. The Technology Acceptance Model (TAM) serves 

as the foundational framework, emphasizing perceived usefulness and perceived ease of use as primary determinants of 

technology adoption [26]. The integration extends to include key constructs from the Unified Theory of Acceptance and 

Use of Technology (UTAUT), which has been widely validated in EV adoption studies. Kumar & Chauhan [27] 

demonstrated that UTAUT factors, particularly performance expectancy, effort expectancy, social influence, and 

facilitating conditions, significantly impact consumer adoption intentions for EVs. 

The Theory of Planned Behavior (TPB) components further enhance the model's explanatory power. Gunawan et al. 

[28] found that attitude toward use (ATU), subjective norm (SBN), and perceived behavioral control (PBC) positively 

influence interest in using EVs. These factors are particularly relevant in understanding the social and behavioral aspects 

of EV adoption across different geographical contexts. Additionally, this study incorporates several extended factors 

that have shown significant influence in recent literature. Trialability, representing the degree to which an innovation 

may be experimented with on a limited basis, has been identified as a crucial factor in reducing adoption uncertainty 

[29]. Environmental identity, reflecting an individual's self-identification with environmental causes, has emerged as a 

significant predictor of pro-environmental behaviors in EV adoption studies [30, 31]. Furthermore, subjective norm and 

perceived behavioral control from TPB have been consistently validated as significant predictors of behavioral intention 

to use EVs [28, 32], particularly in contexts where social influence and personal capability perceptions play crucial roles 

in adoption decisions. 

The selection of TAM, TPB, and UTAUT for integration in this study was driven by their complementary strengths 

and the limitations of using any single framework in isolation. While numerous technology adoption models exist, our 

comprehensive evaluation led to the selection of these three frameworks for several reasons. 
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First, the Technology Acceptance Model (TAM) was chosen as our foundational framework due to its proven 

efficacy in explaining technology adoption through cognitive factors. However, as Zhang et al. [26] demonstrated in 

their study of new energy vehicles in China, TAM alone fails to capture the complex social and contextual factors 

involved in EV adoption. By integrating TPB components, we address this limitation by incorporating subjective norms 

and perceived behavioral control, which have been validated as crucial determinants by Gunawan et al. [28], who found 

these factors significantly influence EV adoption intentions in Indonesia. 

Second, the inclusion of UTAUT elements enhances our model's explanatory power by incorporating facilitating 

conditions, which Kumar & Chauhan [27] identified as essential for understanding EV adoption in developing 

economies like India. Alternative frameworks such as Innovation Diffusion Theory (IDT) and the Value-Belief-Norm 

(VBN) model were considered but ultimately not selected due to their more limited application in transportation contexts 

and less robust empirical validation in EV research compared to our chosen frameworks. 

Finally, our integration of environmental identity and trialability as additional constructs addresses context-

specific factors relevant to Thailand's transition to electric mobility. This approach aligns with Manutworakit & 

Choocharukul's [13] findings that environmental concerns significantly influence BEV purchase intentions in 

Thailand, while Chonsalasin et al. [33] highlighted the importance of government policy perceptions in shaping 

adoption behaviors. Our integrated model thus represents a comprehensive yet parsimonious framework that 

captures the technological, psychological, social, and contextual dimensions of EV adoption decisions across 

different geographical contexts. 

1.4. Statistical Method for Comparing Urban and Rural Models 

In comparing EV adoption models between urban and rural populations, measurement invariance (MI) testing serves 

as a crucial statistical approach to ensure valid cross-group comparisons. MI establishes whether measurement 

instruments maintain consistent psychometric properties across different groups, ensuring that any observed differences 

reflect true variations in the constructs rather than measurement artifacts [34]. This methodological approach is 

particularly vital for several reasons. First, MI testing helps validate whether the measurement model operates 

equivalently across urban and rural populations, ensuring that the constructs (such as environmental identity, perceived 

usefulness, and behavioral intention) are conceptualized and interpreted similarly by both groups. Without establishing 

measurement invariance, differences in model parameters between urban and rural populations could be attributable to 

measurement bias rather than genuine group differences in the theoretical relationships [35]. Second, MI provides a 

robust foundation for comparing structural relationships in our integrated theoretical framework, allowing researchers 

to make meaningful comparisons between groups and draw valid conclusions about differences in adoption patterns 

between urban and rural contexts [22]. The effectiveness of MI in comparative studies has been demonstrated by several 

researchers in the EV adoption context. For instance, Higueras-Castillo et al. [36] successfully employed MI testing to 

validate cross-cultural comparisons of EV adoption intentions, while Singh et al. [32] utilized this approach to examine 

adoption variations across different demographic groups. These studies underscore the reliability of MI as a 

methodological tool for investigating group differences in EV adoption patterns. 

In selecting structural equation modeling (SEM) with measurement invariance testing for this analytical 

approach, several alternative methodologies were carefully evaluated. Partial Least Squares (PLS) modeling was 

considered due to its flexibility with non-normal data and smaller sample sizes, as demonstrated by Manutworakit 

& Choocharukul [13] in their study of BEV adoption in Thailand. However, covariance-based SEM was selected 

due to its superior capabilities in theory testing and simultaneous evaluation of measurement and structural models, 

which was essential for the comparative urban-rural analysis. Multilevel modeling approaches that could account 

for nested geographical effects were also considered. However, as Singh et al. [32] noted in their study of EV 

adoption in the Himalayan region, measurement invariance testing within the SEM framework provides more robust 

comparisons of latent constructs across distinct populations. This approach allowed for establishing whether 

observed differences between urban and rural groups reflected true variations in construct relationships rather than 

measurement artifacts. 

To address potential biases in self-reported data, several methodological safeguards were implemented. First, multi-

item scales were employed for each construct to minimize single-item response bias, following Ahmad et al. [14], who 

utilized similar approaches when examining EV adoption in Thailand. Second, rigorous data screening procedures were 

conducted, including Mahalanobis distance tests to identify multivariate outliers and attention check questions to ensure 

respondent engagement, as recommended by Prakhar et al. [37]. Third, common method bias was addressed through 

procedural remedies, including varied response formats, assurance of anonymity, and counterbalancing of question 

order. Additionally, Harman's single-factor test was conducted to assess potential common method variance, which 

revealed that no single factor accounted for more than 28% of variance, suggesting minimal common method bias [38]. 

These methodological choices and precautions enhanced the validity of the findings while addressing the inherent 

limitations of cross-sectional survey research in technology adoption studies. 
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1.5. Research Gap 

Despite extensive research on EV adoption factors, significant gaps exist in understanding the urban-rural divide in 

adoption intentions. While studies have examined EV adoption in various contexts, comparative analyses between urban 

and rural populations remain limited. Recent literature has primarily focused on either urban areas [20] or specific 

regional contexts without distinguishing between urban and rural characteristics [13, 14]. Although Peng et al. [9] 

investigated spatial variations in EV market share, their study did not specifically address the psychological and 

behavioral differences between urban and rural consumers. This gap is particularly significant given the distinct 

transportation needs, infrastructure availability, and socioeconomic conditions that characterize urban and rural areas. 

Furthermore, while existing studies have employed various theoretical frameworks independently—such as TAM 

[26], UTAUT [27], and TPB [28]—there is limited research integrating these models with additional contextual factors 

like environmental identity and trialability. The need for a comprehensive theoretical framework that captures both 

technological acceptance and behavioral aspects across different geographical contexts remains largely unaddressed. 

Chonsalasin et al. [33] examined government policy perceptions on EV adoption in Thailand but did not explore urban-

rural differences, while Singh et al. [32] investigated EV adoption in the Himalayan region using the UTAUT2-NAM 

model without focusing on geographical differences. 

The integration of multiple theoretical frameworks is crucial as it provides a more holistic understanding of adoption 

intentions, particularly when examining the diverse needs and perspectives of urban and rural populations. Abbasi et al. 

[39] found that consumer motivation significantly enhances intentions to purchase EVs through performance 

expectancy, effort expectancy, social influence, and technological factors, but did not address geographical variations. 

Similarly, Pamidimukkala et al. [40] identified financial, technological, and infrastructure barriers to EV adoption 

without examining how these barriers might differ between urban and rural contexts. 

This research addresses these gaps by conducting a comparative analysis of urban and rural EV adoption intentions 

while employing an integrated theoretical framework that encompasses multiple theoretical perspectives. By examining 

the distinct adoption mechanisms between these populations, this study provides insights into how geographical contexts 

moderate EV adoption, enabling the development of targeted interventions that address the specific challenges of both 

urban and rural environments in Thailand. 

1.6. Research Contribution 

This study offers several significant contributions to both theory and practice in EV adoption. First, it provides 

valuable insights into the distinct adoption patterns between urban and rural populations, enabling policymakers and 

stakeholders to develop targeted interventions based on geographical contexts. Specifically, the findings can guide 

government agencies, particularly Thailand's Ministry of Energy and Ministry of Transport, in crafting differentiated 

policies that address the unique challenges and needs of both urban and rural communities. For urban areas, policies 

might focus on addressing infrastructure density and parking solutions, while rural initiatives could emphasize the 

development of long-range charging networks and vehicle types suitable for agricultural and commercial uses. 

Second, automotive manufacturers and dealers can utilize these findings to develop market-specific strategies. 

Understanding the distinct preferences and concerns of urban and rural consumers enables them to tailor their product 

offerings, marketing approaches, and after-sales services accordingly [41]. For instance, manufacturers might prioritize 

the development of electric pickup trucks to meet rural market demands while focusing on compact EVs for urban 

environments. Third, energy providers and charging infrastructure developers can optimize their investment decisions 

based on the differentiated needs of urban and rural areas, leading to more efficient resource allocation and improved 

charging network coverage [42, 43]. 

The implementation of these targeted approaches is expected to accelerate EV adoption rates in both urban and rural 

areas, ultimately contributing to Thailand's environmental goals and sustainable transportation targets. Moreover, this 

research provides a methodological framework for similar comparative analyses in other emerging markets, helping to 

bridge the urban-rural divide in sustainable transportation adoption. 

The remainder of this paper is organized as follows: Section 2 provides a comprehensive literature review on 

factors influencing EV adoption, focusing on environmental identity, personal innovativeness, social network 

influence, trialability, and relationships from the integrated theoretical framework, concluding with research 

hypotheses and the proposed conceptual model. Section 3 details the methodology, including participant selection, 

materials, procedures, and data analysis techniques. Section 4 presents the results of descriptive statistics, 

measurement model evaluation, structural equation modeling, and hypothesis testing across urban and rural 

populations. Section 5 discusses the findings, highlighting differences between urban and rural adoption mechanisms. 

Finally, Section 6 concludes with policy recommendations for both urban and rural contexts, implementation 

strategies, and directions for future research. 
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2. Literature Review and Hypothesizes 

2.1. The Role of Environmental Identity in EV Adoption 

Environmental identity represents an individual's self-identification with environmental causes and their tendency 

to consider environmental impacts in decision-making (Table 1). This construct has gained significant attention in EV 

adoption research due to its influence on consumer perceptions and attitudes. In the context of EVs, environmental 

identity plays a crucial role in shaping how individuals perceive the utility and benefits of electric vehicles. 

Table 1. Literature Review and Hypothesizes 

Research Key finding 
Supporting 

Hypothesis 

Chonsalasin et al. [33] 
The study identified five distinct factors influencing EV adoption intentions: perceptions of government commitment 

and efficiency, government welfare, effects of government policy, government communication, and tax benefits. 
H7, H8, H11 

Zhang et al. [26] 
The study found that perceived usefulness, perceived ease of use, and perceived risk significantly influence 

consumers' purchase intentions through attitudinal ambivalence. 
H9, H10, H12 

Ahmad et al. [14] 
Environmental concerns, hedonic motivation, social influence, effort expectancy, trust, and behavioral intentions 

significantly influence EV acceptance and uptake. 
H3, H6, H7, H8 

Wang et al. [44] 
Performance expectations, social influence, and price value positively influence consumers' intention to adopt EVs, 

while perceived risk negatively impacts this intention. 
H6, H7, H13 

Singh et al. [32] 
Performance expectancy, facilitating conditions, hedonic motivation, price value, and personal norms significantly 

influence consumers' intentions to adopt EVs. 
H1, H9, H13, H14 

Manutworakit & 

Choocharukul [13] 
Performance expectancy, effort expectancy, social influence, hedonic motivation, and environmental concern 

significantly influence purchase intention for EVs. 
H1, H3, H6, H7 

Kumar & Chauhan 
[27] 

Five factors—Performance Expectancy, Effort Expectancy, Social Influence, Facilitating Conditions, and Price 

Value—significantly impact consumer adoption intentions for EVs. 
H9, H10, H15 

Abbasi et al. [39] 
Consumer motivation significantly enhances intentions to purchase EVs through performance expectancy, effort 

expectancy, social influence, technophilic, and perceived environmental knowledge. 
H1, H4, H6, H7 

Gunawan et al. [28] 
Attitude toward use (ATU), subjective norm (SBN), and perceived behavioral control (PBC) positively influence 

interest in using EVs. 
H14, H15, H16 

Alyamani et al. [45] 
Monetary incentives and accessible charging infrastructure significantly enhance EV adoption likelihood, with 

females and consumers in their 40s showing higher propensity to purchase EVs. 
H8, H13, H15 

Prakhar et al. [37] 
Enhancing perceived enjoyment and facilitating conditions can improve the user-friendliness of EVs, while reducing 

perceived cost can increase perceived usefulness. 
H8, H9, H12 

Jiang et al. [20] 
Urban conditions, travel patterns, access to green spaces, parking availability, and loan accessibility significantly 

impact EV adoption intentions. 
H8, H15 

Bhat et al. [46] 
Performance expectancy, effort expectancy, hedonic motivation, and environmental concern significantly influence 

purchase intention for EVs. 
H1, H3, H9, H10 

Nayum & Thøgersen 

[31] 
Personal norms are the strongest predictors of pro-environmental behaviors among EV adopters, while compensatory 

beliefs negatively influence both personal norms and behaviors. 
H1, H2, H16 

Li et al. [47] 
Three self-image motives—pro-environmental, innovative, and normative—significantly influence consumers' EV 

adoption decisions, with pro-environmental motives being the most frequently claimed. 
H1, H2, H4, H14 

Higueras-Castillo et 

al. [36] 
Cultural factors significantly influence EV adoption intentions, with power distance, hedonic motivations, and social 

influence playing crucial roles. 
H6, H7, H14 

Rye & Sintov [48] 
Rideshare drivers rated symbolic attributes higher but had weaker symbolic attribute predictors for EV adoption 

intent compared to commuters. Instrumental attributes were stronger predictors. 
H9, H12, H13 

Hull et al. [49] 
Risk perceptions, environmental considerations, and cost perceptions significantly influence EV adoption intention, 

with ten out of eleven hypotheses supported. 
H1, H2, H13, H15 

Pamidimukkala et al. 

[40] 
Financial, technological, and infrastructure barriers significantly impede EV adoption, while environmental barriers 

do not significantly affect consumer intention. 
H8, H9, H13 

Jain et al. [50] 
Performance expectancy and facilitating conditions positively influence adoption intention, while perceived risk 

negatively affects it. Government support moderates the relationship. 
H9, H13, H15 

Qian & Gkritza [51] 
Adoption pioneers maintain stable, positive attitudes towards EVs and discuss broader topics, while laggards show 

concerns primarily about affordability and gas prices. 
H4, H5, H13 

Note: Hypothesized: H1: Environmental identity positively affects perceived usefulness; H2: Environmental identity positively affects attitude toward electric vehicles; 

H3: Environmental identity positively affects perceived ease of use; H4: Personal innovativeness positively affects perceived usefulness; H5: Personal innovativeness 

positively affects attitude toward electric vehicles; H6: Social network influence positively affects attitude toward electric vehicles; H7: Social network influence positively 

affects perceived ease of use; H8: Trialability positively affects perceived ease of use; H9: Perceived ease of use positively affects perceived usefulness. H10: Perceived 

ease of use positively affects attitude toward electric vehicles; H11: Perceived ease of use positively affects behavioral intention to use; H12: Perceived usefulness positively 

affects attitude toward electric vehicles; H13: Perceived usefulness positively affects behavioral intention to use; H14: Subjective norm positively affects behavioral 

intention to use; H15: Perceived behavioral control positively affects behavioral intention to use; H16: Attitude toward electric positively affects behavioral intention to 

use. 

First, environmental identity significantly influences perceived usefulness of EVs through individuals' recognition 

of environmental benefits. Nayum & Thøgersen [31] found that individuals with strong environmental identities are 

more likely to recognize and value the practical benefits of EVs, such as reduced emissions and lower carbon footprint. 

This relationship may vary between urban and rural residents, as urban dwellers typically show higher environmental 

consciousness due to direct exposure to air pollution and traffic congestion [52, 53]. Therefore: 

H1: Environmental identity positively affects perceived usefulness of electric vehicles. 



Civil Engineering Journal         Vol. 11, No. 05, May, 2025 

1896 

 

Second, environmental identity shapes attitudes toward EVs by aligning with personal values and environmental 

concerns. Li et al. [30], Li et al. [47] identified that pro-environmental motives are the most frequently claimed reasons 

for EV adoption, demonstrating how environmental identity directly influences attitudes. The impact of environmental 

identity on attitudes may be more pronounced in urban areas where environmental issues are more visible and immediate 

compared to rural settings [20]. Thus: 

H2: Environmental identity positively affects attitude toward electric vehicles. 

Third, environmental identity influences perceived ease of use through increased motivation to learn and adapt to 

new environmental technologies. Ahmad et al. [14] found that environmentally conscious individuals are more likely to 

overcome perceived difficulties in adopting EVs. This relationship might be particularly relevant in rural areas where 

charging infrastructure is less developed, as strong environmental identity can motivate individuals to overcome usage 

barriers [54]. Therefore: 

H3: Environmental identity positively affects perceived ease of use of electric vehicles. 

2.2. The Influence of Personal Innovativeness on EV Adoption 

Personal innovativeness reflects an individual's willingness to embrace and experiment with new technologies. In 

the context of EV adoption, this characteristic plays a vital role in how people perceive and evaluate electric vehicles as 

an innovative transportation solution. 

Personal innovativeness significantly influences the perceived usefulness of EVs through individuals' readiness to 

recognize the advantages of new technology. Abbasi et al. [39] found that consumer innovativeness significantly 

enhances intention to purchase EVs through performance expectancy, suggesting that more innovative individuals are 

better at recognizing the practical benefits of EVs. The impact may differ between urban and rural residents, as urban 

areas typically have higher exposure to technological innovations and greater access to EV-related information [51]. 

Their research revealed that adoption pioneers maintain stable, positive attitudes towards EVs and discuss broader topics 

like technological advantages, while laggards show more hesitation. Therefore: 

H4: Personal innovativeness positively affects perceived usefulness of electric vehicles. 

Moreover, personal innovativeness shapes attitudes toward EVs by influencing how individuals evaluate new 

transportation technologies. Li et al. [47] identified innovative motives as one of three key self-image motives 

significantly influencing consumers' EV adoption decisions. This relationship may be particularly pronounced in urban 

areas where there is greater exposure to EVs and charging infrastructure, allowing innovative individuals to form more 

positive attitudes through direct observation and experience. The urban-rural divide is evident as Singh et al. [32] found 

that performance expectancy and facilitating conditions have varying impacts across different geographical contexts. 

Thus: 

H5: Personal innovativeness positively affects attitude toward electric vehicles. 

2.3. The Impact of Social Network Influence on EV Adoption 

Social network influence represents the impact of an individual's social connections, including friends, family, and 

peers, on their perceptions and decisions regarding EV adoption. This factor is particularly relevant in the context of 

innovative technologies like EVs, where social learning and peer experiences play crucial roles in adoption decisions. 

Social network influence affects attitudes toward EVs through social learning and information sharing within 

communities. Ahmad et al. [14] found that social influence significantly impacts EV acceptance and uptake in Thailand, 

as individuals tend to form attitudes based on the experiences and opinions of their social circles. This influence may 

manifest differently in urban and rural settings. In urban areas, denser social networks and higher EV visibility create 

more opportunities for social learning, while rural communities might rely more heavily on close-knit relationships for 

information about new technologies [36]. Their research demonstrated that cultural factors and social influence play 

crucial roles in shaping adoption intentions across different geographical contexts. Therefore: 

H6: Social network influence positively affects attitude toward electric vehicles. 

Additionally, social network influence impacts perceived ease of use through shared experiences and practical 

knowledge transfer. Manutworakit & Choocharukul [13] found that social influence significantly influences purchase 

intention for EVs in Thailand, partly through its effect on how easy or difficult people perceive EV operation to be. The 

urban-rural distinction is particularly relevant here, as urban residents typically have more opportunities to observe and 

learn from existing EV users, while rural residents might face limited exposure to EV users in their social networks [55-

57]. Their study highlighted that social influences and facilitating conditions vary significantly across different 

geographical contexts. Thus: 

H7: Social network influence positively affects perceived ease of use of electric vehicles. 
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2.4. The Role of Trialability in EV Adoption 

Trialability refers to the degree to which potential adopters can experiment with or test an innovation before making 

an adoption decision. In the context of EVs, trialability is particularly crucial as it allows individuals to gain first-hand 

experience with the technology, reducing uncertainty and adoption barriers. 

Trialability significantly influences perceived ease of use by providing direct experience with EV operation and 

charging processes. Chonsalasin et al. [33] identified that the opportunity to test and experience EVs helps potential 

adopters better understand their operation and maintenance requirements, directly affecting their perception of how easy 

or difficult it would be to use an EV. The impact of trialability may vary significantly between urban and rural areas due 

to differences in access to EV test-drive opportunities. Urban residents typically have better access to EV dealerships 

and test-drive events, while rural residents may have limited opportunities for hands-on experience with EVs [23]. This 

urban-rural disparity in trialability opportunities can create different levels of perceived ease of use between these 

populations. For instance, Kumar & Chauhan [27] found that effort expectancy and facilitating conditions significantly 

impact consumer adoption intentions, highlighting the importance of practical experience in shaping perceptions. 

Therefore: 

H8: Trialability positively affects perceived ease of use of electric vehicles. 

2.5. Technology Acceptance Model Core Relationships in EV Adoption 

The Technology Acceptance Model (TAM) posits several fundamental relationships between perceived ease of use, 

perceived usefulness, attitudes, and behavioral intentions. These relationships are particularly relevant in the context of 

EV adoption, where the technology represents a significant shift from conventional vehicles. 

Perceived ease of use influences perceived usefulness, as users who find EVs easy to operate are more likely to 

recognize their practical benefits. Zhang et al. [26] found that perceived ease of use significantly influences consumers' 

purchase intentions through perceived usefulness, with this relationship varying between urban and rural contexts due 

to differences in charging infrastructure accessibility and technical support availability. This influence may be stronger 

in urban areas where better infrastructure makes EVs more practically useful [58, 59]. Therefore: 

H9: Perceived ease of use positively affects perceived usefulness of electric vehicles. 

The relationship between perceived ease of use and attitudes toward EVs is demonstrated through users' overall 

evaluation of the technology. Manutworakit & Choocharukul [13], Roemer & Henseler [60] found that effort expectancy 

(similar to perceived ease of use) significantly influences purchase intention for EVs in Thailand. This relationship might 

be stronger in rural areas where operational concerns like charging and maintenance are more prominent due to limited 

infrastructure [32, 61]. Thus: 

H10: Perceived ease of use positively affects attitude toward electric vehicles. 

Perceived ease of use directly impacts behavioral intention as it reduces adoption barriers. Ahmad et al. [14] found 

that effort expectancy significantly influences EV acceptance and uptake. The strength of this relationship may vary 

between urban and rural areas due to differences in support infrastructure and technical assistance availability [62-64]. 

Therefore: 

H11: Perceived ease of use positively affects behavioral intention to use electric vehicles. 

Perceived usefulness shapes attitudes toward EVs by highlighting their practical benefits. Kumar & Chauhan [27] 

demonstrated that performance expectancy (similar to perceived usefulness) significantly influences adoption intentions. 

This relationship might manifest differently in urban and rural contexts due to varying transportation needs and usage 

patterns [20]. Thus: 

H12: Perceived usefulness positively affects attitude toward electric vehicles. 

2.6. Determinants of Behavioral Intention in EV Adoption 

The behavioral intention to adopt EVs is influenced by multiple factors that combine elements from TAM and TPB, 

creating a comprehensive understanding of adoption decisions across different geographical contexts. 

Perceived usefulness directly influences behavioral intention through individuals' evaluation of EV benefits. 

Wang et al. [44] found that performance expectations positively influence consumers' intention to adopt EVs, while 

this effect varies between different geographical areas due to distinct utilitarian needs. For instance, urban users 

might focus on commuting efficiency, while rural users prioritize range and carrying capacity. Jain et al. [50] further 
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confirmed that performance expectancy positively influences adoption intention, highlighting its crucial role in 

decision-making. Therefore: 

H13: Perceived usefulness positively affects behavioral intention to use electric vehicles. 

Subjective norm, representing social pressure and expectations, significantly impacts behavioral intentions. 

Gunawan et al. [28] found that subjective norm positively influences interest in using EVs, with this effect potentially 

varying between urban and rural communities due to different social structures and community influences. Urban areas 

might experience stronger social pressure due to environmental consciousness and trend-following behavior, while rural 

areas might be more influenced by practical community experiences [65, 66]. Thus: 

H14: Subjective norm positively affects behavioral intention to use electric vehicles. 

Perceived behavioral control, reflecting individuals' perceived ability to adopt and use EVs, influences behavioral 

intentions. Hull et al. [49] found that perceived behavioral control significantly affects EV adoption intention, with this 

relationship particularly relevant when comparing urban and rural contexts due to differences in infrastructure 

availability and support systems. This factor becomes especially crucial in rural areas where charging infrastructure and 

maintenance facilities might be limited [67, 68]. Therefore: 

H15: Perceived behavioral control positively affects behavioral intention to use electric vehicles. 

Finally, attitude toward EVs directly shapes behavioral intention through overall evaluation and predisposition. 

Singh et al. [32] demonstrated that positive attitudes toward EVs significantly enhance adoption intentions, with this 

relationship potentially varying between urban and rural populations due to different exposure levels and experiences 

with EVs. Manutworakit & Choocharukul [13] further confirmed that attitudes significantly influence purchase intention 

for EVs in Thailand, highlighting the importance of this relationship across different geographical contexts. Thus: 

H16: Attitude toward electric vehicles positively affects behavioral intention to use electric vehicles. 

2.7. Summary of Literature Review and Research Framework 

The literature review establishes an integrated theoretical framework for examining EV adoption intentions across 

urban and rural contexts (Figure 1). The framework integrates three established theories - Technology Acceptance Model 

(TAM), Theory of Planned Behavior (TPB), and Unified Theory of Acceptance and Use of Technology (UTAUT) - 

along with additional constructs specific to EV adoption. 

The proposed model includes five exogenous variables: 

• Environmental Identity (ENV): Influences Perceived Usefulness (H1), Attitude toward Electric Vehicles (H2), 

and Perceived Ease of Use (H3). 

• Personal Innovativeness (PIN): Affects Perceived Usefulness (H4) and Attitude toward Electric Vehicles (H5). 

• Social Network Influence (SOC): Impacts Attitude toward Electric Vehicles (H6) and Perceived Ease of Use 

(H7). 

• Trialability (TRI): Influences Perceived Ease of Use (H8). 

• Subjective Norms (SUN): Affects Behavioral Intention to Use (H14). 

The model incorporates four mediating variables: 

• Perceived Ease of Use (PEU): Influences Perceived Usefulness (H9), Attitude toward Electric Vehicles (H10), 

and Behavioral Intention to Use (H11). 

• Perceived Usefulness (PUF): Affects Attitude toward Electric Vehicles (H12) and Behavioral Intention to Use 

(H13). 

• Perceived Behavioral Control (PBC): Influences Behavioral Intention to Use (H15). 

• Attitude toward Electric Vehicles (ATT): Affects Behavioral Intention to Use (H16). 

The dependent variable, Behavioral Intention to Use (BIU), represents the ultimate outcome measure of EV adoption 

intention. This comprehensive framework enables examination of both direct and indirect effects on adoption intentions, 

while accounting for the distinct characteristics of urban and rural populations. 
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Figure 1. Conceptual frameworks and hypotheses 

3. Material and Methods 

3.1. Participants 

The study targeted individuals aged 18 years and above who possess valid driving licenses, ensuring participants 

had the legal ability and practical experience to make informed decisions about vehicle adoption [33]. This criterion was 

particularly important as it ensured respondents could meaningfully evaluate the practical aspects of EV adoption based 

on their driving experience and transportation needs. 

The sampling procedure employed simple random sampling to ensure representativeness and minimize selection 

bias. This method was chosen to provide equal opportunity for participation across both urban and rural populations in 

Thailand. The sampling frame included residents from various urban and rural areas, with urban areas defined according 

to Thailand's official administrative classification system as municipal regions (including city municipalities, town 

municipalities, and sub-district municipalities), while rural areas comprised non-municipal regions (Sub-district 

Administrative Organizations) [69, 70]. This classification follows Thailand's National Statistical Office definitions, 

which categorize areas based on population density, administrative functions, and infrastructure development. However, 

this administrative classification presented challenges in borderline cases, particularly in rapidly developing peri-urban 

areas. To address these ambiguous cases, additional criteria were applied, including distance from city centers (areas 

>40 km from major city centers were classified as rural) and population density thresholds (areas with <300 persons per 

square kilometer were classified as rural). In cases where these criteria produced contradictory classifications, the 

predominant land use pattern (agricultural versus commercial/residential) served as the deciding factor. Approximately 

8% of the sample locations required this additional classification protocol, primarily in expanding metropolitan areas 

surrounding Bangkok, Chiang Mai, and Phuket. This refined classification approach ensured consistent categorization 

across all sampling points and aligned with similar methodological approaches used by Jiang et al. [20] in their urban 

planning perspective on EV adoption.  

The sample size was determined following the structural equation modelling (SEM) guidelines, which recommend 

a minimum ratio of 20 observations per observed variable [40]. With 30 observed variables in the measurement model, 

the minimum required sample size was calculated as 600 respondents per model (urban and rural). To account for 

potential invalid responses and ensure robust analysis, we aimed to collect data from a larger sample. The final dataset 

comprised 3,595 valid responses (2,311 from urban areas and 1,284 from rural areas), exceeding the minimum 

requirement and providing sufficient statistical power for both urban and rural models. 
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3.2. Materials 

The research instrument was designed as a structured questionnaire based on established theoretical frameworks 

including TAM, UTAUT, and TPB, along with extended factors identified in the literature review. The questionnaire 

items were adapted from validated scales in previous EV adoption studies [35, 71-73] to ensure content validity and 

reliability. 

The questionnaire was structured into two main parts. Part one collected demographic information including gender, 

age, education level, occupation, vehicle ownership status, and current vehicle type. This demographic data was crucial 

for understanding the characteristics of urban and rural respondents and their current transportation patterns. Part two 

comprised items measuring the theoretical constructs: environmental identity (3 items), personal innovativeness (3 

items), social network influence (3 items), trialability (3 items), perceived ease of use (3 items), perceived usefulness (3 

items), subjective norm (3 items), perceived behavioral control (3 items), attitude toward electric vehicles (3 items), and 

behavioral intention to use (3 items). 

All construct items in part two were measured using a seven-point Likert scale, where 1 represented "strongly 

disagree" and 7 represented "strongly agree." [25]. This scale was chosen to provide sufficient variance in responses 

while maintaining ease of understanding for respondents [44]. Prior to the main survey, the questionnaire underwent 

pilot testing with experts in the field to ensure clarity, relevance, and appropriate translation into the Thai language 

[74]. 

3.3. Procedure 

The research employed a descriptive correlational design to examine EV adoption intentions across urban and 

rural areas. Data collection was strategically conducted at locations where potential EV adopters were likely to be 

encountered, specifically at gas stations and shopping malls equipped with EV charging stations. This approach 

ensured access to respondents who had some awareness of EV infrastructure and potential exposure to EV 

technology [11]. 

The sampling locations were selected based on the distribution of charging stations across Thailand's regions. As 

shown in our sampling frame, the study covered 14 provinces across different regions: Northern (Lampang, Chiang 

Mai), Central (Bangkok, Pathum Thani), Eastern (Chonburi, Ratchaburi, Chachoengsao), North-eastern (Ubon 

Ratchatani, Khon Kaen, Nakhon Ratchasima), and Southern (Phuket, Nakhon Si Thammarat) regions. Bangkok and its 

vicinity represented the highest proportion (28.91% from Bangkok alone) due to its concentrated charging infrastructure 

and population density [22]. It is important to acknowledge that the sampling approach based on charging station 

distribution presented potential limitations regarding geographical representation. Regions with fewer charging stations 

might be underrepresented in the sample, potentially introducing a bias toward areas with more developed EV 

infrastructure. To mitigate this limitation, additional sampling points were established in rural areas with limited 

charging infrastructure to ensure adequate representation of these populations.  

The study employed quota sampling within each region to maintain proportional representation of urban and rural 

populations based on Thailand's demographic distribution. Furthermore, the demographic analysis revealed that the final 

sample achieved reasonable alignment with the national population distribution across regions, with slight adjustments 

made during data analysis through statistical weighting to account for minor discrepancies. This approach, while not 

eliminating all potential geographical bias, provided a pragmatic balance between accessing potential EV adopters and 

ensuring adequate representation of diverse geographical contexts. Similar geographical sampling challenges were noted 

by Peng et al. [9] in their comparative study of EV market share across different regions, highlighting the common 

methodological considerations in geographic analyses of EV adoption. 

From an initial collection of 4,003 responses, the data underwent rigorous cleaning and validation processes. 

Responses were screened for completeness, engagement (through attention check questions), and outliers using 

Mahalanobis distance criterion. After data cleaning, 3,595 valid responses were retained (2,311 from urban areas and 

1,284 from rural areas). As shown in Table 2, the demographic profile reveals notable differences between urban 

and rural respondents. Urban areas showed a higher proportion of males (63.9% versus 59.0% in rural areas), higher 

education levels (16.0% with Master's degrees compared to 8.9% in rural areas), and different vehicle type 

preferences (11.8% pickup trucks in urban areas versus 22.3% in rural areas). These demographic va riations reflect 

the distinct characteristics and needs of urban and rural populations, particularly in terms of vehicle usage patterns 

and preferences. 
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Table 2. Demographic data 

Characteristics Category 
Urban area (n = 2,311) Rural area (n = 1,284) 

Frequency Frequency Percentage Percentage 

Gender 
Male 1363 821 63.9% 59.0% 

Female 948 463 36.1% 41.0% 

Age 

<25 years old 166 166 12.9% 7.2% 

25–34 years old 726 487 37.9% 31.4% 

35–44 years old 604 252 19.6% 26.1% 

45–54 years old 674 337 26.3% 29.2% 

Over 55 years old 141 42 3.3% 6.1% 

Education 

Elementary school 37 21 1.6% 1.6% 

Middle school (MS) 122 104 8.1% 5.3% 

High School/Vocational education 319 248 19.3% 13.8% 

High Vocational education 688 255 19.9% 29.8% 

Bachelor's Degree 930 444 34.6% 40.2% 

Master's Degree 205 205 16.0% 8.9% 

Doctoral Degree 10 7 0.5% 0.4% 

Occupation 

Government Employee 466 132 10.3% 20.2% 

Private Employee 787 285 22.2% 34.1% 

Business Owners 645 451 35.1% 27.9% 

Agriculturist 81 158 12.3% 3.5% 

Student 93 79 6.1% 4.0% 

General Employee 220 169 13.2% 9.5% 

Other 19 10 0.8% 0.8% 

You are always driver? 
No 391 427 33.3% 16.9% 

Yes 1920 857 66.7% 83.1% 

Vehicle Type 

Pick-up truck 273 286 22.3% 11.8% 

Private Car 1362 613 47.7% 58.9% 

Sport Utility Vehicle (SUV) 519 246 19.2% 22.5% 

Personal Purpose Vehicle (PPV) 116 84 6.5% 5.0% 

Multi-Purpose Vehicle (MPV) 41 55 4.3% 1.8% 

Note: (N = 3,595). 

3.4. Data Analysis 

The analysis of EV adoption patterns between urban and rural areas followed a systematic four-step approach, as 

illustrated in Figure 2. The procedure began with data preparation and screening, followed by exploratory factor analysis 

(EFA) on the total sample to identify the underlying factor structure. The analysis then proceeded with confirmatory 

factor analysis (CFA) and structural equation modelling (SEM) conducted separately for urban and rural samples to 

examine group-specific patterns. Finally, measurement invariance testing was performed to validate cross-group 

comparisons. This sequential analytical approach ensured rigorous examination of the measurement model before 

proceeding to structural analysis, thereby establishing a reliable foundation for comparing EV adoption patterns between 

urban and rural population. 

Exploratory Factor Analysis (EFA) serves as an essential preliminary step in scale development and validation, 

identifying the underlying factor structure of measured variables and examining their relationships. This method helps 

researchers understand how different items relate to their hypothesized constructs and verify the dimensionality of 

theoretical concepts. In this study, EFA was performed on the total sample (N = 3,595) using Principal Component 

Analysis with Varimax rotation. Prior to factor extraction, data suitability was assessed using the Kaiser-Meyer-Olkin 

(KMO) measure of sampling adequacy (threshold > 0.5) and Bartlett's test of sphericity (p < 0.05). The factor extraction 

process followed established criteria: factor loadings greater than 0.5, eigenvalues exceeding 1.0, and no significant 

cross-loadings (< 0.4) across factors. Items were allocated to factors based on their highest loading value, with a 

minimum explained variance threshold of 60% for the extracted factors. This exploratory phase served to validate the 

measurement instrument's factorial structure and confirm the distinctiveness of constructs such as environmental 

identity, personal innovativeness, and other theoretical components in the integrated model [30]. 
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Figure 2. Data analysis procedures 

Confirmatory Factor Analysis (CFA) represents a theory-driven confirmatory technique that examines whether the 

measured variables reliably reflect the hypothesized latent constructs. Unlike EFA, CFA tests a priori hypotheses about 

relations between observed variables and their underlying latent constructs, providing a more stringent evaluation of 

construct validity. In this study, CFA was conducted separately for urban (n = 2,311) and rural (n = 1,284) samples to 

validate the measurement model structure. Each target construct's convergent validity was assessed through examination 

of standardized factor loadings (λ) exceeding 0.7, Average Variance Extracted (AVE) greater than 0.5, and Composite 

Reliability (CR) exceeding 0.7. Discriminant validity was evaluated by comparing the square root of AVE with inter-

construct correlations. The model's overall fit was assessed using multiple indices: chi-square per degree of freedom 

(χ²/df < 5.0), Comparative Fit Index (CFI > 0.95), Tucker-Lewis Index (TLI > 0.95), Root Mean Square Error of 

Approximation (RMSEA < 0.08), and Standardized Root Mean Square Residual (SRMR < 0.08). These indices provided 

complementary information about model fit, with CFI and TLI indicating comparative fit, RMSEA assessing parsimony-

adjusted fit, and SRMR showing absolute fit. Modification indices were consulted to identify potential model 

improvements while maintaining theoretical consistency [75]. 

Structural Equation Modelling (SEM) integrates measurement model validation with structural relationship testing. 

In this study, SEM was applied separately to urban (n = 2,311) and rural (n = 1,284) samples using Maximum Likelihood 

estimation. The measurement model represents the relationship between observed variables and latent constructs: 

𝑦 = Λ𝜂 + 𝜖  (1) 

where y represents the observed variables (questionnaire responses), Λ is the matrix of factor loadings, η represents the 

latent variables (Environmental Identity, Personal Innovativeness, etc.), and ϵ represents measurement errors. For 

example, the measurement model for Behavioral Intention (BI) can be expressed as: 

𝐵𝐼𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 = 𝜆1 𝐵𝐼𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 + 𝜖𝐵𝐼  (2) 

The structural model, examining relationships between latent constructs, is represented by: 

𝜂 = 𝐵𝜂 + Γ𝜉 + ζ  (3) 

where B represents the matrix of path coefficients (β) between endogenous variables, Γ represents coefficients between 

exogenous and endogenous variables, ξ represents exogenous variables, and ζ represents structural errors. For instance, 

the relationship between Perceived Usefulness (PU) and Behavioral Intention (BI) (H13) is expressed as: 

𝐵𝐼 = 𝛽𝑃𝑈 × 𝑃𝑈 + 𝜁𝐵𝐼   (4) 
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Model estimation involved: (1) parameter estimation using maximum likelihood, (2) assessment of critical ratios            

(t > 1.96, p < 0.05), (3) examination of standardized residuals (threshold < |2.58|), and (4) evaluation of modification 

indices. Model fit was assessed using χ²/df, CFI, TLI, RMSEA, and SRMR indices. 

Measurement invariance testing assesses whether the EV adoption measurement model maintains consistent 

meaning across urban and rural populations. In this study, two levels of measurement invariance were examined: 

• Simultaneous Model Testing (Model 3): This baseline model tests whether the factor structure of EV adoption 

constructs (Environmental Identity, Personal Innovativeness, Social Network Influence, etc.) is conceptualized 

similarly across urban and rural groups. The model allows all parameters to be freely estimated across groups, 

establishing the basic requirement that both populations understand the EV adoption constructs in the same way. 

• Parameter Equality Testing (Model 4): This constrained model examines whether factor loadings, intercepts, and 

structural paths remain equivalent across urban and rural populations. This level tests whether: The relationship 

between observed items and their constructs (λ) is similar. The baseline levels of EV adoption constructs are 

comparable and the structural relationships (β) between EV adoption factors operate similarly [34]. 

The comparison between these models tests the hypothesis: H0: The measurement and structural parameters are 

equivalent across urban and rural populations H1: The measurement and structural parameters differ between urban and 

rural populations 

The hypothesis is tested using the chi-square difference test (Δχ²), where a significant difference indicates that urban 

and rural populations conceptualize or respond to EV adoption factors differently. Model fit is assessed using established 

criteria: χ²/df, CFI, TLI, RMSEA, and SRMR [34]. 

4. Results 

The descriptive statistics for all measurement items are presented in Table A1 (Appendix), providing mean values 

(M), standard deviations (SD), skewness (SK), and kurtosis (KU) for both urban (n = 2,311) and rural (n = 1,284) 

samples. Item analysis revealed distinct patterns between urban and rural respondents across all constructs. For the urban 

sample, mean scores ranged from 4.289 to 5.045 (on a 7-point scale), with standard deviations between 1.371 and 2.027. 

Skewness values ranged from -0.740 to -0.416, and kurtosis values from -0.977 to 0.471, indicating approximately 

normal distributions. The rural sample demonstrated consistently higher mean scores, ranging from 5.027 to 5.454, with 

standard deviations between 1.278 and 1.619. Skewness values (-1.257 to -0.833) and kurtosis values (0.118 to 1.575) 

for the rural sample also indicated acceptable normality. Reliability analysis using Cronbach's alpha showed strong 

internal consistency across all constructs, with values ranging from 0.880 to 0.950. Environmental Identity demonstrated 

high reliability (α = 0.925), followed by Perceived Usefulness (α = 0.946), Perceived Ease of Use (α = 0.936), and 

Behavioral Intention to Use (α = 0.950). These reliability coefficients exceed the recommended threshold of 0.7, 

indicating strong measurement consistency. 

The measurement model was evaluated using Confirmatory Factor Analysis (CFA) for both urban and rural samples, 

with results presented in Table 3. For the urban sample (n = 2,311), standardized factor loadings (λ) ranged from 0.761 

to 0.957, exceeding the threshold of 0.7. The squared multiple correlations (R²) ranged from 0.579 to 0.916, indicating 

substantial explained variance in the observed variables. The Average Variance Extracted (AVE) values ranged from 

0.549 to 0.829, surpassing the 0.5 threshold, while Composite Reliability (CR) values ranged from 0.785 to 0.936, 

exceeding the 0.7 benchmark. For the rural sample (n = 1,284), standardized factor loadings (λ) ranged from 0.728 to 

0.932, with R² values between 0.530 and 0.869. The AVE values ranged from 0.585 to 0.899, and CR values from 0.809 

to 0.964. All t-values were significant at p < 0.001 for both samples, indicating strong statistical significance of the 

parameter estimates. The measurement model demonstrated good fit indices for both urban (χ²/df = 4.756, CFI = 0.987, 

TLI = 0.982, SRMR = 0.029, RMSEA = 0.040) and rural (χ²/df = 3.042, CFI = 0.984, TLI = 0.978, SRMR = 0.041, 

RMSEA = 0.040) samples. 

The measurement invariance testing results are presented in Table 4, demonstrating the comparison between 

urban and rural models through a two-step analysis. The simultaneous model (Model 3) established the baseline fit 

with χ² = 2530.235 (df = 638), yielding satisfactory fit indices (CFI = 0.985, TLI = 0.980, SRMR = 0.035, RMSEA 

= 0.041 [90% CI = 0.039-0.042]). The constrained model (Model 4), with factor loadings, intercepts, and structural 

paths held equal across groups, produced χ² = 2940.291 (df = 688), maintaining acceptable fit indices (CFI = 0.983, 

TLI = 0.978, SRMR = 0.061, RMSEA = 0.043 [90% CI = 0.041-0.044]). The chi-square difference test between 

Models 3 and 4 yielded Δχ² = 410.056 (Δdf = 50) with p < 0.001, indicating significant differences in measurement 

and structural parameters between urban and rural groups. This significant difference supports separate analysis of 

the structural relationships for urban and rural samples, suggesting that the EV adoption process operates differently 

across these populations. 
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Table 3. Parameters estimation of measurement model 

Constructs and indicators 
Urban area (n = 2,311) Rural area (n = 1,284) 

λ t-value R2 λ t-value R2 

Environmental identity (AVE = 0.753, CR = 0.901) (AVE = 0.805, CR = 0.925) 

ENV1 0.881 135.727** 0.776 0.862 81.809** 0.744 

ENV2 0.911 168.290** 0.830 0.883 91.783** 0.779 

ENV3 0.900 167.510** 0.811 0.858 89.595** 0.737 

Personal innovativeness (AVE = 0.591, CR = 0.812) (AVE = 0.661, CR = 0.854) 

PIN1 0.844 93.949** 0.712 0.790 56.892** 0.624 

PIN2 0.805 84.712** 0.647 0.771 53.171** 0.595 

PIN3 0.789 79.593** 0.623 0.744 48.822** 0.553 

Social network influence (AVE = 0.713, CR = 0.882) (AVE = 0.779, CR = 0.913) 

SOC1 0.893 156.428** 0.797 0.857 82.295** 0.734 

SOC2 0.865 119.680** 0.748 0.841 68.871** 0.707 

SOC3 0.889 155.193** 0.790 0.835 76.073** 0.697 

Trialability (AVE = 0.693, CR = 0.872) (AVE = 0.686, CR = 0.867) 

TRI1 0.814 53.008** 0.662 0.821 38.936** 0.674 

TRI2 0.832 54.023** 0.692 0.831 39.436** 0.691 

TRI3 0.838 52.218** 0.702 0.846 39.740** 0.715 

Subjective norm (AVE = 0.657, CR = 0.851) (AVE = 0.769, CR = 0.909) 

SUN1 0.893 59.374** 0.797 0.848 33.891** 0.720 

SUN2 0.828 53.180** 0.685 0.733 28.659** 0.537 

SUN3 0.907 60.686** 0.823 0.845 33.082** 0.713 

Perceived behavioral control (AVE = 0.549, CR = 0.785) (AVE = 0.585, CR = 0.809) 

PBC1 0.765 39.510** 0.585 0.745 23.917** 0.555 

PBC2 0.768 39.882** 0.590 0.749 24.364** 0.562 

PBC3 0.761 39.270** 0.579 0.728 23.983** 0.530 

Perceived ease of use (AVE = 0.781, CR = 0.915) (AVE = 0.851, CR = 0.945) 

PEU1 0.925 253.031** 0.856 0.886 118.304** 0.784 

PEU2 0.911 219.906** 0.830 0.884 120.104** 0.782 

PEU3 0.932 270.960** 0.869 0.882 118.338** 0.778 

Perceived usefulness (AVE = 0.829, CR = 0.936) (AVE = 0.899, CR = 0.964) 

PUF1 0.945 208.000** 0.893 0.897 95.268** 0.805 

PUF2 0.951 322.304** 0.904 0.922 154.680** 0.851 

PUF3 0.948 311.128** 0.898 0.913 143.675** 0.833 

Attitude toward electric vehicles (AVE = 0.718, CR = 0.884) (AVE = 0.755, CR = 0.902) 

ATT1 0.834 117.388** 0.695 0.818 87.499** 0.670 

ATT2 0.889 151.914** 0.790 0.868 91.413** 0.753 

ATT3 0.882 147.475** 0.777 0.856 86.231** 0.733 

Behavioral intention to use (AVE = 0.802, CR = 0.924) (AVE = 0.877, CR = 0.955) 

BIU1 0.907 211.005** 0.823 0.848 100.479** 0.719 

BIU2 0.945 243.425** 0.893 0.905 105.071** 0.820 

BIU3 0.957 303.494** 0.916 0.932 136.269** 0.869 

Note: ** Significant at α = 0.001. λ Denotes Standardized Estimates. 
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Table 4. Model fit indices for invariance test 

Description χ2 df χ2/df CFI TLI SRMR RMSEA (90% CI) Δχ2 Δdf p-value 

Individual Groups:           

Model 1: Urban area 1493.393 314 4.756 0.987 0.982 0.029 
0.040 

(0.038-0.042) 
   

Model 2: Rural area 967.369 318 3.042 0.984 0.978 0.041 
0.040 

(0.037-0.043) 
   

Measurement of Invariance:           

Model 3: Simultaneous model 2530.235 638 3.966 0.985 0.980 0.035 
0.041 

(0.039-0.042) 
   

Model 4: Factor loading, intercepts, 

structural paths held equal across groups 
2940.291 688 4.274 0.983 0.978 0.061 

0.043 

(0.041-0.044) 
410.06 50 <0.01 

The results of hypotheses testing through Structural Equation Modelling are presented in Table 5 and illustrated 

in Figures 3 and 4. All hypothesized relationships demonstrated statistical significance at p < 0.001 across both 

urban and rural models. In the urban model (n = 2,311), the structural relationships demonstrated good model fit (χ² 

= 1493.393, df = 314, χ²/df = 4.756, CFI = 0.987, TLI = 0.982, SRMR = 0.029, RMSEA = 0.040). The strongest 

path coefficient was observed for the relationship between Perceived Ease of Use and Perceived Usefulness (β = 

0.631, t = 62.910), followed by Perceived Usefulness to Behavioral Intention to Use (β = 0.445, t = 16.133). 

Environmental Identity to Attitude toward Electric Vehicles showed a moderate effect (β = 0.279, t = 10.856). The 

rural model (n = 1,284) also demonstrated satisfactory fit indices (χ² = 967.369, df = 318, χ²/df = 3.042, CFI = 0.984, 

TLI = 0.978, SRMR = 0.041, RMSEA = 0.040). The strongest relationship was found between Perceived Ease of 

Use and Perceived Usefulness (β = 0.587, t = 35.528), followed by Perceived Usefulness to Behavioral Intention to 

Use (β = 0.353, t = 23.494). Environmental Identity to Perceived Ease of Use showed a notable effect (β = 0.350, t 

= 9.322). All sixteen hypotheses (H1-H16) were supported in both models, with varying magnitudes of path 

coefficients between urban and rural samples. 

Table 5. Results of hypotheses testing (SEM) 

Hypothesis path 
Urban area Rural area 

β t-value Result β t-value Result 

H1: Environmental identity → Perceived usefulness 0.156 49.642** Accepted 0.172 32.233** Accepted 

H2: Environmental identity → Attitude toward electric vehicles 0.279 10.856** Accepted 0.108 5.505** Accepted 

H3: Environmental identity → Perceived ease of use 0.291 10.787** Accepted 0.350 9.322** Accepted 

H4: Personal innovativeness → Perceived usefulness 0.153 44.892** Accepted 0.175 28.710** Accepted 

H5: Personal innovativeness → Attitude toward electric vehicles 0.157 3.815** Accepted 0.216 32.047** Accepted 

H6: Social network influence → Attitude toward electric vehicles 0.164 5.042** Accepted 0.218 35.708** Accepted 

H7: Social network influence → Perceived ease of use 0.300 11.112** Accepted 0.208 5.412** Accepted 

H8: Trialability → Perceived ease of use 0.222 36.264** Accepted 0.256 26.370** Accepted 

H9: Perceived ease of use → Perceived usefulness 0.631 62.910** Accepted 0.587 35.528** Accepted 

H10: Perceived ease of use → Attitude toward electric vehicles 0.263 50.329** Accepted 0.244 39.718** Accepted 

H11: Perceived ease of use → Behavioral intention to use 0.135 4.808** Accepted 0.172 38.269** Accepted 

H12: Perceived usefulness → Attitude toward electric vehicles 0.174 9.840** Accepted 0.248 39.201** Accepted 

H13: Perceived usefulness → Behavioral intention to use 0.445 16.133** Accepted 0.353 23.494** Accepted 

H14: Subjective norm → Behavioral intention to use 0.161 42.153** Accepted 0.157 24.971** Accepted 

H15: Perceived behavioral control → Behavioral intention to use 0.118 32.071** Accepted 0.131 20.076** Accepted 

H16: Attitude toward electric → Behavioral intention to use 0.121 50.960** Accepted 0.141 38.901** Accepted 

Note: → regression on, ** significant at α = 0.001. β denotes Standardized estimates. 
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Figure 3. Structural equation modelling for electric vehicles adoption intention in urban areas 
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Figure 4. Structural equation modelling for electric vehicles adoption intention in rural areas 
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To further illustrate the differences in relationship strengths between urban and rural models, Figure 5 presents a 

comparative visualization of standardized path coefficients (β) across all hypotheses. The chart clearly demonstrates the 

distinct patterns in EV adoption mechanisms between geographical contexts. Notably, urban areas (orange bars) show 

substantially stronger effects in system-related relationships, particularly in H9 (Perceived ease of use → Perceived 

usefulness, β = 0.631) and H13 (Perceived usefulness → Behavioral intention to use, β = 0.445). In contrast, rural areas 

(purple bars) demonstrate stronger effects in relationships involving individual characteristics, such as H3 

(Environmental identity → Perceived ease of use, β = 0.350) and H5 (Personal innovativeness → Attitude toward 

electric vehicles, β = 0.216). 

 

Figure 5. Comparison of standardized path coefficients (β) between urban and rural areas 

5. Discussion 

5.1. Overall Comparison of Urban and Rural Models 

Analysis of the structural equation modelling results reveals distinct patterns in the strength of relationships between 

urban and rural contexts, providing comprehensive insights into how EV adoption mechanisms differ across 

geographical settings. The findings demonstrate that the pathways to EV adoption vary significantly between urban and 

rural populations, with different factors showing stronger influences in each context. 

In rural areas, relationships involving individual characteristics and attitudes demonstrated notably stronger effects. 

Personal innovativeness exhibited more substantial influence on both attitude toward electric vehicles (β = 0.216 vs. 

0.157) and perceived usefulness (β = 0.175 vs. 0.153). Similarly, environmental identity showed stronger effects on 

technical perceptions, particularly in its relationship with perceived ease of use (β = 0.350 vs. 0.291) and perceived 

usefulness (β = 0.172 vs. 0.156). These stronger effects suggest that rural EV adoption relies more heavily on individual 

characteristics and personal predispositions, possibly compensating for limited infrastructure and exposure to EVs [49]. 

Conversely, urban areas demonstrated stronger effects in relationships involving system interaction and utility. The 

core TAM relationships showed particularly robust effects in urban settings, with perceived ease of use more strongly 

influencing perceived usefulness (β = 0.631 vs. 0.587), and perceived usefulness having a greater impact on behavioral 

intention to use (β = 0.445 vs. 0.353). Environmental identity also showed a stronger influence on attitude toward electric 

vehicles in urban areas (β = 0.279 vs. 0.108), as did social network influence on perceived ease of use (β = 0.300 vs. 

0.208). These patterns suggest that urban adoption is more driven by system-related perceptions and utility 

considerations, likely due to better infrastructure support and greater EV exposure [44]. 

5.2. Discussing Hypothesizes  

H1, which proposed that environmental identity positively affects perceived usefulness of EVs, was supported in 

both urban (β = 0.156) and rural (β = 0.172) contexts, with rural areas showing a marginally stronger relationship. This 

finding reveals three key insights about the role of environmental identity in shaping perceptions of EV utility. The 

stronger effect in rural areas (β = 0.172) suggests that rural residents' environmental consciousness more powerfully 

influences their perception of EVs' practical benefits. This could be attributed to several factors. First, rural residents 
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typically have more direct exposure to environmental changes through their closer connection to agricultural activities 

and natural landscapes, making them more sensitive to environmental benefits [76]. Second, rural areas often experience 

more visible effects of vehicle emissions due to less atmospheric dispersion compared to urban areas with higher 

buildings and better ventilation, potentially making environmental benefits more tangible [77]. Third, the longer average 

travel distances in rural areas might make rural residents more conscious of their vehicles' environmental impact, leading 

them to associate environmental identity more strongly with vehicle utility Jiang et al. [20]. The urban sample's slightly 

lower coefficient (β = 0.156) might reflect the more complex decision-making environment in cities. Urban residents, 

while environmentally conscious, might balance environmental benefits against other practical considerations such as 

parking availability and charging infrastructure [9]. This finding aligns with Li et al. [47], who found that while pro-

environmental motives are frequently claimed, they operate alongside other practical considerations in urban settings.  

H2, positing that environmental identity positively affects attitude toward EVs, revealed a notable contrast between 

urban (β = 0.279) and rural (β = 0.108) populations, with urban areas demonstrating a substantially stronger relationship. 

This disparity in effect sizes provides several meaningful insights into how environmental identity shapes attitudes 

toward EVs across different geographical contexts. The stronger effect in urban areas (β = 0.279) can be attributed to 

multiple factors. First, urban residents typically have greater exposure to environmental education and sustainability 

campaigns, which may strengthen the connection between their environmental identity and attitudes toward eco-friendly 

technologies [36]. Second, urban areas often experience more visible air pollution and traffic congestion, making the 

environmental benefits of EVs more immediately apparent and personally relevant [43, 78]. Third, the presence of more 

EVs in urban areas provides greater opportunities for positive attitude formation through observation and peer influence 

[51], who found that adoption pioneers in urban areas maintain more stable, positive attitudes toward EVs. The weaker 

relationship in rural areas (β = 0.108) might be explained by several contextual factors. First, rural residents may 

prioritize practical utility over environmental considerations due to their unique transportation needs, such as longer 

travel distances and the need for vehicles with higher carrying capacity [49]. Second, the limited visibility of EVs in 

rural areas might weaken the connection between environmental identity and attitudes toward EVs [79]. Third, the 

current lack of electric pickup trucks, which are popular in rural areas (22.3% of rural respondents use pickup trucks, 

see Table 2) [80], might create a disconnect between environmental identity and EV attitudes due to perceived 

incompatibility with rural lifestyle needs.  

H3, which hypothesized that environmental identity positively affects perceived ease of use of EVs, showed 

significant effects in both contexts but with stronger influence in rural areas (β = 0.350) compared to urban areas (β = 

0.291). This difference in effect sizes reveals important insights about how environmental identity influences perceptions 

of EV usability across different geographical settings. The stronger effect in rural areas (β = 0.350) can be explained by 

several mechanisms. First, individuals with strong environmental identity in rural areas might be more motivated to 

overcome perceived usage barriers, viewing potential difficulties as challenges worth addressing for environmental 

benefits [81]. Second, rural residents typically have more experience adapting to technological limitations due to 

infrastructure constraints, possibly making them more resilient in facing new technology adoption challenges [16]. 

Third, the higher dependence on personal vehicles in rural areas might motivate environmentally conscious individuals 

to invest more effort in understanding and mastering EV operation, despite potential infrastructure limitations [40]. The 

relatively lower but still substantial effect in urban areas (β = 0.291) might reflect different underlying dynamics. First, 

urban residents' environmental identity might have less influence on perceived ease of use because they have more 

external support systems and infrastructure, making ease of use less dependent on personal environmental commitment 

[44]. Second, the more complex urban driving environment might introduce additional considerations beyond 

environmental concerns, such as parking constraints and traffic congestion, which could moderate the relationship 

between environmental identity and perceived ease of use [82]. Third, the greater availability of alternative 

transportation options in urban areas might reduce the pressure to master EV usage, even among environmentally 

conscious individuals [20].  

H4, which proposed that personal innovativeness positively affects perceived usefulness of EVs, was supported with 

similar magnitude effects in both urban (β = 0.153) and rural (β = 0.175) contexts, with rural areas showing a marginally 

stronger relationship. This finding reveals several important insights about how innovation orientation influences 

perceptions of EV utility across different geographical settings. The stronger effect in rural areas (β = 0.175) can be 

attributed to multiple mechanisms. First, innovative rural residents might be more proactive in seeking and processing 

information about EV benefits, compensating for the limited direct exposure to EVs in their environment [39]. Second, 

their innovative predisposition might enable better appreciation of EVs' advanced technological features, such as 

regenerative braking and smart charging capabilities, even without extensive first-hand experience [83, 84]. Third, 

innovative individuals in rural areas might be better at recognizing the long-term cost benefits of EVs, particularly given 

the typically longer travel distances in rural settings that could maximize fuel cost savings [44]. The slightly lower but 

significant effect in urban areas (β = 0.153) reflects different underlying dynamics. First, the greater availability of EV 

information and exposure in urban environments might reduce the relative importance of personal innovativeness in 

recognizing EV benefits [51]. Second, urban residents might rely more on observable evidence and peer experiences 

rather than their innovative predisposition when evaluating EV usefulness [85]. Third, the complex urban transportation 

environment might introduce additional considerations beyond technological innovation, such as parking availability 

and charging infrastructure, moderating the relationship between personal innovativeness and perceived usefulness [20].  
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H5, suggesting that personal innovativeness positively affects attitude toward EVs, revealed a notably stronger 

relationship in rural areas (β = 0.216) compared to urban areas (β = 0.157). This differential impact provides 

important insights into how innovation orientation shapes attitudes toward EVs across different geographical 

contexts. The stronger effect in rural areas (β = 0.216) can be explained through several mechanisms. First, in areas 

with limited EV presence, innovative individuals might form positive attitudes through their greater willingness to 

embrace novel technologies despite uncertainty [47]. Second, innovative rural residents might be more likely to 

challenge traditional vehicle preferences, particularly given that 22.3% of rural respondents use pickup trucks while 

EV alternatives are not yet available in this segment [86]. Third, the scarcity of EVs in rural areas might make 

personal innovativeness more crucial in attitude formation, as innovative individuals tend to form positive attitud es 

toward new technologies even with limited social validation [32]. Fourth, innovative rural residents might view the 

current limitations of EV infrastructure as temporary barriers rather than permanent obstacles, leading to more 

positive attitudes despite practical challenges. The moderate effect in urban areas (β = 0.157) reflects a different 

attitudinal formation process. First, the greater visibility of EVs in urban environments might reduce the role of 

personal innovativeness in attitude formation, as attitudes can be shaped more by direct observation and peer 

experiences 51]. Second, urban residents might form attitudes based on a broader range of factors beyond innovation, 

such as environmental concerns and practical considerations like parking availability [87]. Third, the higher 

availability of information and exposure to EVs in urban areas might make personal innovativeness less critical in 

overcoming uncertainty and forming positive attitudes [88].  

H6, proposing that social network influence positively affects attitude toward EVs, demonstrated significant effects 

with notably different magnitudes between rural (β = 0.218) and urban (β = 0.164) populations. This variation in effect 

sizes reveals important insights about how social dynamics influence EV attitudes across different geographical 

contexts. The stronger effect in rural areas (β = 0.218) can be explained through several mechanisms. First, rural 

communities typically maintain stronger and more tight-knit social networks, making social influence more potent in 

shaping attitudes toward new technologies [42]. Second, the limited direct exposure to EVs in rural areas might increase 

reliance on social networks for information and opinion formation, making word-of-mouth and shared experiences 

particularly influential [89]. Third, rural residents might place greater trust in local social networks due to shared 

understanding of specific rural transportation needs and challenges [90]. Fourth, the higher perceived risk of EV 

adoption in areas with limited infrastructure might increase the importance of social validation in attitude formation, as 

residents look to their social networks for reassurance and practical advice [91]. The moderate effect in urban areas (β 

= 0.164) reflects different social dynamics. First, urban residents typically have access to more diverse information 

sources about EVs, potentially reducing their reliance on social networks for attitude formation [92]. Second, the greater 

visibility of EVs in urban environments might allow for more independent attitude formation based on direct observation 

rather than social influence [93]. Third, urban social networks tend to be more diffuse and heterogeneous, possibly 

diluting the impact of social influence on EV attitudes [74]. Fourth, the higher availability of charging infrastructure and 

support services in urban areas might reduce the need for social network validation in forming attitudes toward EVs. 

These findings extend previous research by Higueras-Castillo et al. [36], who identified the importance of social 

influence in EV adoption decisions.  

H7, hypothesizing that social network influence positively affects perceived ease of use of EVs, revealed a stronger 

effect in urban areas (β = 0.300) compared to rural areas (β = 0.208). This notable difference in effect sizes provides 

important insights into how social networks influence perceptions of EV usability across different geographical settings. 

The stronger effect in urban areas (β = 0.300) can be attributed to several mechanisms. First, urban social networks are 

more likely to include existing EV users, providing direct, experiential knowledge about vehicle operation and charging 

processes [94]. Second, the higher density of urban populations creates more opportunities for peer learning and 

knowledge sharing about EV usage, particularly regarding charging locations and optimal driving practices [95]. Third, 

urban social networks might include more technologically savvy individuals who can offer practical advice about EV 

operation and troubleshooting [96]. Fourth, the presence of EV dealerships and service centres in urban areas might 

facilitate the spread of technical knowledge through social networks, enhancing perceived ease of use through shared 

experiences and solutions [78]. The moderate effect in rural areas (β = 0.208) reflects different social network dynamics. 

First, rural social networks might have fewer EV users, limiting the transfer of first-hand operational knowledge [48]. 

Second, the geographical dispersion of rural populations might reduce opportunities for regular interaction and 

knowledge sharing about EV usage [97]. Third, rural social networks might focus more on concerns about charging 

infrastructure limitations rather than actual usage experiences, potentially moderating their influence on perceived ease 

of use [40]. Fourth, the limited availability of EV service centres in rural areas might restrict the technical knowledge 

circulating within social networks, affecting perceptions of usage difficulty.  

H8, proposing that trialability positively affects perceived ease of use of EVs, demonstrated significant effects with 

different magnitudes between rural (β = 0.256) and urban (β = 0.222) populations. This variation in effect sizes provides 

crucial insights into how hands-on experience influences perceptions of EV usability across different geographical 

contexts. The stronger effect in rural areas (β = 0.256) can be explained through several mechanisms. First, given the 

limited exposure to EVs in rural areas, direct trial experiences might have a more profound impact on reducing 

uncertainty about EV operation and charging processes [98, 99]. Second, rural residents might value hands-on 

experience more heavily due to their practical orientation and the need to verify vehicle capability for longer travel 

distances [44]. Third, trial experiences might be particularly influential in rural areas where charging infrastructure is 
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limited, as it allows potential adopters to understand how to manage range anxiety and plan charging stops effectively 

[40]. Fourth, the higher proportion of pickup truck users in rural areas (22.3% versus 11.8% in urban areas) might make 

trialability especially important for understanding how EVs can meet their specific usage requirements [100]. The 

moderate effect in urban areas (β = 0.222) reflects different contextual factors. First, urban residents might have more 

diverse sources of information about EV usage, reducing their reliance on direct trial experiences [13]. Second, the 

greater visibility of EVs in urban environments might provide vicarious learning opportunities, complementing direct 

trial experiences [101]. Third, better access to charging infrastructure in urban areas might make EV operation seem less 

challenging even before trial experiences [33]. Fourth, urban residents might have more opportunities for casual 

exposure to EVs through car-sharing services or test drives, potentially diminishing the impact of any single trial 

experience.  

H9, hypothesizing that perceived ease of use positively affects perceived usefulness of EVs, revealed the strongest 

effect among all hypothesized relationships, with notably higher magnitude in urban areas (β = 0.631) compared to rural 

areas (β = 0.587). This substantial difference in effect sizes provides critical insights into how perceptions of usability 

influence the recognition of EV benefits across different geographical contexts. The stronger effect in urban areas (β = 

0.631) can be attributed to several mechanisms. First, the comprehensive charging infrastructure in urban areas might 

strengthen the connection between ease of use and perceived benefits, as users can more readily translate operational 

convenience into practical utility [26]. Second, urban driving patterns, characterized by shorter trips and frequent stops, 

might make the relationship between easy operation and perceived benefits more apparent, particularly regarding 

regenerative braking and energy efficiency [1, 41, 100]. Third, the availability of technical support and service centres 

in urban areas might enhance users' confidence in operating EVs, leading to better appreciation of their benefits [60]. 

Fourth, the higher density of charging stations in urban areas might make it easier for users to recognize how operational 

simplicity translates into practical advantages, particularly in terms of convenience and cost savings [102]. The relatively 

lower but still substantial effect in rural areas (β = 0.587) reflects different underlying dynamics. First, the limited 

charging infrastructure in rural areas might moderate how easily perceived usability translates into recognized benefits, 

despite users understanding the operation [40]. Second, longer travel distances in rural areas might create additional 

considerations beyond ease of use, such as range anxiety and charging planning, affecting the perception of practical 

benefits [27]. Third, the specific vehicle needs of rural residents, such as cargo capacity and all-terrain capability, might 

introduce additional factors mediating the relationship between ease of use and perceived usefulness [80]. Fourth, the 

less developed EV ecosystem in rural areas might make it harder for users to fully realize the benefits of EVs even when 

they find them easy to use.  

H10, proposing that perceived ease of use positively affects attitude toward EVs, demonstrated significant effects 

with slightly different magnitudes between urban (β = 0.263) and rural (β = 0.244) populations. This variation in effect 

sizes reveals important insights about how perceptions of usability shape attitudes toward EVs across different 

geographical contexts. The stronger effect in urban areas (β = 0.263) can be explained through several mechanisms. 

First, the more developed charging infrastructure in urban areas might allow easier operation to more directly translate 

into positive attitudes, as users face fewer barriers to regular EV use [25]. Second, urban residents' typically shorter 

travel distances might make operational ease more salient in attitude formation, as they encounter fewer range-related 

challenges [103, 104]. Third, the availability of technical support services in urban areas might enhance the relationship 

between perceived ease of use and attitudes by reducing concerns about potential operational difficulties [105]. Fourth, 

the higher visibility of successful EV usage in urban environments might reinforce the connection between operational 

simplicity and positive attitudes [27]. The slightly lower effect in rural areas (β = 0.244) reflects different contextual 

factors. First, rural residents might weigh other considerations more heavily in attitude formation, such as vehicle 

capability and range, even when they perceive EVs as easy to use [52]. Second, the limited charging infrastructure in 

rural areas might moderate how perceived ease of use translates into positive attitudes, as operational simplicity alone 

may not overcome infrastructure-related concerns [106]. Third, the specific transportation needs of rural residents, such 

as longer travel distances and varied terrain, might introduce additional factors in attitude formation beyond operational 

ease [107]. Fourth, the less developed EV ecosystem in rural areas might create a gap between perceived ease of use 

and overall attitudes, as practical implementation challenges remain despite understanding EV operation. These findings 

extend previous research by Zhang et al. [26], who found that perceived ease of use significantly influences consumers' 

purchase intentions.  

H11, suggesting that perceived ease of use positively affects behavioral intention to use EVs, revealed a stronger 

effect in rural areas (β = 0.172) compared to urban areas (β = 0.135). This difference in effect sizes provides important 

insights into how perceptions of usability directly influence adoption intentions across different geographical contexts. 

The stronger effect in rural areas (β = 0.172) can be attributed to several mechanisms. First, given the limited charging 

infrastructure and support services in rural areas, the perception that EVs are easy to use might play a more crucial role 

in building confidence for adoption [14]. Second, rural residents might place greater emphasis on operational simplicity 

due to the need for self-reliance in areas with fewer technical support options [79]. Third, the longer travel distances 

typical in rural areas might make perceived ease of use more critical in adoption decisions, as users need confidence in 

managing charging and range over extended journeys [63]. The lower effect in urban areas (β = 0.135) reflects different 

contextual influences. First, urban residents might have more factors influencing their adoption intentions beyond ease 

of use, such as environmental concerns and social influence [37]. Second, the better availability of charging 

infrastructure and technical support in urban areas might reduce the importance of perceived ease of use in adoption 
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decisions [17, 108]. Third, the shorter travel distances and more predictable usage patterns in urban environments might 

make operational ease less critical in the decision to adopt [109]. Fourth, the greater availability of alternative 

transportation options in urban areas might reduce the pressure to master EV operation as the sole transportation solution.  

H12, proposing that perceived usefulness positively affects attitude toward EVs, demonstrated notably different 

effects between rural (β = 0.248) and urban (β = 0.174) populations. This variation in effect sizes reveals important 

insights about how the recognition of EV benefits shapes attitudes across different geographical contexts. The stronger 

effect in rural areas (β = 0.248) can be explained through several mechanisms. First, rural residents might form stronger 

attitudes based on perceived usefulness due to their typically higher vehicle dependency and longer travel distances, 

making practical benefits more salient in attitude formation [100]. Second, the potential for greater fuel cost savings 

over longer rural travel distances might strengthen the relationship between perceived usefulness and attitudes [110]. 

Third, rural residents might place greater emphasis on utility aspects when forming attitudes due to their more practical 

orientation toward vehicle use, particularly given their higher reliance on vehicles for both personal and commercial 

purposes [49]. The lower effect in urban areas (β = 0.174) reflects different underlying dynamics. First, urban residents 

might have more diverse factors influencing their attitudes toward EVs, such as environmental concerns and social 

status, reducing the relative importance of perceived usefulness [26]. Second, the availability of alternative 

transportation options in urban areas might make practical benefits less central to attitude formation [63]. Third, shorter 

urban travel distances might make some EV benefits, such as fuel cost savings, less prominent in attitude formation [5]. 

Fourth, the better developed charging infrastructure in urban areas might shift attitude formation focus from practical 

utility to other considerations such as environmental impact or technological innovation. These findings extend previous 

research by Manutworakit & Choocharukul [13], who found that performance expectancy significantly influences 

purchase intention for EVs in Thailand. The current study demonstrates that this influence operates differently across 

geographical contexts, with rural areas showing a stronger connection between perceived usefulness and attitudes, 

possibly due to their greater focus on practical vehicle utility. 

H13, suggesting that perceived usefulness positively affects behavioral intention to use EVs, revealed a notably 

stronger effect in urban areas (β = 0.445) compared to rural areas (β = 0.353). This substantial difference in effect sizes 

provides crucial insights into how the recognition of EV benefits directly influences adoption intentions across different 

geographical contexts. The stronger effect in urban areas (β = 0.445) can be attributed to several mechanisms. First, 

urban residents might more readily translate perceived benefits into adoption intentions due to better supporting 

infrastructure that makes these benefits immediately realizable [111]. Second, the higher density of charging stations in 

urban areas might strengthen the relationship between perceived usefulness and adoption intention by reducing range 

anxiety concerns [112]. Third, urban driving patterns, characterized by frequent short trips and stop-and-go traffic, might 

make EV benefits such as regenerative braking and lower operating costs more immediately apparent and influential in 

adoption decisions [74]. Fourth, the presence of more EVs in urban areas might provide greater validation of perceived 

benefits, strengthening their influence on adoption intentions [5, 113]. The relatively lower effect in rural areas (β = 

0.353) reflects different contextual challenges. First, despite recognizing EV benefits, rural residents might face more 

practical barriers to translating this perception into adoption intentions, such as limited charging infrastructure [114]. 

Second, the specific vehicle needs in rural areas, particularly the preference for pickup trucks, might moderate how 

perceived usefulness translates into adoption intentions due to limited EV options [115]. Third, longer travel distances 

in rural areas might create additional considerations beyond perceived usefulness, such as charging availability and 

range capability [50]. Fourth, the less developed EV ecosystem in rural areas might create a gap between recognizing 

benefits and forming adoption intentions due to implementation concerns.  

H14, proposing that subjective norm positively affects behavioral intention to use EVs, revealed similar effects 

between urban (β = 0.161) and rural (β = 0.157) populations. Despite the similar magnitudes, the underlying mechanisms 

through which subjective norms influence adoption intentions appear to operate differently in each context. The effect 

in urban areas (β = 0.161) can be explained through several mechanisms. First, the higher visibility of EVs in urban 

environments might strengthen social normative pressures as EV adoption becomes increasingly associated with 

environmental consciousness and technological sophistication [28]. Second, urban residents might experience stronger 

normative influences due to more frequent exposure to EV-related social messaging and peer adoption behaviours [116]. 

Third, the presence of early adopters in urban areas might create social proof that influences others' adoption intentions 

through demonstrated feasibility [51]. Fourth, urban social networks, though more diverse, might exert consistent 

normative pressure due to shared exposure to environmental concerns and sustainability initiatives [82]. The comparable 

effect in rural areas (β = 0.157) reflects different social dynamics. First, while rural social networks might be smaller, 

their influence could be more intense due to stronger community ties and shared understanding of local transportation 

needs [36]. Second, the scarcity of EVs in rural areas might make social approval particularly important in adoption 

decisions, as potential adopters seek validation from their community [56]. Third, rural residents might rely more heavily 

on subjective norms to evaluate the practicality of EV adoption, given the limited opportunities for direct observation 

[117]. Fourth, the close-knit nature of rural communities might make social acceptance of new technology adoption 

particularly influential in decision-making processes.  

H15, hypothesizing that perceived behavioral control positively affects behavioral intention to use EVs, 

demonstrated slightly different effects between rural (β = 0.131) and urban (β = 0.118) populations. This variation in 

effect sizes provides important insights into how perceptions of control over EV adoption influence behavioral intentions 
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across different geographical contexts. The stronger effect in rural areas (β = 0.131) can be attributed to several 

mechanisms. First, rural residents might place greater emphasis on perceived control due to the more challenging EV 

adoption environment, including limited charging infrastructure and longer travel distances [118]. Second, the higher 

proportion of self-reliant vehicle usage in rural areas might make perceived behavioral control more crucial in forming 

adoption intentions [58]. Third, the limited availability of technical support services in rural areas might increase the 

importance of feeling confident in one's ability to manage EV operation [40]. Fourth, rural residents' need to navigate 

longer distances and varied terrain might make their sense of control over the vehicle's operation and charging 

management particularly influential in adoption decisions [119]. The slightly lower effect in urban areas (β = 0.118) 

reflects different contextual factors. First, urban residents might feel less dependent on personal behavioral control due 

to better access to support infrastructure and technical assistance [120]. Second, the presence of more comprehensive 

charging networks in urban areas might reduce the importance of perceived control in adoption decisions [121]. Third, 

shorter travel distances and more predictable urban driving patterns might make control perceptions less critical in 

forming adoption intentions [27]. Fourth, the availability of alternative transportation options in urban areas might 

reduce the pressure to feel complete control over EV operation when considering adoption.  

H16, proposing that attitude toward EVs positively affects behavioral intention to use EVs, demonstrated slightly 

stronger effects in rural areas (β = 0.141) compared to urban areas (β = 0.121). This difference in effect sizes reveals 

important insights about how attitudes translate into adoption intentions across different geographical contexts. The 

stronger effect in rural areas (β = 0.141) can be explained through several mechanisms. First, rural residents might form 

more carefully considered attitudes due to the higher stakes of EV adoption in areas with limited charging infrastructure, 

making these attitudes more predictive of actual adoption intentions [103]. Second, the greater financial investment 

relative to rural income levels might strengthen the attitude-intention relationship, as attitudes need to be stronger to 

overcome economic barriers [8]. Third, the practical challenges of EV adoption in rural areas might make positive 

attitudes more meaningful predictors of intention, as they likely reflect careful consideration of both benefits and barriers 

[49]. Fourth, the limited exposure to EVs in rural areas suggests that positive attitudes might be based more on thoughtful 

evaluation rather than social trends, making them more strongly linked to behavioral intentions [100]. The slightly lower 

effect in urban areas (β = 0.121) reflects different underlying dynamics. First, urban residents might face fewer barriers 

between attitudes and intentions due to better infrastructure support, potentially reducing the strength of the attitude-

intention relationship [29]. Second, urban attitudes might be more influenced by temporary factors such as trends or 

peer influence, making them less strongly connected to actual adoption intentions [51]. Third, the complex urban 

transportation environment might introduce additional factors between attitudes and intentions, such as parking 

availability and traffic conditions. 

6. Conclusion and Implications 

6.1. Conclusions  

This study investigated the urban-rural differences in electric vehicle (EV) adoption intentions in Thailand, 

addressing a critical gap in understanding how geographical contexts influence adoption patterns. While previous 

research has examined EV adoption factors independently, limited attention has been paid to comparing urban and rural 

adoption mechanisms through an integrated theoretical framework. The study combined the Technology Acceptance 

Model (TAM), Theory of Planned Behavior (TPB), and Unified Theory of Acceptance and Use of Technology 

(UTAUT) with additional constructs, including environmental identity and trialability, to comprehensively examine 

adoption intentions. Data were collected from 3,595 respondents (2,311 urban and 1,284 rural) across Thailand, selected 

based on the distribution of charging stations in different provinces. The analysis employed a rigorous multi-step 

approach including exploratory factor analysis, confirmatory factor analysis, structural equation modelling, and 

measurement invariance testing. The findings revealed significant differences in adoption mechanisms between urban 

and rural populations, with urban areas showing stronger effects in system-related perceptions and utility considerations, 

while rural areas demonstrated stronger influences of individual characteristics and social factors. This research 

contributes to both theory and practice by providing insights for developing targeted EV promotion strategies that 

account for geographical differences, particularly relevant for Thailand's goal of achieving 30% EV production by 2030. 

The findings revealed three critical patterns in EV adoption mechanisms across geographical contexts. First, core 

technical perceptions demonstrated stronger effects in urban areas, with perceived ease of use more strongly influencing 

perceived usefulness (β = 0.631) and perceived usefulness having greater impact on behavioral intention (β = 0.445) 

compared to rural areas (β = 0.587 and β = 0.353, respectively). This suggests that urban residents' adoption intentions 

are more heavily influenced by system utility considerations, likely due to better infrastructure support and greater EV 

exposure. Second, individual characteristics showed more substantial effects in rural areas, particularly in relationships 

involving personal innovativeness and environmental identity. Personal innovativeness more strongly influenced 

attitudes toward EVs in rural areas (β = 0.216 vs. 0.157 in urban areas), while environmental identity demonstrated 

stronger effects on perceived ease of use (β = 0.350 vs. 0.291). Third, social influence mechanisms operated differently 

across contexts, with rural areas showing stronger effects on attitudes (β = 0.218 vs. 0.164) but weaker effects on 

perceived ease of use (β = 0.208 vs. 0.300) compared to urban areas. These findings highlight the distinct adoption 

pathways in urban and rural contexts, emphasizing the need for differentiated approaches to promoting EV adoption 

across geographical settings. 
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6.2. Policy Recommendations 

6.2.1. Recommendations for Urban Areas 

Based on the structural equation modelling results, urban residents' EV adoption intentions are most strongly 

influenced by the relationship between perceived ease of use and perceived usefulness (H9, β = 0.631), followed by 

perceived usefulness to behavioral intention (H13, β = 0.445), and social network influence on perceived ease of use 

(H7, β = 0.300). These findings suggest three key policy directions for urban areas: 

First, policies should focus on enhancing the perceived ease of EV operation and charging, as indicated by high 

factor loadings on charging process comprehension (λ = 0.932) and learning ease (λ = 0.925). Recommended policies 

include: 

• Establishing EV Experience Centres in major urban shopping malls where potential users can learn about EV 

operation through interactive displays and simulators 

• Implementing a standardized EV charging interface across urban areas with clear, user-friendly instructions 

• Developing mobile applications that integrate real-time charging station availability, reservation systems, and 

payment options for example, Norway has successfully implemented similar programs through their "EV 

Experience Centres" in Oslo, where potential adopters can learn about EVs in a no-pressure environment [122]. 

Second, given the strong influence of perceived usefulness on adoption intention (β = 0.445) and high factor loadings 

on daily transportation benefits (λ = 0.951), policies should emphasize practical advantages through: 

• Creating dedicated EV lanes and priority parking spaces in urban centres 

• Implementing dynamic road pricing with significant discounts for EVs 

• Developing integrated smart city systems that enable EVs to access real-time traffic information and optimal 

routing Singapore's Green Vehicle Rebate scheme and EV-priority parking system provides a successful model 

for such initiatives [44]. 

Third, leveraging the significant impact of social networks (β = 0.300) through: 

• Establishing EV owner ambassador programs where experienced users share their experiences 

• Creating community-based EV sharing programs in urban neighbourhoods 

• Supporting EV owner clubs and regular meet-ups through municipal facilities and resources Similar programs in 

Shanghai, China, have effectively utilized social networks to promote EV adoption through community-based 

initiatives [46]. 

6.2.2. Recommendations for Rural Areas 

Based on the structural equation modelling results, three key areas require policy attention in rural contexts: 

First, considering H4 and H5 results, where personal innovativeness showed strong effects on both perceived 

usefulness (β = 0.175) and attitude toward EVs (β = 0.216), with high factor loadings on early technology adoption 

(PIN1: λ = 0.790) and innovation preference (PIN2: λ = 0.771), policies should focus on supporting early adopters and 

innovation-oriented individuals: 

• Creating "Rural EV Pioneer" programs that provide additional incentives for first adopters in each rural district 

• Establishing mobile EV demonstration units that travel between rural communities 

• Developing special financial packages for innovative agricultural businesses transitioning to electric vehicles For 

example, South Korea's Rural EV Leadership Program provides enhanced subsidies and recognition for early 

adopters in rural communities [123]. 

Second, based on H3 and H7 results, where environmental identity strongly influences perceived ease of use (β = 

0.350) and social networks affect attitudes (β = 0.218), supported by high loadings on environmental responsibility 

(ENV1: λ = 0.862) and social network opinions (SOC1: λ = 0.857), policies should leverage community-based 

approaches: 

• Implementing "Community Charging Hubs" that combine charging stations with local gathering spaces 

• Developing rural EV cooperatives where communities can share charging infrastructure and maintenance 

resources 

• Creating educational programs that connect environmental benefits to local agricultural sustainability New 

Zealand's Rural Community Charging Initiative provides a successful model, where farming communities 

collectively manage charging infrastructure [49]. 
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Third, addressing H12 results, where perceived usefulness strongly influences attitudes (β = 0.248), with high 

loadings on transportation needs (PUF2: λ = 0.922) and practical benefits (PUF3: λ = 0.913), policies should emphasize 

practical benefits specific to rural contexts: 

• Providing enhanced subsidies for electric pickup trucks and agricultural EVs 

• Establishing mobile charging solutions for remote areas 

• Developing battery swap stations along major rural routes Japan's Rural Transportation Electrification Program 

demonstrates successful implementation of similar policies, particularly in supporting agricultural EV applications 

[124].  

6.2.3. Implementation Strategy and Action Plan 

The policy recommendations require strategic phasing to ensure effective implementation, considering the distinct 

characteristics of urban and rural areas. The implementation can be structured into three phases: 

Phase 1 (Immediate: 1-2 years): Urban areas should prioritize establishing EV Experience Centres (leveraging the 

strong PEU→PU relationship, β = 0.631) and implementing standardized charging interfaces in high-traffic areas. 

Meanwhile, rural areas should focus on the "Rural EV Pioneer" program (building on strong personal innovativeness 

effects, β = 0.216) and establishing initial community charging hubs. The high factor loadings on charging process 

comprehension (PEU3: λ = 0.932 urban, λ = 0.882 rural) suggest that these infrastructure-focused initiatives will 

significantly impact adoption rates [61]. 

Phase 2 (Medium-term: 2-4 years): Urban implementation should expand to include integrated smart city systems 

and EV-priority zones, capitalizing on the strong perceived usefulness effect (β = 0.445). Rural areas should develop 

cooperative charging networks and mobile charging solutions, addressing the high loading on transportation needs 

(PUF2: λ = 0.922). Thailand could follow Singapore's phased approach, which achieved a 30% increase in EV adoption 

through similar sequential implementation [125]. 

Phase 3 (Long-term: 4-5 years): Both areas should focus on community engagement programs, with urban areas 

developing EV owner ambassador networks (social network influence β = 0.300) and rural areas establishing agricultural 

EV demonstration programs. The high loadings on social network opinions (SOC1: λ = 0.893 urban, λ = 0.857 rural) 

suggest these programs will effectively drive sustained adoption. 

The policy recommendations require strategic phasing to ensure effective implementation, considering the distinct 

characteristics of urban and rural areas. The implementation can be structured into three phases: immediate (1-2 years), 

medium-term (2-4 years), and long-term (4-5 years). In the immediate phase, urban areas should prioritize establishing 

EV Experience Centres, leveraging the strong relationship between perceived ease of use and perceived usefulness (β = 

0.631), while rural areas should focus on "Rural EV Pioneer" programs, building on strong personal innovativeness 

effects (β = 0.216). The medium-term phase should expand to integrated smart city systems in urban areas and 

cooperative charging networks in rural areas, capitalizing on the high loadings for transportation needs (PUF2: λ = 

0.922). The long-term phase should emphasize community engagement programs across both areas, supported by strong 

social network influence (β = 0.300 urban, β = 0.218 rural). 

For policy decision-makers, the findings offer crucial insights for effective implementation. First, resource allocation 

should prioritize high-impact initiatives based on regional coefficients - for instance, emphasizing ease-of-use programs 

in urban areas (λ = 0.932 for charging comprehension) and community-based approaches in rural areas (λ = 0.857 for 

social network opinions). Second, infrastructure development should follow a progressive pattern that aligns with 

adoption rates, starting with high-traffic urban areas and gradually expanding to rural regions. Third, continuous 

monitoring and evaluation systems should be established to track implementation effectiveness, using the model's 

parameters as baseline metrics. Fourth, policy-makers should develop region-specific communication strategies that 

emphasize the most influential factors identified in each area - system utility in urban areas and personal innovation in 

rural areas [126]. 

Other developing countries, particularly in Southeast Asia, can adapt these recommendations to their contexts while 

accounting for local variations. Countries like Vietnam, Indonesia, and Malaysia, which share similar urban-rural 

divisions, can benefit from Thailand's implementation experience while customizing approaches to their specific needs. 

The adaptation process should consider four key elements: First, infrastructure readiness assessment using standardized 

metrics like those employed in this study. Second, economic calibration of incentive structures based on local income 

levels and cost-of-living differences between urban and rural areas. Third, integration of cultural and social factors 

specific to each country, particularly in designing community engagement programs. Fourth, development of monitoring 

frameworks that track implementation progress using comparable parameters to enable cross-country learning and 

optimization. For example, Vietnam could prioritize urban charging infrastructure development while focusing on 

agricultural EV applications in rural areas, like Thailand's dual-track approach but adapted to their specific transportation 

patterns. 
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While the proposed strategies offer a comprehensive framework for promoting EV adoption across different 

geographical contexts, their implementation faces several feasibility challenges that must be addressed. The economic 

and infrastructural constraints are particularly significant in rural areas and warrant careful consideration. From an 

economic perspective, the "Rural EV Pioneer" program and community charging hub initiatives require substantial 

initial investment despite their long-term benefits. Based on data from similar programs in South Korea, the estimated 

cost per rural charging station is approximately 1.5-2 times higher than urban installations due to grid extension 

requirements and lower utilization rates. This economic challenge can be addressed through public-private partnership 

models, where government subsidies cover 50-60% of initial costs while private operators manage ongoing operations. 

This approach has proven successful in New Zealand's Rural Community Charging Initiative, achieving 30% cost 

reductions through community co-investment. Infrastructural constraints in rural areas present additional challenges, 

particularly regarding grid capacity and technical expertise. Many rural regions in Thailand have limited electricity 

distribution infrastructure that may require significant upgrades to support EV charging networks. To address this 

constraint, the implementation strategy should incorporate distributed energy resources, including solar-powered 

charging stations with battery storage systems. These systems can operate with minimal grid dependency, reducing 

infrastructure upgrade costs by approximately 40% based on similar implementations in rural Japan. The proposed 

phased implementation approach accounts for these constraints by prioritizing high-impact, lower-cost initiatives in the 

immediate phase while establishing the foundation for more resource-intensive projects in later phases. This pragmatic 

approach aligns with Bhat & Guo [127] findings on the importance of progressive infrastructure development to match 

adoption rates across different geographical contexts. Additionally, the feasibility of these strategies is enhanced by 

Thailand's existing electrification programs and renewable energy initiatives, which can be leveraged to support EV 

infrastructure development. By integrating EV promotion with broader rural electrification efforts, significant cost 

efficiencies can be achieved through shared infrastructure investments and maintenance systems. 

6.3. Limitations and Future Research 

The primary limitation of this study lies in its cross-sectional nature, which captures EV adoption intentions at a 

single point in time. This approach, while providing valuable insights into urban-rural differences, cannot account for 

how these intentions evolve as charging infrastructure develops and EV technology advances [128]. Moreover, the 

timing of data collection coincided with the early stages of Thailand's EV infrastructure development, particularly in 

rural areas, which may have influenced respondents' perceptions of practical utility and ease of use. Future research 

should employ longitudinal designs to track changes in adoption intentions as infrastructure develops. Hull et al. [49] 

suggest that adoption patterns may shift significantly as charging networks expand and new EV models become 

available, particularly in rural areas. Therefore, a longitudinal study tracking the same urban and rural populations over 

Thailand's EV infrastructure development period (2024-2030) would provide valuable insights into how the 

relationships identified in this study evolve with improving infrastructure and increasing EV exposure. 

A significant limitation of this study is the absence of detailed analysis regarding socioeconomic factors and cultural 

attitudes that may influence EV adoption differently across urban and rural populations. While the structural 

relationships between adoption constructs were thoroughly examined, the study did not explicitly incorporate income 

disparities, education levels, or cultural predispositions toward new technologies as moderating variables. This limitation 

is particularly relevant in the Thai context, where rural areas represent approximately 49% of the population but account 

for 79% of the country's poor. In 2019, rural household monthly income averaged only 68% of urban household income, 

creating substantial differences in purchasing power and technology investment capacity [129]. Additionally, rural 

populations in Thailand typically have lower levels of formal education, higher dependency ratios, and more challenging 

living conditions that may fundamentally alter their approach to high-cost innovations like electric vehicles. These 

socioeconomic realities likely influence the practical applicability of adoption models, particularly when examining 

relationships between perceived usefulness, cost considerations, and behavioral intentions. While the study identified 

stronger effects of individual characteristics in rural areas, it did not fully account for how economic constraints might 

moderate or even override these relationships. Future research should incorporate explicit socioeconomic stratification 

in sampling design and employ mixed-methods approaches to explore how financial constraints and cultural perceptions 

interact with the identified adoption factors. Longitudinal studies examining adoption patterns as rural economic 

conditions evolve would also provide valuable insights for policymakers seeking to implement targeted incentive 

programs that address the unique challenges of rural communities while leveraging their stronger social networks and 

environmental connections 
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Appendix I 

Table A1. Questionnaire items and Statistical summary 

Item Questionnaire item 
Urban area (n = 2,311) Rural area (n = 1,284) 

M SD SK KU M SD SK KU 

 Environmental identity (Cronbach’s α = 0.925) 

ENV1 Being environmentally responsible is part of my identity 4.963 1.410 -0.613 0.116 5.449 1.381 -1.144 1.171 

ENV2 I tend to consider environmental impacts when making decisions 5.010 1.380 -0.740 0.471 5.453 1.362 -1.220 1.553 

ENV3 I take actions to reduce greenhouse gas emissions 4.959 1.392 -0.670 0.213 5.454 1.363 -1.175 1.342 

 Personal innovativeness (Cronbach’s α = 0.880) 

PIN1 I am usually among the first to try new technologies 4.737 1.441 -0.532 0.015 5.104 1.555 -0.850 0.202 

PIN2 I prefer to wait for technology to mature before using it 4.887 1.454 -0.649 0.247 5.244 1.551 -0.849 0.247 

PIN3 I often adopt new technologies before they become widely known 4.768 1.442 -0.416 -0.174 5.176 1.544 -0.833 0.203 

 Social network influence (Cronbach’s α = 0.924) 

SOC1 Opinions from my social network play a role in my acceptance of new technologies 4.797 1.523 -0.559 -0.328 5.234 1.437 -0.881 0.420 

SOC2 I consider experiences and advice from my friends and family 4.882 1.497 -0.705 0.001 5.195 1.403 -0.880 0.431 

SOC3 Conversations within my social circle influence my decision to try new technologies 4.807 1.515 -0.600 -0.204 5.277 1.468 -0.915 0.317 

 Trialability (Cronbach’s α = 0.917) 

TRI1 I am more likely to use new technology if I can try it first 5.045 1.371 -0.738 0.405 5.350 1.409 -1.108 1.099 

TRI2 My willingness to try new technology is affected by the ease of trial 4.998 1.366 -0.712 0.383 5.387 1.420 -1.112 0.996 

TRI3 I am open to experimenting with new technology before making a decision 4.950 1.388 -0.596 0.139 5.388 1.429 -1.128 0.964 

 Subjective norm (Cronbach’s α = 0.906) 

SUN1 People who are important to me think I should use electric vehicles 4.534 1.724 -0.495 -0.724 5.318 1.499 -1.147 0.900 

SUN2 I feel pressure from friends and family to use electric vehicles 4.289 1.794 -0.467 -0.864 5.027 1.610 -0.875 0.118 

SUN3 I believe others who are important to me would approve of my choice to use electric vehicles 4.681 1.562 -0.523 -0.424 5.123 1.501 -0.936 0.516 

 Perceived behavioral control (Cronbach’s α = 0.940) 

PBC1 I feel confident in my ability to use electric vehicles 4.940 1.481 -0.563 -0.249 5.320 1.416 -1.166 1.249 

PBC2 I believe I have control over the decision to use electric vehicles 4.891 1.465 -0.563 -0.205 5.296 1.393 -1.176 1.382 

PBC3 I feel that using electric vehicles is entirely within my control 4.828 1.486 -0.452 -0.354 5.311 1.447 -1.082 0.956 

 Perceived ease of use (Cronbach’s α = 0.936) 

PEU1 Learning to use electric vehicles would be easy for me 4.832 1.632 -0.578 -0.414 5.456 1.565 -1.190 0.898 

PEU2 I believe using electric vehicles would require minimal effort from me 4.695 1.767 -0.552 -0.663 5.410 1.594 -1.117 0.694 

PEU3 The process of charging and using electric vehicles seems easy for me 4.777 1.642 -0.606 -0.380 5.288 1.482 -1.101 0.954 

 Perceived usefulness (Cronbach’s α = 0.946) 

PUF1 Using electric vehicles would enhance my overall travel experience 4.769 1.656 -0.558 -0.553 5.279 1.545 -1.025 0.617 

PUF2 I believe using electric vehicles would be beneficial for my daily transportation needs 4.827 1.704 -0.574 -0.605 5.460 1.590 -1.180 0.734 

PUF3 Using electric vehicles would be a good option to meet my transportation needs 4.786 1.753 -0.549 -0.675 5.434 1.619 -1.167 0.707 

 Attitude toward electric vehicles (Cronbach’s α = 0.911) 

ATT1 I have a positive attitude toward using electric vehicles 5.026 1.393 -0.623 0.069 5.359 1.278 -1.028 1.423 

ATT2 Using electric vehicles aligns with my personal values 4.803 1.512 -0.605 -0.219 5.366 1.396 -1.257 1.575 

ATT3 I view using electric vehicles as a desirable choice 4.796 1.537 -0.513 -0.384 5.360 1.381 -1.075 1.040 

 Behavioral intention to use (Cronbach’s α = 0.950) 

BIU1 I intend to use electric vehicles in the future 4.685 2.027 -0.576 -0.969 5.215 1.725 -1.066 0.304 

BIU2 It is very likely that I will adopt electric vehicles for regular use 4.589 1.887 -0.449 -0.977 5.281 1.601 -1.087 0.532 

BIU3 I am likely to consider using electric vehicles to meet my transportation needs 4.692 1.840 -0.513 -0.870 5.283 1.612 -1.082 0.526 

Note: M denotes average; SD denotes standard deviation; SK denotes skewness; KU denotes kurtosis 


