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Abstract 

Achieving net-zero energy building (NZEB) status requires accurate energy use intensity (EUI) calculations, as 

conventional methods often fail to capture the complexity of design and climatic conditions. In this research, a parametric 

energy modeling approach was used to conduct 1,350 simulations and analyze the impact of design parameters on building 

EUI. These simulations covered six building types—an existing building and I-, L-, T-, U-, and H-shaped buildings—

across eight locations in different climate zones. A case study was conducted in Busan, Korea, where on-site measurements 

were obtained using portable devices to validate the simulation results. I-shaped buildings exhibited the lowest EUI, 

reaching 109 kWh/m²/yr at 0° and 180° orientations. The simulation results indicated that building orientations of 140°, 

90°, 135°, and 270° tended to produce higher EUI values, whereas 0° and 180° showed lower EUI values of 122 and 123 

kWh/m²/yr, respectively. The use of triple-pane insulated glass effectively reduced the I-shaped building's EUI to 103 

kWh/m²/yr. Implementing photovoltaic (PV) systems further reduced the EUI significantly, with the I-shaped building 

achieving an EUI of −14 kWh/m²/yr at a 20% PV efficiency. Analysis using an extreme gradient boosting (XGBoost) 

model revealed that the climate zone, PV area, and type of heating, ventilation, and air-conditioning system significantly 

affected the EUI. This model, processed using Colab, was highly effective, with an R-squared value of 0.99, a root mean 

square error of 4.57, and a mean absolute error of 1.99. These findings demonstrate that the XGBoost model can effectively 

capture complex data patterns and can be used for high-accuracy EUI estimation. 

Keywords: Gradient Boosting; Parametric Architecture; Energy Use Intensity; Net-Zero Energy Buildings. 

 

1. Introduction 

The building sector continues to dominate global energy consumption, accounting for over 40% of energy use and 

a significant share of greenhouse gas emissions [1]. This trend underscores the urgent need for energy-efficient solutions, 

particularly net-zero energy buildings (NZEBs), which are designed to offset their annual energy use through renewable 

energy sources [2]. However, despite the implementation of global initiatives, such as the Paris Agreement and national 

energy policies, the adoption of NZEBs remains inconsistent, particularly in developing regions, where energy 

consumption is rising significantly [3, 4]. 

The use of NZEBs is a pivotal strategy in addressing energy and environmental challenges by combining energy 

efficiency with renewable energy systems. These buildings aim to minimize energy demand while maximizing on-site 
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renewable energy generation, significantly reducing greenhouse gas emissions and reliance on fossil fuels [5]. The 

importance of NZEBs can be summarized as follows: 

 Energy Efficiency: By integrating energy-saving tools and passive design strategies, NZEBs achieve high energy 

efficiency [6], thereby helping meet global climate objectives and reducing carbon footprints [7]. 

 Cost Savings: Although the initial investment in NZEB technology may be higher than average, the long-term 

reductions in energy bills can be substantial, making NZEBs financially attractive over their lifetime [8]. 

 Regulatory Compliance: Many governments have policies that require or encourage the construction of NZEBs 

as part of broader sustainability initiatives [9]. This aligns with international agreements aiming to combat climate 

change [10]. 

Achieving NZEB status involves numerous parameters and challenges. One of the main challenges is the complexity 

of design and planning, as each building element must be designed to minimize energy consumption [11]. Energy 

simulation, thermal analysis, and the modeling of various scenarios are needed to ensure that building designs meet the 

NZEB criteria [12]. Several parameters must be considered, such as energy efficiency, air quality, natural lighting, 

heating and cooling, and the integration of renewable energy. 

In the context of NZEBs, energy use intensity (EUI) is a critical indicator that quantifies annual energy consumption 

per square meter of building floor area. A lower EUI indicates a more environmentally beneficial and efficient building. 

[13]. The EUI is particularly useful in the design of buildings with minimal energy consumption because it enables the 

comparison of building performance based on dimension, function, and location [14, 15]. Table 1 provides a comparison 

of international green building certifications that emphasize energy efficiency, energy conservation, and renewable 

energy integration. 

Numerous international certification systems, including Leadership in Energy and Environmental Design (LEED), 

Green Star, and the Building Research Establishment Environmental Assessment Methodology (BREEAM), have 

precise criteria for renewable energy production, conservation, and efficiency. For instance, as illustrated in Table 1, 

LEED promotes the utilization of renewable energy credits and sets four specific benchmarks for passive and active 

strategies. Green Star emphasizes energy conservation through operational and design practices. South Korea's Green 

Standard for Energy and Environmental Design (G-SEED) also prioritizes the utilization of on-site renewable energy 

and promotes sustainable, energy-efficient design. Simson et al. [16] observed that the focus of NZEBs varies 

significantly across countries and climate zones. This position was supported by Garcia & Kranzl [17], who argued that 

an adaptive approach is required to establish NZEB standards suitable for various regions. Therefore, parametric 

architecture is essential for the design of buildings that meet NZEB criteria. 

Table 1. Comparison of Green Building Certifications and Their Criteria 

Certification Level 
Energy 

Efficiency 
Energy Conservation Energy Production Country/Region 

LEED [18, 19] 
Certified, Silver, Gold, 

and Platinum 
High 

Emphasizes both passive and active 

strategies 

Encourages renewable 

energy credits 

USA, 

International 

Green Star [20, 21] 1 Star to 6 Stars High 
Focus on reducing energy consumption 

through design and operational practices 

Encourages on-site 

renewable energy 

Australia, New 

Zealand 

BREEAM [22, 23] 
Pass, Good, Very Good, 

Excellent, Outstanding 
High 

Encourages reduction in energy demand 

and efficient use of energy 

Promotes integration of 

renewable energy sources 

United Kingdom, 

International 

Comprehensive Assessment 

System for Built Environment 

Efficiency [24, 25] 

C, B−, B+, A, S Moderate to high 
Promotes energy-saving design and 

technologies 

Encourages on-site 

renewable energy production 
Japan 

Green Globes [26, 27] 
One Green Globes to 

Four Green Globes 
Moderate to high 

Evaluates energy performance and 

encourages improvements 

Supports renewable energy 

integration 
USA, Canada 

Excellence in Design for 

Greater Efficiencies [22, 28] 
Certification Moderate to high 

Focus on energy-saving measures and 

technologies 

Encourages renewable 

energy sources 
International 

G-SEED [29-31] Green 1 to Green 4 High 
Emphasizes sustainable, energy-efficient 

design 

Encourages on-site 

renewable energy 
South Korea 

Architecture 2030 [28, 32] Target Very high Aims for zero fossil fuel energy use 
Emphasizes on-site 

renewable energy production 
International 

Parametric architecture, where algorithms are used to evaluate multiple design scenarios simultaneously, provides a 

powerful methodology for designing energy-efficient buildings [33]. Building on recent research by Stevanović et al. 

[34], the current study highlights the integration of parametric techniques with machine learning models, such as extreme 

gradient boosting (XGBoost), to improve the predictive accuracy and performance of energy modeling. 

Regarding methodological frameworks, Lu et al. [35] and Labib [36] demonstrated the advantages of combining 

parametric design and machine learning for building performance optimization. For instance, Veiga et al. [37], 

Seyedzadeh et al. [38], Amasyali and El-Gohary [39], and Solmaz [40] conducted parametric analyses using the building 
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energy modeling program EnergyPlus to obtain optimal results. Data on building shapes, external materials, internal 

loads, occupancy behavior, and other features were collected as input files (.idf) for further training and validation in 

Python. The authors investigated which parameters significantly affect a building's energy consumption. The interaction 

between parametric architecture and machine learning can be crucial for building design, construction, and operation. 

Machine learning techniques, such as artificial neural networks (ANNs), and gradient boosting models, such as 

XGBoost, are highly effective for simulating building energy performance. In the study of Guo et al. [41], ANN models 

outperformed other approaches in predicting the energy consumption of detached residential buildings. Similarly, 

Barbaresi et al. [42] highlighted the capacity of machine learning models, including support vector machines (SVMs), 

random forests (RFs), and XGBoost, to replace computationally intensive simulation tools, such as EnergyPlus, with 

faster, more accurate prediction methods. These findings emphasize the growing importance of machine learning in 

energy optimization workflows. 

XGBoost is a powerful tool for managing large datasets with complex interactions, offering high accuracy and 

resilience to overfitting. Kumar et al. [43] effectively utilized XGBoost to forecast energy consumption patterns across 

diverse building typologies considering dynamic environmental conditions. Ni et al. [44] further showcased XGBoost's 

adaptability by integrating it into a digital twin framework for real-time energy performance optimization. Gan & Gao 

[45] expanded on this by combining XGBoost with parametric modeling tools, enabling multi-objective optimization 

that balances energy with occupant comfort. 

Recent research continues to affirm XGBoost's effectiveness in energy management applications. Abdelsattar et al. 

[46] demonstrated XGBoost's superiority to RF, multilayer perceptron (MLP), SVM, and similar models in improving 

solar power forecasting accuracy. Although the MLP and SVM models were promising, their limitations in generalizing 

to unfamiliar data underscored the robustness of gradient-boosting models in the parametric architectural context. These 

advancements highlight the critical role of machine learning in simplifying decision-making during early design stages 

and achieving reliable energy performance predictions. 

 Previous research has explored parametric architecture and machine learning separately to optimize architectural 

parameters and building energy consumption. However, the integration of these two approaches, especially to optimize 

the EUI while maintaining occupant comfort, is rarely discussed in the literature. This gap is an untapped opportunity 

to combine the benefits of parametric architecture in enhancing building design efficiency with the adaptive and 

predictive capabilities of machine learning in managing energy consumption in real time.  

This gap is critical because integrating parametric architecture with machine learning can create a more holistic 

system for building energy optimization. This methodology may balance occupant comfort and energy efficiency more 

effectively. Without integration, energy savings may be achieved at the expense of occupant comfort, or vice versa. This 

study aims to address the abovementioned gaps through the following: 

 Investigation of Inefficiencies in Traditional NZEB Renovation 

The weaknesses and inefficiencies of conventional renovation methods for NZEBs are identified. The focus is on 

prolonged, repeated iterative processes required to achieve EUI values that comply with standards. 

 Redesign of Case Study Building Using Parametric Architecture 

Parametric architecture techniques are used to redesign a case study building in Busan. This approach enables the 

flexible, efficient customization of various design elements, such as building orientations, window types, heating, 

cooling, electrical systems, and photovoltaic (PV) systems. 

 Development of Machine Learning Models for EUI Reduction 

Machine learning models (XGBoost, LightGBM, and CatBoost) are implemented to predict and optimize the EUI. 

The models are trained using simulated and real-world data to ensure accuracy and reliability. 

 Significant EUI Reductions to Meet NZEB Standards 

Machine learning models are integrated into parametric architecture workflows and iterative optimization is 

performed to reduce the EUI significantly. The ultimate target is to meet or exceed the applicable NZEB 

benchmarks, such as the G-SEED or Architecture 2030 standards. 

This study will contribute significantly to building energy optimization, particularly in achieving NZEB standards 

efficiently and effectively. 
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2. Research Methodology  

As shown in Figure 1, this study covers the key aspects of EUI optimization in NZEBs through parametric 

architecture and machine learning. These phases are an investigation of inefficiencies in conventional renovation, 

redesign of a case study building, development of machine learning models, and fulfilment of NZEB criteria. 

 

Figure 1. Overall Methodology Flowchart for Optimizing EUI in NZEBs 

2.1. Inefficiencies in Traditional NZEB Renovation 

This research aims to evaluate and understand the inefficiencies in traditional renovation methods for achieving 

NZEB standards. These inefficiencies were identified, analyzed, and addressed through several systematic 

methodological steps, as depicted in Figure 1. 

1. Initial Data Collection 

 Project Documentation: All documentation related to a renovation project was collected, including building 

plans, technical specifications, historical energy consumption data, and audit reports. 

 Building Remodeling: The software SketchUp and Sefaira were used to create a three-dimensional (3D) model 

of the building to be renovated. The model included all critical components, such as the walls, roofs, windows, 

and heating, ventilation, and air-conditioning (HVAC) systems. 

2. Initial Energy Simulation 

 Initial Simulation: The created 3D model was used to perform an initial energy simulation to obtain an initial 

EUI value and identify areas of high energy consumption. 

 Simulation Tools: The initial energy simulation was conducted using the energy simulation software Sefaira and 

EnergyPlus. The resulting data were analyzed to understand energy consumption patterns and identify 

inefficiencies. 

3. Inefficiency Analysis 

 Evaluation of Design Parameters: The design parameters that influence the energy performance of the building 

were analyzed, such as the building orientation, window type, HVAC system, and thermal insulation. 
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 Identification of Causal Factors: The main causal factors of energy inefficiency were determined. This involved 

an in-depth analysis of building design and operational parameters. 

4. Iterative Process of Model Improvement 

 3D Model Improvement: The building's 3D model was enhanced based on the analysis of inefficiencies. These 

improvements included adjusting the building orientation, selecting more efficient types of glass, and optimizing 

the HVAC system. 

 Renewable Energy System Integration: After design optimization, analysis was performed to determine whether 

the building still required additional energy to achieve NZEB status. 

 Re-Simulation: After each improvement, the energy simulation was repeated to evaluate the effects of the design 

changes on the EUI. This process was conducted iteratively until an EUI value that met NZEB standards was 

achieved. 

5. Comparative Analysis 

 Method Comparison: The energy simulation results obtained using the traditional renovation method were 

compared with those obtained using the proposed parametric architecture approach to obtain insights into the 

efficiency and effectiveness of each method. 

 Energy Performance Evaluation: The building's energy performance after the design improvements was assessed 

to ensure that the EUI values met or exceeded NZEB standards.  

With this methodology, this study illustrates the inefficiencies in traditional renovation methods for achieving NZEB 

standards. The results will provide practical guidance and recommendations for enhancing building energy efficiency 

through a systematic, pragmatic approach. 

2.2. Location and Parametric Redesign of Case Study Building 

The Engineering College building S04 of Dong-A University, Seunghak Campus, Busan, Korea, was the focus of 

this NZEB study. The building location is shown in Figure 2-a, with a broader view of South Korea and the building 

location in Busan illustrated in Figure 2-b. The building is situated at 35.12°N, 129.03°E. Busan, included in Zone 3A 

in the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) 90.1 classification [45], 

experiences hot, humid summers and cool winters. As shown in Figure 2b, building S04 is oriented at 140°N and consists 

of five floors, with the ground floor being used primarily for access to the first floor.  

 

(a) 

 
 

(b) (c) 

Figure 2. Case Study Building: (a) Study Location, (b) Building Orientation (140°N), (c) Sefaira Model 
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This building functions as an educational facility, comprising various classrooms, lecture rooms, laboratories of 

multiple technical fields, and supporting amenities (such as a student canteen, printing area, lavatory, and 

mechanical, electrical, and plumbing service room). The building, which is rectangular, has a central courtyard and 

a single-corridor layout, ensuring that all rooms receive adequate lighting and air circulation, as illustrated in Figure 

2-c. 

Several key building parameters are simulated and analyzed to achieve NZEB status. In this simulation, 

building energy performance is assessed under various scenarios, including different building shapes, numbers of 

floors, total areas, and climate zones. The key parameters to be tested include the type of floor finish, wall and 

roof U-values, HVAC system type, and PV panel efficiency and orientation. For example, the U-value of an 

existing fence is 1.5 W/m²K and compared with those of concrete blocks (1.8 W/m²K) and brick plaster (2.62 

W/m²K). Concrete roofs with a U-value of 0.9 W/m²K are tested against other types of roofs, such as metal decks 

with a U-value of 7.1 W/m²K. Additional parameters, such as the air infiltration rate, equipment power density 

(EPD), and lighting power density (LPD), are also varied to determine their impact on building energy 

performance. 

Building S04 was compared with building scenarios in various other climate locations, such as Singapore (0A), Ho 

Chi Minh City (1A), Durban (2A), Seoul (4A), Berlin (5A), Helsinki (6A), and Murmansk (7), as shown in Figure 3. 

The eight locations were selected on the basis of the ASHRAE 90.1 climate zones, a globally recognized standard for 

energy performance modeling. These zones represented a diverse range of climatic conditions, including variations in 

temperature, humidity, and seasonal patterns, ensuring that the study covered key environmental factors that 

significantly impact the EUI. 

Figure 3. Building Types and Climate Zones: (a) Different Building Shapes for Case Study, (b) ASHRAE Climate Zone Map 

This selection was made for a broad coverage of global climate diversity, encompassing hot, temperate, and 

cold climates. This ensures that the findings are relevant for green building standards and NZEB benchmarks, 

which are often tailored to regional climate conditions. By aligning with ASHRAE standards, this study helps 

elucidate energy performance in diverse climates while supporting regions that are adopting the NZEB framework 

or its counterparts. 

Each scenario was evaluated using Sefaira, which was used to record the energy performance input and output data 

for different configurations. This software provided the climate data used in this simulation, sourced from EnergyPlus 

Weather (EPW). This enabled the automated use of appropriate climate data based on location. 

The building comprises various parameters, as shown in Table 2, such as façade glass U-value, façade glass solar 

heat gain coefficient (SHGC) value, wall type, wall U-value, floor finish, floor U-value, roof type, roof U-value, 

infiltration rate in Air Changes per Hour (ACH), EPD, LPD, HVAC system type, PV panel efficiency, PV panel 

orientation, PV panel tilt, and PV panel area. Output data, including the heating and cooling equipment design capacity 

and EUI, were recorded. This simulation was performed to evaluate how changes in design parameters could optimize 

the building's energy performance toward the NZEB target. 

  

(a) (b) 
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Table 2. Baseline and Simulation Variants for Building Energy Performance Analysis 

Parameter Category Baseline Simulation Variants 

Building orientation 140°N 0°, 45°, 90°, 135°, 180°, 225°, 270°, 315° 

ASHRAE climate zone 3A (Busan, Korea) 
0A (Singapore), 1A (Ho Chi Minh City, Vietnam), 2A (Durban, South Africa), 3A (Busan, Korea), 4A (Seoul, 

Korea), 5A (Berlin, Germany), 6A (Helsinki, Finland), 7 (Murmansk, Russia) 

Building shape 
Rectangular with 

courtyard 
Rectangular (I), L, U, T, H 

Number of floors 5 3, 4, 5 

Wall type Precast concrete Precast concrete, brick plaster, concrete block 

Wall U-value 1.5 W/m²K 1.5, 2.62, 1.8 W/m²K 

Floor finish Tile Tile, carpet, hardwood 

Floor U-value 0.8 W/m²K 0.8, 2.5, 2.1 W/m²K 

Façade glazing solar 

heat gain coefficient 
0.7 0.86 (single pane), 0.7 (double pane), 0.5 (triple pane), 0.35 (low E), 0.65 (argon filled), 0.4 (vacuum insulated) 

Façade glazing U-value 3 W/m²K 6 (single pane), 3 (double pane), 1.2 (triple pane), 1.6 (low E), 2 (argon filled), 0.7 (vacuum insulated) 

Infiltration rate Well-sealed Airtight (0.25 ACH), well-sealed (0.5 ACH), average (1.0 ACH) 

EPD 15 W/m² 10, 15, 20 W/m² 

LPD 9 W/m² 6, 9, 12 W/m² 

HVAC system type 
Fan coil units and 

central plant 
Variable-refrigerant-flow fan coils, fan coil units, central plant 

PV efficiency n/a 15%, 20% 

PV panel orientation n/a South facing (180°), southeast facing (135°), southwest facing (−45°) 

PV panel tilt n/a 0°, 30°, 35° 

2.3. Performance Benchmark of XGBoost for EUI Prediction 

The EUI, a key benchmark for assessing building energy performance, is crucial in the context of NZEBs. It is the 

annual energy consumption of a building relative to its total area, expressed in kWh/m²/yr or kBtu/sf/yr, depending on 

regional preferences or standards. Lower EUI values indicate higher energy efficiency. This section describes the 

implementation of gradient boosting models, namely, linear regression (LR), XGBoost, RF regression (RFR), gradient 

boosting regression (GBR), and SVM, to predict the EUI. These models were chosen for their ability to handle complex 

data and predict accurately. The training process and parameters used to develop these models are detailed in the 

following subsections. 

EUI prediction is pivotal in optimizing building energy performance, especially for NZEB standards. Leveraging 

machine learning models, such as XGBoost, enhances accuracy and scalability in addressing the complexities of energy 

modeling. These models are not only adept at processing large datasets but also excel in identifying nonlinear 

relationships and interactions between variables. The use of XGBoost alongside other models in this study provides a 

comprehensive benchmark for evaluating their predictive capabilities and contributions toward energy-efficient building 

design. This evaluation ensures that the chosen models are suitable for making precise, data-driven decisions critical to 

reducing energy consumption and fulfilling NZEB standards. 

2.3.1. Dataset and Splitting 

The machine learning models were developed using a dataset sourced from the Sefaira simulation. This dataset 

comprised six buildings from eight locations, which were modified to generate 32 scenarios, resulting in 1,350 samples. 

These samples were saved in .csv format and loaded into Python for processing. 

We used fivefold cross-validation to minimize bias and increase confidence in model performance. This standard 

machine learning method provides a robust framework for model training and validation. By splitting the dataset into 

five distinct folds, we created five unique data distributions, which helped in obtaining an objective measure of model 

performance. The use of a single fold in model development would have resulted in a significant risk of high bias and 

an unrepresentative performance value. Fivefold cross-validation mitigates this risk by ensuring that every dataset 

sample is used for both training and validation [46]. 

In practice, a dataset is randomly divided into five equal parts: four parts are utilized as training data in each fold, 

and the remaining part serves as validation data. This technique is conducted five times, with each fold taking a turn as 

the validation set. Eventually, all dataset parts are used as training and validation data. The final performance metrics of 

a model are obtained by averaging the results from each folds. This averaging process provides a comprehensive, 

dependable estimate of model performance. The fivefold cross-validation process is visualized in Figure 4. 
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Figure 4. Illustration of Fivefold Cross-Validation 

2.3.2. Defining Features, Non-Numerical Features, and Target 

Twenty-one features were used to develop the models: the ASHRAE 90.1 climate zone, building orientation, total 

floor area, window façade U-value, window façade SHGC, wall type, wall U-value, floor finish, floor U-value, roof 

type, roof U-value, infiltration rate, EPD, LPD, HVAC system type, PV panel efficiency, panel orientation, panel tilt, 

panel area, heating equipment design capacity, and cooling equipment design capacity. 

In the training process in machine learning, all features should have numerical values. Therefore, one-hot encoding 

was used to convert categorical features into numerical ones. One-hot encoding transforms categorical variables into a 

numerical format compatible with machine learning models. It creates a binary column for each class within a categorical 

variable, where each column indicates the presence or absence of that category. This transformation enables the model 

to effectively learn the correlation between these categories and the target variable. 

The model target was the EUI result (RES EUI), or the annual building energy usage per square meter of floor area. 

In this dataset, the EUI value was obtained from the Sefaira modeling results. 

2.3.3. Model Benchmark 

The use of XGBoost for EUI prediction provides a compelling advantage due to its ability to handle heterogeneous 

data and capture intricate patterns. Its tree-based ensemble approach efficiently manages feature interactions and 

nonlinear dependencies, which are common in energy modeling datasets. This characteristic makes XGBoost 

particularly suitable for EUI prediction, where input features, such as building orientation, façade properties, and HVAC 

systems, exhibit complex relationships. Compared with traditional models, such as LR, and even other ensemble 

methods, such as RFs, XGBoost consistently demonstrates higher accuracy, making it a valuable tool for energy 

efficiency evaluation and design optimization in achieving NZEB goals. 

Machine learning models operate based on theoretical principles and mathematical equations. In this study, five 

types of traditional machine learning models were compared: LR, XGBoost, RFR, GBR, and SVM. The parameter 

values used for each model were determined through parameter optimization according to existing literature. XGBoost, 

RFR, and GBR were optimized using grid search and random search to identify the optimal combination of parameters 

for the data. The foundations and mathematical representations of the models are summarized as follows: 

 LR 

LR assumes a linear relationship between the input features (X1, X2, …, Xn) and the target variable Y. The equation 

is [47]: 

Y = β0 + β1 X1 + β2 X2 + … + βn Xn + ϵ, (1) 

where β0 is the intercept; β1 , β2 , …., βn are coefficients for the predictors; and ϵ is the residual error. 

 XGBoost 

XGBoost minimizes a loss function L(𝜃) using gradient boosting, thus improving predictions iteratively. The 

objective function is [48]: 

𝐿(𝛩) = ∑ 𝑙(𝑦𝑖 , �̂�𝑖)𝜂
𝑖=𝑙 + ∑ 𝛺(𝑓𝑘)𝑘

𝑘=1 , (2) 

where 𝑙(𝑦𝑖 , �̂�𝑖) is the loss between the predicted and actual values; 𝛺(𝑓𝑘)  is the regularization term, which 

prevents overfitting; Θ includes the model parameters; and 𝑓𝑘 represents decision trees. 
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 RFR 

An RF averages multiple decision tree predictions to reduce variance. The prediction 𝑦 is computed as [49]: 

�̂� =
1

𝑇
∑ ℎ𝑡(𝑋)𝑇

𝑡=1 , (3) 

where T is the total number of decision trees and ℎ𝑡(𝑋) is the prediction from the tth tree. 

 GBR 

Gradient boosting iteratively builds models to minimize a loss function. For regression, the gradient descent 

algorithm updates predictions as [50]: 

Fm + 1 (x) = Fm (x) + γ . hm (x), (4) 

where Fm (x) is the model at iteration m, hm (x) is the weak learner (decision tree) at iteration m, and γ is the learning 

rate. 

 SVM 

An SVM maps data into higher dimensions to find an optimal hyperplane for classification or regression. The 

optimization objective is [51]: 

𝑚𝑖𝑛
1

2
‖𝜔‖2 + 𝐶 ∑ 𝜀𝑖

𝑛
𝑖=1   (5) 

subject to 

𝑦𝑖(𝜔 ⋅ 𝑥𝑖 + 𝑏) ≥ 1 − 𝜀𝑖, 𝜀𝑖 ≥ 0, (6) 

where 𝜔 is the weight vector, 𝐶 is the penalty parameter, and 𝜀𝑖 represents slack variables. 

Additionally, parameters such as the number of estimators (n_estimators) in the ensemble models (XGBoost, RFR, 

and GBR) were selected based on preliminary experiments, with insights from previous studies indicating that these 

parameters effectively improve model accuracy. 

For LR, which was more straightforward than the other models, the parameters were selected following standard 

implementations commonly found in the literature, as outlined in Table 3. The radial basis function kernel was selected 

for the SVM, with the parameters C and epsilon optimized to balance bias and variance. 

Table 3. Summary of Analyzed Models 

Model Library/Module Parameters Description 

LR Sklearn.linear_model n/a 
LR models the correlation between a dependent variable and one or more independent variables 
by assuming a linear correlation and learns the best-fitting straight line through the data points. 

XGBoost xgboost 
objective='squared 

error', n_estimators=100 
It is efficient and accurate, especially with large datasets and complex relationships. It uses 
boosting loops to improve performance and handle complex data. 

RFR sklearn.ensemble n_estimators=100 
This ensemble learning method creates several decision trees and generates an average 

prediction from each. It reduces overfitting and improves model accuracy and robustness. 

GBR sklearn.ensemble n_estimator=100 
Models are built sequentially to correct errors from previous models. It effectively improves 

model accuracy but requires large amounts of computational resources. 

SVM skelarn.svm 
'kernel='rbf, C=1.0, 

epsilon=0.1 

It uses a radial basis function kernel. The model balances the trade-off between matching the 

training data and maintaining smoothness. It focuses on significant deviations rather than minor 

errors. 

2.3.4. Evaluation Metrics 

We used three metrics to evaluate the model performance in this benchmarking process: the R-squared, root mean 

square error (RMSE), and mean absolute error (MAE) values. 

 R-squared, also called the coefficient of determination, is a numerical measure that indicates the proportion of the 

variance in the dependent variable that is predictable from the independent variables. It shows how well the 

independent variables explain the variability of the dependent variable. An R-squared value ranges from 0 to 1, 

where 0 means the model does not explain any variability and 1 means the model explains all the variability in the 

data around its mean. A higher R-squared value indicates a better fit of the model to the data. 
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 The RMSE is a numerical measure used to assess the accuracy of a predictive model. It is the square root of the 

average squared difference between the predicted and actual values. The RMSE shows how well the model's 

predictions match the observed data, with smaller values indicating better model performance. It is useful for 

understanding the magnitude of prediction errors and for comparing the accuracy of different models. 

 The MAE is a statistical measure used to estimate the accuracy of a predictive model. It represents the average 

absolute difference between the predicted and actual values. The MAE provides a straightforward calculation of 

prediction errors, with smaller values indicating improved model performance. It helps understand the average 

magnitude of prediction errors without considering their direction. 

Using these metrics, we comprehensively assessed the performance of the developed machine learning models 

considering their goodness of fit and the magnitude of their prediction errors. We also included the standard deviation 

(SD) of each metric to show the range of variation between the five folds. 

The use of evaluation metrics, such as R-squared, RMSE, and MAE, highlights the importance of balancing 

predictive accuracy with interpretability in the context of building energy performance. XGBoost, with its robust 

optimization capabilities, often yields high R-squared values while maintaining low RMSE and MAE values, indicating 

prediction precision and reliability. Beyond being academically valuable, these results have practical implications in 

guiding design decisions. For instance, accurate EUI prediction enables architects and engineers to prioritize 

modifications in building features, such as glazing properties or HVAC efficiency, that yield the greatest energy savings. 

This supports an informed, targeted approach to achieving NZEB targets. 

By leveraging XGBoost for EUI prediction, we bridge the gap between advanced machine learning and practical 

energy performance benchmarks. The insights derived from accurate EUI prediction can directly inform the design and 

retrofit of energy-efficient buildings, ensuring that interventions align with NZEB standards. This demonstrates not only 

the technical superiority of XGBoost but also its critical role in advancing sustainable architectural practices. 

2.4. Validation on Real-World Data 

Model validation was previously conducted to compare the simulation results with real-world data collected from a 

Davis Vantage Pro2 weather station and a TR-72nw temperature and humidity logger. The weather station was placed 

on the rooftop of building S04, and the temperature and humidity logger was in room 0310 in the same building, as 

shown in Figure 5. 

 

 

(b) 

 

(a) (c) 

Figure 5. Data Collection Setup: (a) Outdoor Weather Station; (b) Room 0310, Building S04; (c) Indoor Temperature Sensors 
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The validation began with the collection and processing of experimental data from these primary sources. The 

Vantage Pro2 and TR-72nw data were imported and cleaned by removing empty or irrelevant values. Next, these 

data were harmonized to ensure consistency in the subsequent analyses. The timestamps were converted into a 

standard format and the data were resampled to the same time interval, such as hourly, to ensure uniformity in the 

analysis. 

The processed experimental data were compared with the simulation findings. The simulation results were imported 

and adjusted to match the time series of the experimental data. The two datasets were then combined for a direct 

comparison of the experimental and simulated data. The results were analyzed and visualized to measure the variations 

between the experimental and simulation data and identify potential discrepancies and areas requiring model adjustment. 

The differences between the experimental and simulated temperatures and humidities were calculated, and the 

abovementioned error metrics were used to estimate model accuracy. Graphically visualizing experimental and 

simulation data helps highlight relationships and deviations that may not be noticeable in numerical data analysis alone. 

By mapping these data, we observed the alignment between the real-world and simulation results and identified areas 

needing adjustments. Model adjustments were made based on the comparison results to improve the accuracy of EUI 

prediction and other building performance metrics. 

This comprehensive validation ensured that the simulation model could align predictions with real-world conditions, 

thereby reliably and accurately predicting building energy performance. By iterating and adjusting based on this 

validation, the model becomes increasingly precise in reflecting building energy use. 

3. Results and Discussion 

3.1. Analysis of Simulation Results 

A total of 1,350 simulations were performed using Sefaira to analyze the impact of various design parameters on 

building EUI. The simulations were diverse, covering six building types—existing building and I-, L-, T-, U-, and H-

shaped buildings—and eight locations according to the ASHRAE 90.1 climate zones—Singapore (0A), Ho Chi Minh 

City (1A), Durban (2A), Busan (3A), Seoul (4A), Berlin (5A), Helsinki (6A), and Murmansk (7). Due to the extensive 

quantity of simulation results, only a subset of the results is displayed here. 

The simulation outcomes show considerable EUI discrepancies depending on the orientation of the existing structure 

in Busan. As presented in Figure 6, the 0° and 180° orientations demonstrate reduced EUI values of 122 and 123 

kWh/m²/yr, respectively. These orientations optimize solar heat uptake, ensuring uniform sunlight exposure throughout 

the day while reducing the cooling demand. Conversely, the 90°, 135°, and 270° orientations have elevated EUI values, 

often reaching 125 kWh/m²/yr. This rise is mostly attributable to the heightened sun exposure in the morning and 

afternoon, which amplifies cooling demands. 

 

Figure 6. Simulation Results for Existing Building Orientation in Busan 
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Energy performance shows modest but significant variations across different angles. The 45° and 225° orientations 

exhibit marginally enhanced EUI values (124 kWh/m²/yr) relative to the peak recorded values, indicating a minor 

decrease in direct solar influence during essential heat-gain intervals. These distinctions highlight the intricate link 

between building orientation and energy performance: some angles may be more advantageous than others while not 

attaining optimal efficiency. 

The measured EUI changes demonstrate a clear association between building orientation and cooling demand in 

Busan's subtropical environment. The detected patterns in the data establish a comprehensive basis for comprehending 

the impact of orientation on energy performance and pave the way for further exploration of other factors influencing 

the EUI, including building shape, material selection, and system efficiency. 

EUI analysis based on building orientation in Busan shows significant variations between building types. Buildings 

with the existing form and courtyard structure often record higher EUIs than other building shapes, according to the 

simulation data in Figure 7. For example, at the 90°N, 135°N, and 140°N orientations, the existing building achieves a 

peak EUI of 125 kWh/m²/yr. This can be explained by the building's structure, which enables increased exposure to 

sunlight, particularly in summer. This high exposure, which increases the exposed surface area, affects the building's 

heat absorption and release, thereby increasing energy consumption. 

 

Figure 7. EUI vs. Building Orientation 

By contrast, I-shaped buildings show lower EUI values, with the lowest values reaching 109 kWh/m²/yr at the 0° 

and 180° orientations. The linear, open nature of the I-shaped design allows for more efficient light distribution and 

minimizes the effect of excess heat, thus lowering the cooling and heating energy load. The effectiveness of this design 

in reducing the EUI demonstrates how architecture that strategically considers building orientation and shape can 

enhance energy efficiency. 

The average EUI observed in Busan is approximately 114 kWh/m²/yr, indicating that building orientation and design 

are crucial for determining energy efficiency. A higher EUI is typically associated with orientations that maximize 

exposure to direct sunlight, resulting in greater cooling loads. By contrast, orientations that optimize natural light 

reception without overheating tend to result in lower EUIs. This condition highlights the importance of considering 

orientation in building planning to maximize energy efficiency and minimize buildings' environmental impact. 

The EUI values at the 140°N orientation notably vary across climatic zones and architectural forms, as shown in 

Figure 8. Murmansk, situated in the coldest climate zone (ASHRAE Zone 7), exhibits the greatest energy consumption 

among all sites, with the existing building registering a peak EUI of 305 kWh/m²/yr. The optimized designs, including 

the I- and U-shaped structures, have notably elevated EUI values of 227 and 246 kWh/m²/yr, respectively. This shows 

the primary impact of heating needs in frigid areas, where sustaining interior thermal comfort necessitates considerable 

energy. The persistently elevated EUI values across all configurations in this region highlights the difficulty of attaining 

energy efficiency in extreme cold. 

In warmer climates, such as Durban (ASHRAE Zone 2A), buildings have significantly lower EUI values. The I-

shaped design attains an EUI of 103 kWh/m²/yr, whereas the T- and L-shaped structures exhibit comparable efficiencies, 

registering 101 and 102 kWh/m²/yr, respectively, as seen in Figure 8. The notable decrease in energy consumption is 

mostly ascribed to the advantageous climatic conditions, which diminish dependence on active heating and cooling 

systems. The more intricate designs, such as the U- and H-shaped designs, exhibit superior performance in warmer 

regions, achieving EUI values of approximately 101 kWh/m²/yr. These patterns demonstrate the efficacy of passive 

cooling and natural ventilation in tropical and subtropical areas. 
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Figure 8. EUI vs. Climate Zone for Different Building Shapes at 140°N Orientation 

Moderate climatic zones, such as Busan (ASHRAE Zone 3A), exhibit intermediate EUI values, with the existing 

structure having an EUI of 125 kWh/m²/yr. The I-shaped design is the most efficient among the compared forms, 

exhibiting an EUI of 110 kWh/m²/yr, followed by the L- and T-shaped designs, which have EUI values of 114 and 113 

kWh/m²/yr, respectively. Figure 8 illustrates that the more intricate forms, specifically the U- and H-shaped designs, 

exhibit marginally elevated energy consumption, having EUI values of 117 and 116 kWh/m²/yr, respectively. These 

results underscore the relationship between climatic conditions and architectural geometries: simpler, more linear forms 

generally exhibit superior energy efficiency, even under mild environmental conditions. 

Figure 9 illustrates the EUI variations between different building types and façade materials in Busan. The metal 

deck of the current structure exhibits the greatest EUI: 143 kWh/m²/yr. This signifies inadequate thermal efficiency, 

resulting in heightened cooling requirements during the warmer months. The brick plaster on the existing structure 

likewise yields a significant EUI of 133 kWh/m²/yr. This material, albeit esthetically appealing, has inadequate energy 

efficiency. 

 

Figure 9. EUI vs. Façade Material for Buildings in Busan 
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Advanced materials, such as triple-pane insulated glass and vacuum-insulated glass, exhibit superior performance. 

Triple-pane insulated glass attains an EUI of 103 kWh/m²/yr in the I-shaped structure and 116 kWh/m²/yr in the existing 

edifice. Vacuum-insulated glass exhibits low EUI values of 108 kWh/m²/yr in the U-shaped structure and 101 kWh/m²/yr 

in the I-shaped structure. These materials regularly diminish heat transfer, thus enhancing energy efficiency. 

Materials such as single-pane glass and metal decking typically yield elevated EUI values of over 125 kWh/m²/yr. 

Materials with moderate performance, including low-E glass and argon-filled insulated glass, have an energy 

consumption range of 105–121 kWh/m²/yr. Building geometry significantly affects these results: simpler designs, such 

as the I-shaped one, perform excellently across all façade materials. Figure 9 illustrates the significance of integrating 

suitable materials with effective design configurations to enhance building energy performance. 

The results in Figure 10 reveal significant EUI differences across various internal load parameters and HVAC system 

types for different building shapes in Busan. Buildings with high internal loads, namely, a high EPD (20 W/m²) and a 

high LPD (12 W/m²), exhibit consistently higher EUI values. For example, the H-shaped design reaches a maximum 

EUI of 127 kWh/m²/yr at a high EPD, whereas the U-shaped design has an EUI of 128 kWh/m²/yr at the same EPD. 

These values highlight the effect of elevated EPDs and LPDs on energy demand, particularly in buildings with complex 

shapes, such as H- and U-shaped ones. 

 

Figure 10. EUI vs. Internal Load and HVAC System Type 

The I-shaped building demonstrates superior energy performance at lower internal loads. At a low EPD (10 W/m²), 

the I-shaped building achieves the lowest recorded EUI of 99 kWh/m²/yr. Even under medium EPD and medium LPD 

conditions, its EUI values remain low, ranging between 104 and 110 kWh/m²/yr. These results indicate the efficiency 

of linear, compact designs in reducing energy consumption, particularly at minimal internal loads. As shown in Figure 

10, buildings with simpler geometries, such as the I- and L-shaped ones, consistently outperform their more complex 

counterparts under similar conditions. 

The HVAC system type also plays a critical role in determining the EUI. Buildings equipped with variable-

refrigerant-flow (VRF) fan coils achieve significantly lower EUI values than those using fan coil units and central plants. 

For instance, the existing building's EUI with fan coil units, 125 kWh/m²/yr, decreases to 111 kWh/m²/yr with VRF fan 

coils. This trend is consistent across all building shapes, with VRF systems reducing the EUI by 5%–10%. Therefore, 

the combination of efficient HVAC systems and optimized internal loads can substantially improve building energy 

performance. 

Figure 11 highlights the substantial influence of PV systems on the EUI of buildings in Busan. The existing building, 

lacking any PV system, has an EUI of 125 kWh/m²/yr. This value diminishes markedly to 91 kWh/m²/yr at a 15% PV 

efficiency and further declines to 80 kWh/m²/yr at a 20% PV efficiency. These results underscore the significant decrease 

in energy usage attainable through the integration of PV systems into architectural design. 
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Figure 11. EUI vs. Solar PV Application in Buildings in Busan 

The I-shaped structure exhibits exceptional energy efficiency when integrated with PV systems. In the absence of 
PV systems, it exhibits an EUI of 110 kWh/m²/yr. At a 20% PV efficiency, its EUI decreases considerably to −14 
kWh/m²/yr, signifying that the building produces more energy than it utilizes. At a 15% PV efficiency, the EUI 
diminishes to just 17 kWh/m²/yr. These results demonstrate the efficacy of PV systems in attaining energy-positive 
results, especially in efficient building geometries, such as the I-shaped design. 

The direction and inclination of PV panels also significantly influence the EUI. A southeast-facing panel orientation 
of 135° yields an EUI of 94 kWh/m²/yr in the existing building, but a southwest-facing orientation of −45° results in an 

EUI of 103 kWh/m²/yr. A 30° tilt performs excellently compared with a 0° tilt. The I-shaped building has an EUI of 17 
kWh/m²/yr at a 30° tilt but 29 kWh/m²/yr at a 0° tilt. This underscores the need to optimize panel positioning to enhance 
solar energy capture. 

EUI reduction increases with PV efficiency across all building types. In the absence of PV systems, the average 
building EUI values are 116–125 kWh/m²/yr. At a 15% PV efficiency, the average EUI lowers to 64–91 kWh/m²/yr, 
and at a 20% PV efficiency, it further diminishes to 33–80 kWh/m²/yr. Thus, PV systems efficiently reduce energy 
consumption while yielding energy-positive results for specific building types. 

3.2. Model Performance and Deployment 

We examined the benchmark model's EUI predictions and implemented it with a graphical interface for easier use. 

3.2.1. Model Benchmarking Results 

According to the model benchmarking results in Table 4, XGBoost achieves an exceptionally high R-squared value 
of 0.99 (±0.01), indicating that this model can explain 99% of the variability in the target variable. This high R-squared 

value is primarily attributed to the characteristics of the dataset, which was created using Sefaira, a parametric 
architectural tool that uses a robust mathematical model to forecast RES EUI by considering various parametric 
conditions. The machine learning models were essentially developed to replicate the output of the Sefaira base model. 
Sefaira's output remains consistent with its internal model when anomalies are introduced into the input. This consistent 
output is subsequently used as the truth data during training. 

Table 4. Benchmarking Results of Five Models on Three Metrics 

 LR XGBoost RFR GBR SVM 

R-Squared (SD) 0.94 (0.01) 0.99 (0.01) 0.98 (0.01) 0.98 (0.01) 0.06 (0.04) 

RMSE (SD) 12.09 (1.50) 4.57 (0.84) 5.73 (0.83) 6.98 (1.03) 48.04 (3.01) 

MAE (SD) 7.62 (0.60) 1.99 (0.20) 3.01 (0.28) 3.29 (0.21) 31.67 (2.43) 

Consequently, the machine learning model continues to exhibit exceptionally high accuracy. RFR and GBR 
demonstrate significant predictive capability, both achieving an R-squared value of 0.98 (±0.01). RFR marginally 
outperforms GBR in terms of the RMSE and MAE. LR likewise has a good R-squared value of 0.94 (±0.01), but its 
error measures are higher than those of the top three models. 
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Interestingly, the top-performing models (XGBoost, RFR, and GBR) are all ensemble methods, highlighting their 
effectiveness in capturing complex patterns in data and showing the nonlinear relationship between the input features 
and RES EUI. By contrast, the SVM model performs poorly, with an R-squared of only 0.06 (±0.04) and a much higher 

error value, indicating its unsuitability for this task without extensive tuning. These results underscore the importance 
of model selection in energy consumption prediction and suggest that ensemble methods, particularly XGBoost, may be 
particularly suitable for EUI estimation. However, these models should be further tested using more varied data to assess 
their robustness under less controlled conditions. 

3.2.2. Feature Importance 

We assessed the importance of each feature to determine the most significant weights in EUI prediction based on 
each machine learning model. We then ranked them from largest to smallest, according to the best-performing model 
(XGBoost). However, in tree-based models, including XGBoost, feature importance does not directly indicate a causal 
relationship or correlation between features and target variables. This reflects the relative importance of features for 
model prediction. 

Climate zones are the most influential factor in analyzing the feature importance data for predicting RES EUI using 
the XGBoost model. The model assigns the highest importance to climate zone 7 (0.6753), followed by zones 6A 
(0.0836) and 2A (0.0165), indicating that geographic and weather-related variables play a crucial role in defining energy 

consumption patterns. Interestingly, the second most important feature is related to PV systems (PV panel area, 0.1561), 
suggesting that on-site renewable energy generation significantly impacts the overall EUI. The HVAC system type, 
particularly that with fan coil units and a central plant (0.0189), is also a top predictor, highlighting the importance of 
heating and cooling loads in building energy consumption. These findings are presented in Table 5. 

Table 5. Feature Importance of Compared Models (Sorted Using XGBoost) 

 LR XGBoost RFR GBR SVM 

Climate zone: 7 4528797652 0.6753106 0.57895963 0.5191214 5.93E−10 

PV panel area −0.0100613 0.15610759 0.17401452 0.17547178 n/a 

Climate zone: 6A 4528797591 0.0835563 0.06479539 0.04178501 2.52E−11 

HVAC type: fan coil units and central plan 6.23664769 0.01894984 0.00436442 0.00351075 4.79E−06 

Climate zone: 2A 4528797576 0.01653481 0.02195132 0.02026711 0.00853889 

Climate zone: 5A 4528797585 0.01320698 0.02153283 0.01535783 8.62E−11 

Roof type: concrete −0.5872072 0.0046927 0.00059881 0.00180147 1.02E−10 

Climate zone: 4A 4528797546 0.0046745 0.00220305 0.02706119 3.22E−11 

Heating equipment design capacity 0.10618511 0.00431184 0.06011499 0.14479743 n/a 

PV panel efficiency −3.6500301 0.003307 0.00365433 0.00500414 n/a 

Floor finish: tiles −3.1312618 0.00327052 0.00043843 0.00066108 6.54E−10 

Cooling equipment design capacity −0.0006291 0.00303468 0.05025901 0.03294517 n/a 

EPD 2.00703666 0.00291028 0.00143681 0.00206033 n/a 

Climate zone: 3A 4528797563 0.00241579 0.00162409 0.00159645 2.90E−09 

LPD 2.1575934 0.00157245 0.00062005 0.00069449 n/a 

PV panel orientation −0.0341373 0.00121757 0.00185087 0.00160071 n/a 

Infiltration rate 13.1414843 0.00120967 0.00060339 0.00046044 n/a 

Climate zone: 0A 4528797630 0.00105655 0.00026757 0.00022571 2.57E−08 

Façade glazing U-value 2.17273578 0.00101224 0.00081678 0.00056295 0.00040307 

PV panel tilt 0.04200055 0.00033519 0.00030575 0.00048796 n/a 

Total floor area −0.0022201 0.00031315 0.00077557 4.87E−05 0.00941174 

Wall type: precast concrete −0.6289629 0.0002461 7.99E−05 0 3.09E−09 

Façade glazing SHGC −0.0530887 0.00020767 0.00069462 0.00074941 n/a 

Wall type: concrete block −0.0128642 0.00016681 3.59E−05 0 3.68E−10 

Wall type: brick plaster 0.64179694 0.0001651 2.78E−05 0 9.52E−10 

Climate zone: 1A 4528797626 0.00012642 0.00010864 0.00025551 1.93E−07 

Floor finish: hardwood 2.75393596 5.15E−05 8.16E−05 0 3.78E−09 

Building orientation 0.00172187 2.86E−05 0.00011267 0 0.11951629 

Floor finish: carpet 0.37733367 7.56E−06 5.52E−05 0 1.08E−11 

Floor U-value 4.22156619 0 0.00038788 0.00103373 n/a 

Roof U-value 2.40748417 0 0.00050358 0.00063877 n/a 

Walls U-value 0.7149665 0 0.00010879 0 n/a 

Roof type: metal deck 0.58718838 0 0.00077127 0.00038755 5.07E−09 

HVAC type: VRF fan coils −6.2366422 0 0.00584456 0.00141293 1.31E−07 
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This hierarchy of feature importance reveals that macro level factors, such as climate conditions and major building 

systems, substantially influence RES EUI more than specific building envelope characteristics or materials. Notably, 

attributes such as wall type, roof type, and glazing properties exhibit relatively low importance in the model. Thus, 

although detailed building characteristics are relevant, their effect on the EUI may be overshadowed by or implicitly 

captured through broader environmental and systemic factors. These findings have significant implications for energy-

efficient building design and policymaking, highlighting the need to prioritize climate-appropriate strategies and 

renewable energy integration to reduce residential energy consumption. 

3.2.3. Deployment 

As shown in Figure 12, we developed the machine learning models in Python, specifically using the scikit-learn 

library, called inference models. This model, a mathematical representation of a problem, is trained to make predictions 

or decisions. The model used in this study, developed using the XGBoost algorithm, consists of a decision tree that 

provides leaf scores. 

 

Figure 12. Web Interface of RES EUI Estimator 

However, the model output, when run in Python, is generally displayed on a terminal; this may not be user-friendly, 

especially for those without a technical background. Therefore, to make the prediction model accessible and enable users 

to interact with it intuitively, we developed a Web-based interface using JavaScript for the front end and Flask for the 

back end. 

This Web application allows users to interact with the prediction model conveniently without needing to interact 

directly with the Python code. Users can enter values for each feature through this Web interface. They can select items 

from drop-down menus for categorical features based on the training data used during model development. Additionally, 

this Web interface offers the option to generate random values for each feature and predict the EUI. 

3.3. Validation Results and Model Refinement 

Validation was conducted by comparing the interior temperature data derived from the EnergyPlus simulations with 

the data measured using the TR-72nw temperature and humidity logger in the room in April 2024. In addition, direct 

measurements from the Vantage Pro2 weather station on the rooftop of building S04 were compared with the climate 

data used in the simulations, sourced from the EPW file. This comparison focused on the outdoor temperature, humidity, 

and wind speed. 
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Validation was performed to assess the accuracy of the data points and ensure model reliability. By identifying and 

addressing discrepancies between the simulation and real-world data, we further customize the model to provide more 

precise estimates of building energy performance. The comparison results and the measures taken to enhance model 

precision are as follows (Figure 13): 

  

(a) (b) 

  

(c) (d) 

Figure 13. Comparison of Real-World and Simulated Data: (a) Indoor Temperature, (b) Dry Bulb Temperature, (c) 

Relative Humidity, (d) Wind Speed 

The box-plot graphs in Figure 13 indicate notable disparities between the actual and simulated data. In Figure 13a, 

the indoor temperature distribution demonstrates that the simulated data are more stable, with the median temperature 

being 13°C to 14°C. The real-world data show more significant fluctuations, with the median temperature varying from 

16°C to 18.5°C. In Figure 13b, the simulation's dry bulb temperature (DBT) is consistently 10% to 15% lower than the 

real-world data. Thus, the simulation tends to generate lower temperature fluctuations. 

Figure 13c demonstrates that the simulated data inadequately account for fluctuations in relative humidity, resulting 

in a discrepancy of up to 20% relative to the actual data. This discrepancy is particularly noticeable during specific 

periods, such as morning and night. Figure 13d shows that the simulated wind speed is consistently lower and has a 

narrower range compared with the real-world data, with a discrepancy of up to 30%, particularly during daylight hours. 

Although the two datasets have comparable overall trends throughout the day, the simulation often fails to represent the 

actual conditions accurately, indicating limitations in the simulation model. 

The correlation analysis in Figure 14 highlights the critical relationships between the real-world and simulated data, 

providing insights into the model's performance and areas for refinement. The strong positive correlation (r = 0.97) 

between indoor temperature and DBT means the simulation effectively captures the influence of external climatic 

conditions on indoor environments. This finding is consistent with previous studies emphasizing the role of external 

temperatures in building energy performance, particularly in regions with limited insulation or low-efficiency HVAC 

systems. The moderate negative correlation between wind speed and indoor temperature (r = −0.30 to r = −0.40) reflects 

the cooling effects of increased ventilation, aligning with research on natural ventilation strategies. However, the weaker 

correlation suggests that the simulation may not fully capture the variability introduced by wind-driven cooling in 

buildings with complex ventilation dynamics or nonstandard envelope performance. 
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Figure 14. Correlation Matrix between Real-World and Simulated Data 

According to the relative humidity correlation between the simulated and real-world data (r = 0.60 to r = 0.70), 

although the model captures general trends, it struggles with finer fluctuations. This agrees with prior research 

highlighting the challenges of modeling humidity due to its dependence on external weather conditions and internal 

loads, such as occupancy and equipment use. Therefore, the simulation model should be refined to incorporate more 

detailed representations of internal heat and moisture sources for enhanced accuracy in predicting energy performance. 

This study adds to the growing body of NZEB literature by validating simulation results against empirical data, a 

crucial step in ensuring the reliability of EUI prediction. Comparing such data across diverse climate zones demonstrates 

the broad applicability of the findings and sheds light on the regional variations influencing energy performance. For 

example, discrepancies in relative humidity and wind speed indicate the potential need for improvements to better reflect 

real-world dynamics, particularly in buildings under varying external and internal conditions. 

This study focuses on the accuracy of energy consumption and EUI prediction. It does not address factors such as 

cost implications, socioeconomic influences, or construction conditions. These aspects are beyond the study's objectives, 

as the primary aim is to integrate advanced machine learning models, such as XGBoost, with parametric architecture to 

enhance energy performance prediction. Future work can broaden this study by exploring the abovementioned factors, 

contributing further to the development of NZEB frameworks and sustainable building design practices. 

4. Conclusions 

We conducted 1,350 simulations using Sefaira to analyze the impacts of different design parameters on building 

EUI. The simulations included six building types—the existing building and I-, T-, U-, and H-shaped buildings—in 

eight locations according to the ASHRAE 90.1 climate zones. The simulation results indicate that the building 

orientation, shape, and climatic conditions are essential factors affecting the EUI. For example, buildings facing 135°, 

90°, 135°, and 270° show higher EUI values, whereas the 0° and 180° orientations enable the efficient management of 

solar light and heat gain. 

In addition, façade materials, internal loads, HVAC systems, and PV applications significantly impact the EUI. 

Facades with triple-pane insulated glass and low-E glass perform the best, whereas metal deck roofs show the worst 

performance. As for HVAC systems, VRF fan coils are more often efficient than fan coil units and central plants. The 

use of PV panels with a 20% PV efficiency, a 135° orientation, and a 30° inclination can significantly reduce the EUI, 

even reaching negative values in some I-shaped buildings, indicating the potential to achieve NZEB status. 

This study highlights the role of building orientation and design factors in reducing energy consumption, thus 

substantially contributing to sustainable building design and optimization. In particular, XGBoost demonstrates 

exceptional efficacy in EUI forecasting, with an R-squared value of 0.99, an RMSE of 4.57, and an MAE of 1.99. 
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However, high R-squared values may not accurately represent the variability that can arise in real-world conditions, 

where the input data may not be as pure or systematic as those generated in a controlled environment, such as that used 

in this study. A model's reliability and robustness under less controlled conditions can be assessed using a broad range 

of real-world data, including various building types and materials. The proposed methodology can enhance current 

architectural design practices by providing comprehensive benefits across a diverse array of building functions and 

climatic conditions. Architects and planners can create more sustainable and efficient structures by understanding the 

correlation between local climatic conditions, building orientations, and building design. Aside from contributing to 

theoretical knowledge, this study has practical implications for the building sector, aiding in the attainment of NZEB 

standards and reducing the environmental impact of buildings. 

In this study, a controlled dataset was used to benchmark the performance of the XGBoost model. Future work will 

focus on validating the model using noisy real-world datasets. These datasets will include potential challenges, such as 

measurement errors, missing values, and inconsistent feature distributions, which are often encountered in practical 

scenarios. To evaluate the robustness of the model to these problems, we will incorporate data augmentation to simulate 

real-world noise and test the model's performance. In addition, we aim to collaborate with stakeholders in the building 

energy sector to obtain real-world datasets and assess the model's predictive accuracy and reliability in operational 

settings. This future direction will ensure that this study's findings are applicable to and impactful in practical energy 

efficiency applications. 
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