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Abstract 

The objective of this paper is to provide a novel method for developing the shape functions of a beam-column element 

with semi-rigid connection ends, thereby establishing a static analysis method for semi-rigid steel frames. This method 

takes into account the influence of the P-Delta effect, according to the finite element method based on displacement (FEM). 

The shape function is established directly from a third-order Hermitian displacement function polynomial combined with 

the bending element deflection differential equation. The linear elastic stiffness matrix, the geometric stiffness matrix of a 

semi-rigid connection beam-column, and the equilibrium equation of the element in a local coordinate system are 

simultaneously obtained by applying Castigliano’s theorem (Part 1) for elastic deformation potential energy expression. 

The computational program was developed using Matlab software, and the calculation results are verified against published 

research results, showing that the derived shape functions and the steel frame analysis method are reliable and trustworthy. 

In addition, this article also derives stiffness matrices and an equivalent nodal load vector for specific cases where the 

semi-rigid connection is fully rigid (FR) or a pin connection. The derived shape functions are polynomial expressions with 

coefficients that are simply calculated from the connection stiffness and the geometric and material characteristics of the 

element, making them highly convenient to use. 

Keywords: Steel Frames; Beam-Column Element; Semi-Rigid Connection; Shape Functions; Second-Order Static Analysis. 

 

1. Introduction 

Steel frames are one of the main types of load-bearing structures, and they are often used in high-rise construction 

projects. Due to the characteristics of manufacturing and erecting steel frames using the assembly method, beam joints, 

column joints, column bases joints, and especially beam-column joints are often semi-rigid connections. Studies on the 

analysis of semi-rigid steel frames, including those by Stelmack (1982) [1], Chen & Lui (1987) [2], Anh (2003) [3], 

Quang (2012) [4], and Chan & Chui (2000) [5], have shown that semi-rigid connections play an important role in the 

behavior of frame structures. To obtain analysis results closer to the actual behavior of the frame structure and ensure 

an economy design, it is recommended in most cases to use a frame model with semi-rigid connections. In addition, 

steel frames often consist of slender components. Under applied loads, steel frames often experience lateral 

displacements and horizontal movement. At the same time, components sag, causing a significant impact on the 

performance of the frame. The effects due to such changes in geometry and loading are called P-Delta effects or second-

order effects. Analysis that includes the P-Delta effect is also called second-order analysis. When the steel frames have 

semi-rigid connections, the P-Delta effect also changes the stiffness in the connections, leading to changes in the stiffness 
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of the elements and the overall stiffness of the frame, thereby continuing to change the displacement and internal force 

of the frame. In fact, design standards such as AISC-LRFD (2000) [6] or Eurocode 3 (2005) [7] have provided formulas 

for determining the strength and stiffness of semi-rigid connections and regulations on calculating steel frames with 

semi-rigid connections as well as instructions on calculating steel frames considering the influence of P-Delta geometric 

nonlinearity. The existing literature shows that there are essentially seven methods to establish key quantities—such as 

the linear elastic stiffness matrix, geometric stiffness matrix, and equivalent nodal load vector—necessary for second-

order analysis of semi-rigid steel frames. These methods can be summarized as follows: 

First method: Based on the "conjugate beam method", this approach deduces the relationship between force and 

displacement at the ends of the semi-rigid beam element, thereby building an elastic stiffness matrix for the semi-rigid 

beam-column element. This elastic stiffness matrix is presented as the elastic stiffness matrix of a beam-column element 

with both FR ends, multiplied by a correction matrix whose elements are functions of two parameters called the fixity 

factor. A notable contribution to this method was made by Monforton (1962) [8]. Due to the complexity of the 

expression, this method has not yet established the geometric stiffness matrix for the semi-rigid beam-column element. 

Consequently, some authors have combined it with the geometric stiffness matrix of the beam-column element with 

both FR ends for second-order analysis. Researchers such as Dhillon & Abdel-Majid (1990) [9], Xu & Grierson (1993) 

[10], and Xu (2001) [11] have utilized this approach. 

Second method: This method considers the rotating spring as a separate element and assembles it into the FR ends 

beam element to form a hybrid element, that is, the semi-rigid beam element. The main concept of this method is that 

the “internal moment” (on the spring side connected to the beam) and the “external moment” (on the spring side 

connected to the column) for each spring are balanced; and it is necessary to shorten the "free internal displacements" 

corresponding to the "internal moments" of the relationship between the moment, stiffness, and rotation angle of the 

hybrid element. The stiffness of the hybrid element is obtained by directly adding the stiffness of the corresponding 

connections to the bending stiffness in the elastic stiffness matrix of the double-end FR beam element. Lui & Chen 

(1985) [12] presented this method early on, and it is widely used in first-order analysis. Xu (1992) [13] assembled a 

rotating spring element into a FR double-end beam-column element to establish the stiffness matrix of the semi-rigid 

beam-column element, which includes a linear elastic stiffness matrix and a geometric stiffness matrix, which is used in 

second-order analysis. Researchers such as Chan & Chui (2000) [5], Chen (2000) [14], and Xu (2001) [11] have 

employed this method. 

Third method: This approach adjusts the rotation angle of the beam ends in the slope-deflection expression of the 

FR double-ended beam-column element, without relative horizontal displacement between the ends, to consider the 

presence of a semi-rigid connection and relative horizontal displacement between the ends. According to Bažant & 

Cedolin (2010) [15], the slope-deflection expression represents the moment-rotation angle relationship (when there is 

no relative horizontal displacement between the ends) at the two ends of the beam-column element, with parameters 

defined as stability functions located in a square matrix of size 2´2, as introduced by James (1935), in work related to 

the moment distribution method. Chen & Lui (1987) [2] divided frame elements into two types: semi-rigid beam-column 

elements and double-end FR column elements. The stiffness matrix of the semi-rigid beam-column element, whose 

coefficients are stability functions, is established considering the effects of both the semi-rigid connection and relative 

horizontal displacement between ends. When the effect of longitudinal force in this matrix is ignored, the stiffness matrix 

of the semi-rigid beam element is obtained. The stiffness matrix of the column element with two FR ends, whose 

coefficients are stability stiffness functions, is established to consider only the relative horizontal displacement of the 

ends without considering the influence of semi-rigid connections. The stability stiffness functions are complicated when 

they must be divided into two forms: the trigonometric functions for compressive axial force and the hyperbolic 

functions for tensile axial force. When the axial force is small (close to zero), the stability stiffness functions may become 

numerically unstable. The general method to handle transcendental functions in such cases is to expand them in series 

form, retaining the first two or three terms to return to the polynomial functions. This method was established by Chen 

& Lui (1987) [2], and it has been published in many documents. It is widely used in design guidelines according to 

American standards and cited by many authors in their research. These researchers include Dhillon & O'Malley III 

(1999) [16], Kim & Choi (2001) [17], and Nguyen & Kim (2014) [18]. 

Fourth method: Similarly to Chen & Lui (1987) [2], but Quang (2012) [4] adjusted the rotation angle at beam ends 

in the formula to represent the horizontal displacement function according to third-order Hermitian shape functions and 

the nodal displacement vector of the beam element with both FR ends. This approach directly establishes the linear 

elastic stiffness matrix, mass matrix, and equivalent nodal load vector of the semi-rigid beam-column element for elastic-

plastic analysis of semi-rigid steel frames. Although this method can be considered the fourth method for establishing 

quantities for calculating semi-rigid frames, it has not yet established a geometric stiffness matrix for semi-rigid beam-

column elements, so it cannot be used in second-order analysis. 

Thus, for second-order analysis of semi-rigid steel frames, the first method needs to add the geometric stiffness 

matrix of the beam-column element with both FR ends. The second method needs to be based on the elastic stiffness 
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matrix and geometric stiffness matrix of the FR double-ended beam-column element. The third method needs to be 

based on the slope-deflection expression of the FR double-ended beam-column element. All these quantities must have 

existed before. The fourth method also needs to be based on the bending shape functions of the FR double-end beam 

element, and it has not yet established the geometric stiffness matrix for the semi-rigid beam-column element, so it 

cannot be used in second-order analysis. Therefore, to independently and synchronously solve the process of building a 

second-order analysis method for semi-rigid steel frames using the FEM, it is necessary to establish a displacement 

function or shape function (interpolation function) for the semi-rigid beam-column element. The methods for setting 

these functions are presented next. 

Fifth method: Chan & Ho (1994) [19] expressed the horizontal displacement function (in the form of a third-order 

polynomial) of an FR double-end beam element as a function of the axial displacement functions (first-order Lagrangian 

interpolation function), the horizontal, and the rotational displacements of the beam ends. Next, using the spring 

assembly method of Lui & Chen (1985) [12], where the rotation angle at the beam ends through the spring assembly 

method is expressed in terms of the rotation angle at the beam end nodes, the bending stiffness of the beam, and the 

stiffness of the connection. From there, the displacement function of the semi-rigid beam element is obtained. 

Researchers who have used this approach include Chan (1994) [20], Chui & Chan (1997) [21], and Chan & Chui (2000) 

[5]. 

Sixth method: Suarez et al. (1996) [22] adjusted the rotation angle at the beam end in the formula representing the 

horizontal displacement function according to third-order Hermitian shape functions and the nodal displacement vector 

of the FR double-end beam element, transforming and obtaining the displacement function of the semi-rigid beam 

element. This displacement function is expressed in terms of the third-order Hermitian shape functions of the FR double-

end beam element, the stiffness of the element, and the stiffness of the connection. This approach is similar to the rotation 

angle adjustment in the slope-deflection expression of Chen & Lui (1987) [2], but it is applied to the expression of the 

horizontal displacement function. Researchers who have used this method include Senkulovic & Salatic (2001) [23], 

Zohra & Nacer (2002) [24], and Salatic (2019) [25]. 

Seventh method: Developed in Yugoslavia, according to Zlatkov (2015) [26], this method was pioneered by 

Milićević (1986) [27]. In this method, the fixity factor of the connection at each semi-rigid beam end is calculated as 

the ratio between the actual rotation angle of the semi-rigid beam end and the rotation angle of the FR beam end. The 

classical formulas of the first-order theoretical deformation method are used to calculate the rotation angles between the 

chord and the tangents of the elastic line due to deformation caused by unit displacements placed at the nodes. This 

rotation angle expression includes element length, fixity factor, and the moment due to unit displacement (expressed 

through stiffness, element length, and stability functions according to second-order classical calculation theory) at the 

beam ends. The horizontal displacement function is chosen as a third-order Hermitian polynomial with four parameters 

as unknowns. Using the unit displacement method, where one displacement is set equal to a unit value while all the 

remaining displacements are zero, a system of four equations is established from four boundary conditions to determine 

the four unknown parameters of the semi-rigid beam element shape function, corresponding to the unit displacement 

under consideration. This process is repeated sequentially for four displacements, including two linear displacements 

and two rotational displacements, to obtain four shape functions of the semi-rigid beam element. Researchers using this 

method include Zlatkov et al. (2011) [28] and Zlatkov et al. (2020) [29]. Similarly, Anh (2002) [30, 31] applied the unit 

displacement method, the virtual work principle, and the shape function of a beam element with two rigid ends to 

establish the stiffness matrices of a semi-rigid beam-column element. The established quantities were used in a second-

order analysis of semi-rigid frames with nodal rigid zones. 

The two methods of establishing displacement functions of Chan & Ho (1994) [19] and Suarez et al. (1996) [22], 

which basically correspond to the two methods for establishing semi-rigid beam-column elements, are spring assembly 

(Lui & Chen (1985) [12], Xu (1992) [13]) and rotation angle correction [2]. The method of establishing shape functions 

of Milićević (1986) [27] is characterized by the fact that the constructed shape functions are quite cumbersome and still 

depend on the stability function of the beam-column element. Second-order analysis of semi-rigid steel frames is still a 

new field, attracting many researchers, including Nguyen et al. (2021) [32], Dang et al. (2023) [33], and Souza & 

Verdade (2024) [34]. Some authors have explored novel research directions. For example, Saadi et al. (2021) [35] 

established seismic fragility curves to assess the performance of semi-rigid connections in steel frames; Genovese & 

Sofi (2024) [36] developed an interval stiffness matrix for analyzing steel frames with uncertain semi-rigid connections; 

and Jough & Soori (2024) [37] investigated the effect of semi-rigid connections in steel frame structures during 

progressive collapse. 

This article presents a novel approach that establishes shape functions for a semi-rigid beam-column element directly 

from the element's geometric characteristics and the stiffness of its semi-rigid connections. The obtained functional 

formulas of the semi-rigid beam-column element are pure polynomials with parameters built in a simple, coherent, and 

easy-to-use manner. The shape functions of semi-rigid beam-column elements are fundamental for calculating quantities 

for second-order analysis of semi-rigid steel frames according to FEM. The present study contributes to FEM by 
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providing these shape functions. Because the shape function formula is a polynomial, similar to the approach of 

Przemieniecki (1968) [38] for beam-column elements with two rigid ends, the linear elastic stiffness matrix, geometric 

stiffness matrix, and equilibrium equation of a semi-rigid beam-column element in a local coordinate system are also 

derived by applying Castigliano's theorem (Part 1) to the elastic deformation potential energy expression. The equivalent 

nodal load vector of a semi-rigid beam element is obtained from the same formula as for the equivalent nodal load vector 

of a beam element with both FR ends according to FEM. 

2. Establishing the Semi-rigid Beam-column Element Stiffness Matrix 

2.1. Establishing the Shape Function of Semi-Rigid Beam-Column Element 

Consider a beam-column element 𝑒𝑡ℎ, where the connections at the ends A and B are elastic rotational springs, 

forming a semi-rigid beam-column element. The local coordinate system Oxy has the x-axis coincident with the 

longitudinal axis of the element, the y-axis perpendicular to the element’s longitudinal axis and pointing upward, with 

the origin of coordinates at end A. The symbols 𝐴, 𝐼, 𝐿, and 𝐸 represent the cross-sectional area, moment of inertia, 

length, and elastic modulus of the material, respectively. In the 𝑖𝑡ℎ loading step, the symbols 𝑁𝐴, 𝑄𝐴, and 𝑀𝐴 represent 

the longitudinal force (in the x-axis direction), shear force (in the y-axis direction), and bending moment (rotation around 

the z-axis) at end A, respectively, and similarly for 𝑁𝐵, 𝑄𝐵 , and 𝑀𝐵 at end B. 

The displacements 𝑢𝐴, 𝑣𝐴, and 𝑢𝐵, 𝑣𝐵 represent the axial and horizontal (or vertical) displacements of node A and 

node B, respectively. The rotational displacements around the z-axis of the frame nodes at A and B are denoted by 𝜃𝐴 

and 𝜃𝐵, while 𝜃𝑒𝐴 and 𝜃𝑒𝐵 are the rotation angles at the beam ends. The connection rotational angles at node A and B 

are denoted as 𝜃𝑐𝐴 and 𝜃𝑐𝐵, respectively. The rotational stiffnesses of the connections at nodes A and B are denoted by 

𝑘𝐴 and 𝑘𝐵, respectively. 

Figure 1 illustrates the kinematic relationship between displacement, internal force, and deformation of an element 

with a semi-rigid connection. Assuming the semi-rigid connection has no dimensions and neglecting the effects of axial 

and shear forces on the connection’s operation, the element material is considered linearly elastic, the beam follows the 

Euler-Bernoulli model, and the connection’s moment-rotation relationship can be linear, multi-linear, or non-linear. 

 

Figure 1. Semi-rigid beam-column element 

The nodal displacement vector of the 𝑒𝑡ℎ element, at the 𝑖𝑡ℎ loading step, in the local coordinate system is: 

{𝛿𝑠}𝑒 = {𝑢𝐴 𝑣𝐴 𝜃𝑒𝐴 𝑢𝐵 𝑣𝐵 𝜃𝑒𝐵}
𝑇  (1) 

To establish the stiffness matrices for the semi-rigid beam-column element, shape functions must be developed 

considering the stiffness of the connections at both ends. Let the cross-section at position 𝑥 from end A has three 

displacement components: axial displacement 𝑢𝑥 , horizontal displacement 𝑣𝑥 , and rotational displacement 𝜃𝑥 . The 

rotational and horizontal displacement are related 𝜃𝑥 =
𝑑𝑣𝑥

𝑑𝑥
, thus, 𝑢𝑥 and 𝑣𝑥 are selected as representative displacement 

functions. 

Assuming a polynomial displacement function. For axial load element, each node of the element has one degree of 

freedom, giving the entire element two degrees of freedom, so the displacement function 𝑢𝑥 has two parameters 𝑎1 and 

𝑎2. The displacement function polynomial is selected as a first-order form. For bending element, each node has two 

degrees of freedom, so the displacement function 𝑣𝑥 has four parameters 𝑎3, 𝑎4, 𝑎5, and 𝑎6. The displacement function 

polynomial is chosen as a third-order Hermitian function. The vector of displacement functions is given by: 

{𝑢} = {
𝑢𝑥
𝑣𝑥
} = {

𝑎1 + 𝑎2𝑥

𝑎3 + 𝑎4𝑥 + 𝑎5𝑥
2 + 𝑎6𝑥

3} = [
1 𝑥 0 0 0 0
0 0 1 𝑥 𝑥2 𝑥3

] {𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6}𝑇  (2) 
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According to the differential relationship, the rotation displacement function can be calculated as follows: 

𝜃𝑥 = 𝑣𝑥
′ = 𝑎4 + 2𝑎5𝑥 + 3𝑎6𝑥

2  (3) 

Combining with the differential equation for deflection, obtaining the moment function 𝑀𝑥: 

±
𝑀𝑥

𝐸𝐼
= 𝑣𝑥

′′ = 2𝑎5 + 6𝑎6𝑥  (4) 

At end A, 𝑥 = 0: 

𝑀(𝑥 = 0) = 𝑀𝐴 = −2𝐸𝐼𝑎5  (5) 

At end B, 𝑥 = 𝐿: 

𝑀(𝑥 = 𝐿) = 𝑀𝐵 = 2𝐸𝐼𝑎5 + 6𝐸𝐼𝐿𝑎6  (6) 

The rotation angle at nodes A and B can be written as: 

𝜃𝐴 = 𝜃𝑒𝐴 + 𝜃𝑐𝐴 = 𝜃𝑒𝐴 +
𝑀𝐴

𝑘𝐴

𝜃𝐵 = 𝜃𝑒𝐵 + 𝜃𝑐𝐵 = 𝜃𝑒𝐵 +
𝑀𝐵

𝑘𝐵

  (7) 

Substituting 𝑀𝐴 and 𝑀𝐵 in Equations 5 and 6 into Equation 7, the expressions for the rotation angles at ends become: 

{
𝜃𝑒𝐴 = 𝜃𝐴 +

2𝐸𝐼

𝑘𝐴
𝑎5

𝜃𝑒𝐵 = 𝜃𝐵 −
2𝐸𝐼

𝑘𝐵
𝑎5 −

6𝐸𝐼𝐿

𝑘𝐵
𝑎6

  (8) 

Boundary conditions at the ends of the element are then applied: 

{
 
 
 

 
 
 
𝑢𝐴 ≡ 𝑢(𝑥 = 0) = 𝑎1
𝑣𝐴 ≡ 𝑣(𝑥 = 0) = 𝑎3

𝜃𝑒𝐴 ≡ 𝜃(𝑥 = 0) = 𝜃𝐴 +
2𝐸𝐼

𝑘𝐴
𝑎5 = 𝑎4

𝑢𝐵 ≡ 𝑢(𝑥 = 𝐿) = 𝑎1 + 𝑎2𝐿

𝑣𝐵 ≡ 𝑣(𝑥 = 𝐿) = 𝑎3 + 𝑎4𝐿 + 𝑎5𝐿
2 + 𝑎6𝐿

3

𝜃𝑒𝐵 ≡ 𝜃(𝑥 = 𝐿) = 𝜃𝐵 −
2𝐸𝐼

𝑘𝐵
𝑎5 −

6𝐸𝐼𝐿

𝑘𝐵
𝑎6 = 𝑎4 + 2𝑎5𝐿 + 3𝑎6𝐿

2

  (9) 

Arranging and simplifying Equation 9, it takes the form: 

{
 
 
 

 
 
 
𝑢𝐴 = 𝑎1
𝑣𝐴 = 𝑎3

𝜃𝐴 = 𝑎4 −
2𝐸𝐼

𝑘𝐴
𝑎5

𝑢𝐵 = 𝑎1 + 𝑎2𝐿

𝑣𝐵 = 𝑎3 + 𝑎4𝐿 + 𝑎5𝐿
2 + 𝑎6𝐿

3

𝜃𝐵 = 𝑎4 +
2(𝐿𝑘𝐵+𝐸𝐼)

𝑘𝐵
𝑎5 +

3(𝐿2𝑘𝐵+2𝐸𝐼𝐿)

𝑘𝐵
𝑎6

  (10) 

Write Equation 10 in matrix form: 

{𝛿𝑠}𝑒 =

[
 
 
 
 
 
 
1 0 0 0 0 0
0 0 1 0 0 0

0 0 0 1 −
2𝐸𝐼

𝑘𝐴
0

1 𝐿 0 0 0 0
0 0 1 𝐿 𝐿2 𝐿3

0 0 0 1
2(𝐿𝑘𝐵+𝐸𝐼)

𝑘𝐵

3(𝐿2𝑘𝐵+2𝐸𝐼𝐿)

𝑘𝐵 ]
 
 
 
 
 
 

{
 
 

 
 
𝑎1
𝑎2
𝑎3
𝑎4
𝑎5
𝑎6}
 
 

 
 

= [𝐶]{𝑎}  (11) 

In Equation 2, we have the symbol: 

[𝑋(𝑥)] = [
1 𝑥 0 0 0 0
0 0 1 𝑥 𝑥2 𝑥3

]  (12) 

here [𝐶] is the constant matrix and [𝑋(𝑥)] is a matrix of monomials. 
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In the FEM, takes the formula: 

[𝑁(𝑥)] = [𝑋(𝑥)][𝐶]−1 = [
𝑁1(𝑥) 0 0 𝑁4(𝑥) 0 0
0 𝑁2(𝑥) 𝑁3(𝑥) 0 𝑁5(𝑥) 𝑁6(𝑥)

]  (13) 

Performing the calculation of the inverse matrix [𝐶]−1, and substituting Equation 12 into Equation 13, we obtain the 

shape functional equations as follows: 

𝑁1(𝑥) = 1 −
𝑥

𝐿
, 𝑁4(𝑥) =

𝑥

𝐿
 

(14) 

𝑁2(𝑥) = 1 −
6𝑥𝐸𝐼(2𝐸𝐼+𝐿𝑘𝐵)

𝐿(12𝐸2𝐼2+4𝐸𝐼𝐿𝑘𝐴+4𝐸𝐼𝐿𝑘𝐵+𝐿
2𝑘𝐴𝑘𝐵)

−
3𝑥2(2𝐸𝐼+𝐿𝑘𝐵)𝑘𝐴

𝐿(12𝐸2𝐼2+4𝐸𝐼𝐿𝑘𝐴+4𝐸𝐼𝐿𝑘𝐵+𝐿
2𝑘𝐴𝑘𝐵)

+
2𝑥3(𝐸𝐼𝑘𝐴+𝐸𝐼𝑘𝐵+𝐿𝑘𝐴𝑘𝐵)

𝐿2(12𝐸2𝐼2+4𝐸𝐼𝐿𝑘𝐴+4𝐸𝐼𝐿𝑘𝐵+𝐿
2𝑘𝐴𝑘𝐵)

  

𝑁3(𝑥) =
𝑥𝐿(4𝐸𝐼+𝐿𝑘𝐵)𝑘𝐴

12𝐸2𝐼2+4𝐸𝐼𝐿𝑘𝐴+4𝐸𝐼𝐿𝑘𝐵+𝐿
2𝑘𝐴𝑘𝐵

−
2𝑥2(3𝐸𝐼+𝐿𝑘𝐵)𝑘𝐴

12𝐸2𝐼2+4𝐸𝐼𝐿𝑘𝐴+4𝐸𝐼𝐿𝑘𝐵+𝐿
2𝑘𝐴𝑘𝐵

+
𝑥3(2𝐸𝐼+𝐿𝑘𝐵)𝑘𝐴

𝐿(12𝐸2𝐼2+4𝐸𝐼𝐿𝑘𝐴+4𝐸𝐼𝐿𝑘𝐵+𝐿
2𝑘𝐴𝑘𝐵)

  

𝑁5(𝑥) =
6𝑥𝐸𝐼(2𝐸𝐼+𝐿𝑘𝐵)

𝐿(12𝐸2𝐼2+4𝐸𝐼𝐿𝑘𝐴+4𝐸𝐼𝐿𝑘𝐵+𝐿
2𝑘𝐴𝑘𝐵)

+
3𝑥2(2𝐸𝐼+𝐿𝑘𝐵)𝑘𝐴

𝐿(12𝐸2𝐼2+4𝐸𝐼𝐿𝑘𝐴+4𝐸𝐼𝐿𝑘𝐵+𝐿
2𝑘𝐴𝑘𝐵)

−
2𝑥3(𝐸𝐼𝑘𝐴+𝐸𝐼𝑘𝐵+𝐿𝑘𝐴𝑘𝐵)

𝐿2(12𝐸2𝐼2+4𝐸𝐼𝐿𝑘𝐴+4𝐸𝐼𝐿𝑘𝐵+𝐿
2𝑘𝐴𝑘𝐵)

  

𝑁6(𝑥) = −
2𝑥𝐿𝐸𝐼𝑘𝐵

12𝐸2𝐼2+4𝐸𝐼𝐿𝑘𝐴+4𝐸𝐼𝐿𝑘𝐵+𝐿
2𝑘𝐴𝑘𝐵

−
𝑥2𝐿𝑘𝐴𝑘𝐵

12𝐸2𝐼2+4𝐸𝐼𝐿𝑘𝐴+4𝐸𝐼𝐿𝑘𝐵+𝐿
2𝑘𝐴𝑘𝐵

+
𝑥3(2𝐸𝐼+𝐿𝑘𝐴)𝑘𝐵

𝐿(12𝐸2𝐼2+4𝐸𝐼𝐿𝑘𝐴+4𝐸𝐼𝐿𝑘𝐵+𝐿
2𝑘𝐴𝑘𝐵)

  

In each loading step, the stiffness of connection, length, as well as the geometric characteristics and material 

properties of the element remain unchanged. The following terms are established for convenience of calculation: 

𝑑0 = 12𝐸2𝐼2 + 4𝐸𝐼𝐿𝑘𝐴 + 4𝐸𝐼𝐿𝑘𝐵 + 𝐿
2𝑘𝐴𝑘𝐵, 𝑑1 =

6𝐸𝐼(2𝐸𝐼+𝐿𝑘𝐵)

𝐿𝑑0
, 𝑑2 =

(2𝐸𝐼+𝐿𝑘𝐵)𝑘𝐴

𝐿𝑑0
 

𝑑3 =
2(𝐸𝐼𝑘𝐴+𝐸𝐼𝑘𝐵+𝐿𝑘𝐴𝑘𝐵)

𝐿2𝑑0
, 𝑑4 =

𝐿(4𝐸𝐼+𝐿𝑘𝐵)𝑘𝐴

𝑑0
, 𝑑5 =

2(3𝐸𝐼+𝐿𝑘𝐵)𝑘𝐴

𝑑0
, 𝑑6 =

2𝐿𝐸𝐼𝑘𝐵

𝑑0
  

𝑑7 =
𝐿𝑘𝐴𝑘𝐵

𝑑0
, 𝑑8 =

(2𝐸𝐼+𝐿𝑘𝐴)𝑘𝐵

𝐿𝑑0
 

(15) 

Substituting Equation 15 into Equation 14, formulas of shape function written in shortened form are obtained as 

follows: 

𝑁1(𝑥) = 1 −
𝑥

𝐿
, 𝑁2(𝑥) = 1 − 𝑑1𝑥 − 3𝑑2𝑥

2 + 𝑑3𝑥
3, 𝑁3(𝑥) = 𝑑4𝑥 − 𝑑5𝑥

2 + 𝑑2𝑥
3, 𝑁4(𝑥) =

𝑥

𝐿
  

𝑁5(𝑥) = 𝑑1𝑥 + 3𝑑2𝑥
2 − 𝑑3𝑥

3, 𝑁6(𝑥) = −𝑑6𝑥 − 𝑑7𝑥
2 + 𝑑8𝑥

3 
(16) 

In Equation 16, the shape functions of the axial displacement 𝑁1(𝑥) and 𝑁4(𝑥) are linear Lagrangian functions as 

for normal tension or compression element; and the shape functions of the horizontal displacement 𝑁2(𝑥), 𝑁3(𝑥), 
𝑁5(𝑥), and 𝑁6(𝑥) have a similar form to the third-order Hermitian shape functions of a bending element with both FR 

ends, but there are differences due to the semi-rigid connection at the two ends. 

2.2. Method for Establishing Stiffness Matrix and Equilibrium Equation of Semi-Rigid Beam-Column Element 

The stiffness matrix of a semi-rigid beam-column element, including both the linear elastic stiffness matrix and the 

geometric stiffness matrix, is established from the deformation potential energy expression of the semi-rigid beam-

column element 𝑈𝑠,𝑒 . Using the Green strain tensor in the Lagrangian coordinate system, and ignoring the influence of 

shear deformation, the axial principal deformation combination 𝜀𝑥𝑥 (including principal deformation due to bending) is 

expressed as follows: 

𝜀𝑥𝑥 =
𝜕𝑢𝑥

𝜕𝑥
−

𝜕2𝑣𝑥

𝜕𝑥2
𝑦 +

1

2
(
𝜕𝑣𝑥

𝜕𝑥
)
2

  (17) 

Substituting Equation 17 into the expression for the deformation potential energy of the element, expanding and 

ignoring higher-order terms, obtaining the following formula: 

𝑈𝑠,𝑒 =
𝐸𝐴

2
∫ (

𝜕𝑢𝑥

𝜕𝑥
)
2

𝑑𝑥
𝐿

0
+

𝐸𝐼

2
∫ (

𝜕2𝑣𝑥

𝜕𝑥2
)
2

𝑑𝑥
𝐿

0
+

1

2
(𝑘𝐴𝜃𝑐𝐴

2 + 𝑘𝐵𝜃𝑐𝐵
2 ) +

𝐸𝐴

2
∫

𝜕𝑢𝑥

𝜕𝑥
(
𝜕𝑣𝑥

𝜕𝑥
)
2

𝑑𝑥
𝐿

0
  (18) 

Here, the first two terms in formula 18 represent the linear elastic deformation potential energy of the element itself, 

while the third term represents the linear elastic deformation potential energy at the connection at both ends of element, 

and the fourth term contributes to the nonlinear strain potential energy of the element. 

The linear elastic stiffness matrix is established from the linear elastic deformation potential of the element itself: 

𝑈𝐸𝑠,𝑒 =
𝐸𝐴

2
∫ (

𝜕𝑢𝑥

𝜕𝑥
)
2

𝑑𝑥
𝐿

0
+

𝐸𝐼

2
∫ (

𝜕2𝑣𝑥

𝜕𝑥2
)
2

𝑑𝑥
𝐿

0
  (19) 

and from the linear elastic deformation potential energy of the connections at ends A and B: 
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𝑈𝐶𝑠,𝑒 =
1

2
𝑘𝐴𝜃𝑐𝐴

2 +
1

2
𝑘𝐵𝜃𝑐𝐵

2   (20) 

The geometric stiffness matrix is established from the nonlinear deformation potential energy of the element: 

𝑈𝑃−𝐷𝑠,𝑒 =
𝐸𝐴

2
∫

𝜕𝑢𝑥

𝜕𝑥
(
𝜕𝑣𝑥

𝜕𝑥
)
2

𝑑𝑥
𝐿

0
  (21) 

Equation 18 is written as: 

𝑈𝑠,𝑒 = 𝑈𝐸𝑠,𝑒 + 𝑈𝐶𝑠,𝑒 + 𝑈𝑃−𝐷𝑠,𝑒 = 𝑈𝐿−𝐸𝑠,𝑒 + 𝑈𝑃−𝐷𝑠,𝑒  (22) 

wherein: 

𝑈𝐿−𝐸𝑠,𝑒 = 𝑈𝐸𝑠,𝑒 + 𝑈𝐶𝑠,𝑒  (23) 

Equation 23 represents the linear elastic deformation potential energy of the element, including the elastic potential 

energy of the element itself, and the elastic potential energy of the connections. 

Let {𝑃𝑠}𝑒 be the nodal load vector in the local coordinate system, [𝑘𝐿−𝐸𝑠]𝑒 be the linear elastic stiffness matrix, and 
[𝑘𝐺𝑠]𝑒 be the geometric stiffness matrix of semi-rigid beam-column element. By applying Castigliano's theorem (Part 

1), obtaining the relationship between load, deformation potential energy, and displacement of 𝑒𝑡ℎ element: 

{𝑃𝑠}𝑒 =
𝜕𝑈𝑠,𝑒

𝜕𝛿𝑠
= ([𝑘𝐿−𝐸𝑠]𝑒 + [𝑘𝐺𝑠]𝑒){𝛿𝑠}𝑒 = [𝑘𝑠]𝑒{𝛿𝑠}𝑒  (24) 

Or in shortened form, having the equilibrium equation of the 𝑒𝑡ℎ  element in the local coordinate system: 

{𝑃𝑠}𝑒 = [𝑘𝑠]𝑒{𝛿𝑠}𝑒  (25) 

Here, 

[𝑘𝑠]𝑒 = [𝑘𝐿−𝐸𝑠]𝑒 + [𝑘𝐺𝑠]𝑒  (26) 

represents stiffness matrix of the element with two semi-rigid connection ends, there: 

[𝑘𝐿−𝐸𝑠]𝑒 = [𝑘𝐸𝑠]𝑒 + [𝑘𝐶𝑠]𝑒  (27) 

with [𝑘𝐸𝑠]𝑒 and [𝑘𝐶𝑠]𝑒 are the linear elastic stiffness matrix of the element itself and the linear elastic stiffness matrix of 

the connections, respectively. 

In FEM, the distribution of displacements in the element is represented through the shape function and nodal 

displacement vector as follows: 

{𝑢𝑥 𝑣𝑥}𝑇 = [𝑁(𝑥)]{𝛿𝑠}𝑒  (28) 

Substituting the shape functions from formula 16 into 28, the nodal displacement vector takes the form: 

{
𝑢𝑥
𝑣𝑥
} =

[
1 −

𝑥

𝐿
0 0

𝑥

𝐿
0 0

0 1 − 𝑑1𝑥 − 3𝑑2𝑥
2 + 𝑑3𝑥

3 𝑑4𝑥 − 𝑑5𝑥
2 + 𝑑2𝑥

3 0 𝑑1𝑥 + 3𝑑2𝑥
2 − 𝑑3𝑥

3 −𝑑6𝑥 − 𝑑7𝑥
2 + 𝑑8𝑥

3
] ×  

{𝑢𝐴 𝑣𝐴 𝜃𝑒𝐴 𝑢𝐵 𝑣𝐵 𝜃𝑒𝐵}
𝑇  

(29) 

Expanding and calculating the partial derivatives in Equation 29, obtaining the following expressions: 

𝜕𝑢𝑥

𝜕𝑥
=

1

𝐿
(−𝑢𝐴 + 𝑢𝐵)  (30) 

𝜕𝑣𝑥

𝜕𝑥
= (−𝑑1 − 6𝑑2𝑥 + 3𝑑3𝑥

2)𝑣𝐴 + (𝑑4 − 2𝑑5𝑥 + 3𝑑2𝑥
2)𝜃𝑒𝐴 + (𝑑1 + 6𝑑2𝑥 − 3𝑑3𝑥

2)𝑣𝐵 + (−𝑑6 − 2𝑑7𝑥 + 3𝑑8𝑥
2)𝜃𝑒𝐵  (31) 

𝜕2𝑣𝑥

𝜕𝑥2
= (−6𝑑2 + 6𝑑3𝑥)𝑣𝐴 + (−2𝑑5 + 6𝑑2𝑥)𝜃𝑒𝐴 + (6𝑑2 − 6𝑑3𝑥)𝑣𝐵 + (−2𝑑7 + 6𝑑8𝑥)𝜃𝑒𝐵  (32) 

The stiffness matrices are further elaborated in the next section. 

2.3. Establishing the Linear Elastic Stiffness Matrix Formula 

The linear elastic stiffness matrix is determined by the formula: 

𝜕𝑈𝐿−𝐸𝑠,𝑒

𝜕𝛿𝑠
= [𝑘𝐿−𝐸𝑠]𝑒{𝛿𝑠}𝑒 = ([𝑘𝐸𝑠]𝑒 + [𝑘𝐶𝑠]𝑒){𝛿𝑠}𝑒 = [𝑘𝐸𝑠]𝑒{𝛿𝑠}𝑒 + [𝑘𝐶𝑠]𝑒{𝛿𝑠}𝑒  (33) 
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Or in expanded form for the linear elastic stiffness matrix of the element itself: 

{
𝜕𝑈𝐸𝑠,𝑒

𝜕𝑢𝐴

𝜕𝑈𝐸𝑠,𝑒

𝜕𝑣𝐴

𝜕𝑈𝐸𝑠,𝑒

𝜕𝜃𝑒𝐴

𝜕𝑈𝐸𝑠,𝑒

𝜕𝑢𝐵

𝜕𝑈𝐸𝑠,𝑒

𝜕𝑣𝐵

𝜕𝑈𝐸𝑠,𝑒

𝜕𝜃𝑒𝐵
}
𝑇

= [𝑘𝐸𝑠]𝑒{𝛿𝑠}𝑒  (34) 

And similarly for the linear elastic stiffness matrix of the connections: 

{
𝜕𝑈𝐶𝑠,𝑒

𝜕𝑢𝐴

𝜕𝑈𝐶𝑠,𝑒

𝜕𝑣𝐴

𝜕𝑈𝐶𝑠,𝑒

𝜕𝜃𝑒𝐴

𝜕𝑈𝐶𝑠,𝑒

𝜕𝑢𝐵

𝜕𝑈𝐶𝑠,𝑒

𝜕𝑣𝐵

𝜕𝑈𝐶𝑠,𝑒

𝜕𝜃𝑒𝐵
}
𝑇

= [𝑘𝐶𝑠]𝑒{𝛿𝑠}𝑒  (35) 

To calculate the elastic deformation potential energy of the element itself, substitute Equations 30 and 32 into 19, 

and integral, obtaining the following expressions: 

𝑈𝐸𝑠,𝑒 =
𝐸𝐴

2𝐿
(𝑢𝐴

2 − 2𝑢𝐴𝑢𝐵 + 𝑢𝐵
2) +

𝐸𝐼

2

[
 
 
 
 
 
 
 
 
 
 
(36𝑑2

2𝐿 − 36𝑑2𝑑3𝐿
2 + 12𝑑3

2𝐿3)𝑣𝐴
2 + (12𝑑2

2𝐿3 − 12𝑑2𝑑5𝐿
2 + 4𝑑5

2𝐿)𝜃𝑒𝐴
2

+(36𝑑2
2𝐿 − 36𝑑2𝑑3𝐿

2 + 12𝑑3
2𝐿3)𝑣𝐵

2

+(4𝑑7
2𝐿 − 12𝑑7𝑑8𝐿

2 + 12𝑑8
2𝐿3)𝜃𝑒𝐵

2

+(−36𝑑2
2𝐿2 + 24𝑑2𝑑3𝐿

3 + 24𝑑2𝑑5𝐿 − 12𝑑3𝑑5𝐿
2)𝑣𝐴𝜃𝑒𝐴

+(−72𝑑2
2𝐿 + 72𝑑2𝑑3𝐿

2 − 24𝑑3
2𝐿3)𝑣𝐴𝑣𝐵

+(24𝑑2𝑑7𝐿 − 36𝑑2𝑑8𝐿
2 − 12𝑑3𝑑7𝐿

2 + 24𝑑3𝑑8𝐿
3)𝑣𝐴𝜃𝑒𝐵

+(36𝑑2
2𝐿2 − 24𝑑2𝑑3𝐿

3 − 24𝑑2𝑑5𝐿 + 12𝑑3𝑑5𝐿
2)𝜃𝑒𝐴𝑣𝐵

+(−12𝑑2𝑑7𝐿
2 + 24𝑑2𝑑8𝐿

3 + 8𝑑5𝑑7𝐿 − 12𝑑5𝑑8𝐿
2)𝜃𝑒𝐴𝜃𝑒𝐵

+(−24𝑑2𝑑7𝐿 + 36𝑑2𝑑8𝐿
2 + 12𝑑3𝑑7𝐿

2 − 24𝑑3𝑑8𝐿
3)𝑣𝐵𝜃𝑒𝐵 ]

 
 
 
 
 
 
 
 
 
 

  (36) 

Next, calculating the elastic deformation potential energy in the connection according to Equation 20.  

From Equation 32, at 𝑥 = 0 

𝑀𝐴 = −𝐸𝐼
𝜕2𝑣𝑥

𝜕𝑥2
= 6𝐸𝐼𝑑2𝑣𝐴 + 2𝐸𝐼𝑑5𝜃𝑒𝐴 − 6𝐸𝐼𝑑2𝑣𝐵 + 2𝐸𝐼𝑑7𝜃𝑒𝐵  (37) 

The moment and rotation angle in the connection at end A are determined by the formula: 

𝑀𝐴 = 𝑘𝐴𝜃𝑐𝐴  (38) 

Substituting Equation 38 into Equation 37, the rotation angle in the connection at end A can be calculated as: 

𝜃𝑐𝐴 =
2𝐸𝐼

𝑘𝐴
(3𝑑2𝑣𝐴 + 𝑑5𝜃𝑒𝐴 − 3𝑑2𝑣𝐵 + 𝑑7𝜃𝑒𝐵)  (39) 

From Equation 32, at 𝑥 = 𝐿: 

𝑀𝐵 = 𝐸𝐼
𝜕2𝑣𝑥

𝜕𝑥2
= 𝐸𝐼[(−6𝑑2 + 6𝑑3𝐿)𝑣𝐴 + (−2𝑑5 + 6𝑑2𝐿)𝜃𝑒𝐴 + (6𝑑2 − 6𝑑3𝐿)𝑣𝐵 + (−2𝑑7 + 6𝑑8𝐿)𝜃𝑒𝐵]  (40) 

The moment and rotation angle in the connection at end B are determined by the formula: 

𝑀𝐵 = 𝑘𝐵𝜃𝑐𝐵  (41) 

Substituting Equation 41 into Equation 40, the rotation angle in the connection at end B can be calculated as: 

𝜃𝑐𝐵 =
𝐸𝐼

𝑘𝐵
[(−6𝑑2 + 6𝑑3𝐿)𝑣𝐴 + (−2𝑑5 + 6𝑑2𝐿)𝜃𝑒𝐴 + (6𝑑2 − 6𝑑3𝐿)𝑣𝐵 + (−2𝑑7 + 6𝑑8𝐿)𝜃𝑒𝐵]  (42) 

Simplify the displacement coefficients in Equation 42, and determine: 

𝑑9 =
2(3𝐸𝐼+𝐿𝑘𝐴)𝑘𝐵

𝑑0
  (43) 

Substituting Equation 43 into Equation 42, getting the rotation angle formula in the connection at end B: 

𝜃𝑐𝐵 =
2𝐸𝐼

𝑘𝐵
(3𝑑8𝑣𝐴 + 𝑑7𝜃𝑒𝐴 − 3𝑑8𝑣𝐵 + 𝑑9𝜃𝑒𝐵)  (44) 

Substituting Equations 39 and 44 into Equation 20, expanding and grouping according to each type of transposition: 

𝑈𝐶𝑠,𝑒 = 2𝐸2𝐼2 [
1

𝑘𝐴
(3𝑑2𝑣𝐴 + 𝑑5𝜃𝑒𝐴 − 3𝑑2𝑣𝐵 + 𝑑7𝜃𝑒𝐵)

2 +
1

𝑘𝐵
(3𝑑8𝑣𝐴 + 𝑑7𝜃𝑒𝐴 − 3𝑑8𝑣𝐵 + 𝑑9𝜃𝑒𝐵)

2]  (45) 

Expanding Equation 45, obtaining the following expressions: 
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𝑈𝐶𝑠,𝑒 = 2𝐸2𝐼2

[
 
 
 
 
 (
9𝑑2

2

𝑘𝐴
+

9𝑑8
2

𝑘𝐵
) 𝑣𝐴

2 + (
𝑑5
2

𝑘𝐴
+

𝑑7
2

𝑘𝐵
) 𝜃𝑒𝐴

2 + (
9𝑑2

2

𝑘𝐴
+

9𝑑8
2

𝑘𝐵
) 𝑣𝐵

2 + (
𝑑7
2

𝑘𝐴
+

𝑑9
2

𝑘𝐵
) 𝜃𝑒𝐵

2

+(
6𝑑2𝑑5

𝑘𝐴
+

6𝑑7𝑑8

𝑘𝐵
) 𝑣𝐴𝜃𝑒𝐴 − (

18𝑑2
2

𝑘𝐴
+

18𝑑8
2

𝑘𝐵
) 𝑣𝐴𝑣𝐵 + (

6𝑑2𝑑7

𝑘𝐴
+

6𝑑8𝑑9

𝑘𝐵
) 𝑣𝐴𝜃𝑒𝐵

−(
6𝑑2𝑑5

𝑘𝐴
+

6𝑑7𝑑8

𝑘𝐵
) 𝜃𝑒𝐴𝑣𝐵 + (

2𝑑5𝑑7

𝑘𝐴
+

2𝑑7𝑑9

𝑘𝐵
) 𝜃𝑒𝐴𝜃𝑒𝐵 − (

6𝑑2𝑑7

𝑘𝐴
+

6𝑑8𝑑9

𝑘𝐵
) 𝑣𝐵𝜃𝑒𝐵]

 
 
 
 
 

  (46) 

The linear elastic stiffness matrix of the semi-rigid beam-column element itself is obtained by substituting Equation 

36 into Equation 34: 

[𝑘𝐸𝑠]𝑒 =

[
 
 
 
 
 
 
 
𝑘𝐸𝑠
1,1 0 0 𝑘𝐸𝑠

1,4 0 0

0 𝑘𝐸𝑠
2,2 𝑘𝐸𝑠

2,3 0 𝑘𝐸𝑠
2,5 𝑘𝐸𝑠

2,6

0 𝑘𝐸𝑠
3,2 𝑘𝐸𝑠

3,3 0 𝑘𝐸𝑠
3,5 𝑘𝐸𝑠

3,6

𝑘𝐸𝑠
4,1 0 0 𝑘𝐸𝑠

4,4 0 0

0 𝑘𝐸𝑠
5,2 𝑘𝐸𝑠

5,3 0 𝑘𝐸𝑠
5,5 𝑘𝐸𝑠

5,6

0 𝑘𝐸𝑠
6,2 𝑘𝐸𝑠

6,3 0 𝑘𝐸𝑠
6,5 𝑘𝐸𝑠

6,6
]
 
 
 
 
 
 
 

  (47) 

wherein: 

𝑘𝐸𝑠
1,1 =

𝐸𝐴

𝐿
 , 𝑘𝐸𝑠

1,4 = 𝑘𝐸𝑠
4,1 = −

𝐸𝐴

𝐿
, 𝑘𝐸𝑠

4,4 =
𝐸𝐴

𝐿
, 𝑘𝐸𝑠

2,2 = 12𝐸𝐼(3𝑑2
2𝐿 − 3𝑑2𝑑3𝐿

2 + 𝑑3
2𝐿3) 

𝑘𝐸𝑠
2,3 = 𝑘𝐸𝑠

3,2 = 6𝐸𝐼(−3𝑑2
2𝐿2 + 2𝑑2𝑑3𝐿

3 + 2𝑑2𝑑5𝐿 − 𝑑3𝑑5𝐿
2), 𝑘𝐸𝑠

2,5 = 𝑘𝐸𝑠
5,2 = −12𝐸𝐼(3𝑑2

2𝐿 − 3𝑑2𝑑3𝐿
2 + 𝑑3

2𝐿3) 

𝑘𝐸𝑠
2,6 = 𝑘𝐸𝑠

6,2 = 6𝐸𝐼(2𝑑2𝑑7𝐿 − 3𝑑2𝑑8𝐿
2 − 𝑑3𝑑7𝐿

2 + 2𝑑3𝑑8𝐿
3), 𝑘𝐸𝑠

3,3 = 4𝐸𝐼(3𝑑2
2𝐿3 − 3𝑑2𝑑5𝐿

2 + 𝑑5
2𝐿) 

𝑘𝐸𝑠
3,5 = 𝑘𝐸𝑠

5,3 = −6𝐸𝐼(−3𝑑2
2𝐿2 + 2𝑑2𝑑3𝐿

3 + 2𝑑2𝑑5𝐿 − 𝑑3𝑑5𝐿
2)  

𝑘𝐸𝑠
3,6 = 𝑘𝐸𝑠

6,3 = 2𝐸𝐼(−3𝑑2𝑑7𝐿
2 + 6𝑑2𝑑8𝐿

3 + 2𝑑5𝑑7𝐿 − 3𝑑5𝑑8𝐿
2), 𝑘𝐸𝑠

5,5 = 12𝐸𝐼(3𝑑2
2𝐿 − 3𝑑2𝑑3𝐿

2 + 𝑑3
2𝐿3) 

𝑘𝐸𝑠
5,6 = 𝑘𝐸𝑠

6,5 = −6𝐸𝐼(2𝑑2𝑑7𝐿 − 3𝑑2𝑑8𝐿
2 − 𝑑3𝑑7𝐿

2 + 2𝑑3𝑑8𝐿
3), 𝑘𝐸𝑠

6,6 = 4𝐸𝐼(𝑑7
2𝐿 − 3𝑑7𝑑8𝐿

2 + 3𝑑8
2𝐿3) 

The linear elastic stiffness matrix of the semi-rigid connection at both ends of element eth is obtained by substituting 

Equation 46 into Equation 35: 

[𝑘𝐶𝑠]𝑒 =

[
 
 
 
 
 
 
0 0 0 0 0 0

0 𝑘𝐶𝑠
2,2 𝑘𝐶𝑠

2,3 0 𝑘𝐶𝑠
2,5 𝑘𝐶𝑠

2,6

0 𝑘𝐶𝑠
3,2 𝑘𝐶𝑠

3,3 0 𝑘𝐶𝑠
3,5 𝑘𝐶𝑠

3,6

0 0 0 0 0 0

0 𝑘𝐶𝑠
5,2 𝑘𝐶𝑠

5,3 0 𝑘𝐶𝑠
5,5 𝑘𝐶𝑠

5,6

0 𝑘𝐶𝑠
6,2 𝑘𝐶𝑠

6,3 0 𝑘𝐶𝑠
6,5 𝑘𝐶𝑠

6,6
]
 
 
 
 
 
 

  (48) 

wherein: 

𝑘𝐶𝑠
2,2 = 36𝐸2𝐼2 (

𝑑2
2

𝑘𝐴
+

𝑑8
2

𝑘𝐵
)  

𝑘𝐶𝑠
2,3 = 𝑘𝐶𝑠

3,2 = 12𝐸2𝐼2 (
𝑑2𝑑5

𝑘𝐴
+

𝑑7𝑑8

𝑘𝐵
)  

𝑘𝐶𝑠
2,5 = 𝑘𝐶𝑠

5,2 = −36𝐸2𝐼2 (
𝑑2
2

𝑘𝐴
+

𝑑8
2

𝑘𝐵
)  

𝑘𝐶𝑠
2,6 = 𝑘𝐶𝑠

6,2 = 12𝐸2𝐼2 (
𝑑2𝑑7

𝑘𝐴
+

𝑑8𝑑9

𝑘𝐵
)  

𝑘𝐶𝑠
3,3 = 4𝐸2𝐼2 (

𝑑5
2

𝑘𝐴
+

𝑑7
2

𝑘𝐵
)  

𝑘𝐶𝑠
3,5 = 𝑘𝐶𝑠

5,3 = −12𝐸2𝐼2 (
𝑑2𝑑5

𝑘𝐴
+

𝑑7𝑑8

𝑘𝐵
)  

𝑘𝐶𝑠
3,6 = 𝑘𝐶𝑠

6,3 = 4𝐸2𝐼2 (
𝑑5𝑑7

𝑘𝐴
+

𝑑7𝑑9

𝑘𝐵
)  

𝑘𝐶𝑠
5,5 = 36𝐸2𝐼2 (

𝑑2
2

𝑘𝐴
+

𝑑8
2

𝑘𝐵
)  

𝑘𝐶𝑠
5,6 = 𝑘𝐶𝑠

6,5 = −12𝐸2𝐼2 (
𝑑2𝑑7

𝑘𝐴
+

𝑑8𝑑9

𝑘𝐵
)  

𝑘𝐶𝑠
6,6 = 4𝐸2𝐼2 (

𝑑7
2

𝑘𝐴
+

𝑑9
2

𝑘𝐵
)  
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The coefficients of the elastic stiffness matrix [𝑘𝐿−𝐸𝑠]𝑒 in Equation 27 have the form: 

[𝑘𝐿−𝐸𝑠]𝑒 =

[
 
 
 
 
 
 
 𝑘𝐿−𝐸𝑠
1,1 0 0 𝑘𝐿−𝐸𝑠

1,4 0 0

0 𝑘𝐿−𝐸𝑠
2,2 𝑘𝐿−𝐸𝑠

2,3 0 𝑘𝐿−𝐸𝑠
2,5 𝑘𝐿−𝐸𝑠

2,6

0 𝑘𝐿−𝐸𝑠
3,2 𝑘𝐿−𝐸𝑠

3,3 0 𝑘𝐿−𝐸𝑠
3,5 𝑘𝐿−𝐸𝑠

3,6

𝑘𝐿−𝐸𝑠
4,1 0 0 𝑘𝐿−𝐸𝑠

4,4 0 0

0 𝑘𝐿−𝐸𝑠
5,2 𝑘𝐿−𝐸𝑠

5,3 0 𝑘𝐿−𝐸𝑠
5,5 𝑘𝐿−𝐸𝑠

5,6

0 𝑘𝐿−𝐸𝑠
6,2 𝑘𝐿−𝐸𝑠

6,3 0 𝑘𝐿−𝐸𝑠
6,5 𝑘𝐿−𝐸𝑠

6,6
]
 
 
 
 
 
 
 

  (49) 

wherein: 𝑘𝐿−𝐸𝑠
𝜂,𝜅

= 𝑘𝐸𝑠
𝜂,𝜅
+ 𝑘𝐶𝑠

𝜂,𝜅
, with 𝜂 = 1 ÷ 6 and 𝜅 = 1 ÷ 6. 

A special case of the linear elastic stiffness matrix of a semi-rigid beam-column element is when the semi-rigid 

connections are pin (stiffness approaching zero), or FR (fully rigid, stiffness approaching infinity). Thus, there are four 

special cases, including: both ends are FR connections; one end is FR, and the other is a pin connection; one end is a pin 

connection, and the other is a FR connection; or both ends are pin connections. To calculate the special cases, the limits 

of the matrix terms in Equation 49 need to be determined. The calculation results are given in Table 1. 

Table 1. Terms of the linear elastic stiffness matrix of semi-rigid beam-column element in special cases 

Matrix term 

[𝑘𝐿−𝐸𝑠]𝑒 

Both ends FR 

𝑘𝐴 → ∞, 𝑘𝐵 → ∞ 

End A FR, end B pin 

𝑘𝐴 → ∞, 𝑘𝐵 → 0 

End A pin, end B FR 

𝑘𝐴 → 0, 𝑘𝐵 → ∞ 

Both ends pin 

𝑘𝐴 → 0, 𝑘𝐵 → 0 

𝑘𝐿−𝐸𝑠
2,2

 
12𝐸𝐼

𝐿3
 

3𝐸𝐼

𝐿3
 

3𝐸𝐼

𝐿3
 0 

𝑘𝐿−𝐸𝑠
2,3 , 𝑘𝐿−𝐸𝑠

3,2
 

6𝐸𝐼

𝐿2
 

3𝐸𝐼

𝐿2
 0 0 

𝑘𝐿−𝐸𝑠
2,5 , 𝑘𝐿−𝐸𝑠

5,2
 −

12𝐸𝐼

𝐿3
 −

3𝐸𝐼

𝐿3
 −

3𝐸𝐼

𝐿3
 0 

𝑘𝐿−𝐸𝑠
2,6 , 𝑘𝐿−𝐸𝑠

6,2
 

6𝐸𝐼

𝐿2
 0 

3𝐸𝐼

𝐿2
 0 

𝑘𝐿−𝐸𝑠
3,3

 
4𝐸𝐼

𝐿
 

3𝐸𝐼

𝐿
 0 0 

𝑘𝐿−𝐸𝑠
3,5 , 𝑘𝐿−𝐸𝑠

5,3
 −

6𝐸𝐼

𝐿2
 −

3𝐸𝐼

𝐿2
 0 0 

𝑘𝐿−𝐸𝑠
3,6 , 𝑘𝐿−𝐸𝑠

6,3
 

2𝐸𝐼

𝐿
 0 0 0 

𝑘𝐿−𝐸𝑠
5,5

 
12𝐸𝐼

𝐿3
 

3𝐸𝐼

𝐿3
 

3𝐸𝐼

𝐿3
 0 

𝑘𝐿−𝐸𝑠
5,6 , 𝑘𝐿−𝐸𝑠

6,5
 −

6𝐸𝐼

𝐿2
 0 −

3𝐸𝐼

𝐿2
 0 

𝑘𝐿−𝐸𝑠
6,6

 
4𝐸𝐼

𝐿
 0 

3𝐸𝐼

𝐿
 0 

Compiling Table 1 into a matrix, for each special case, as follows: 

 Element with both ends are FR connections: 

[𝑘𝐿−𝐸𝑠]𝑒 =

[
 
 
 
 
 
 
 
 
 
𝐸𝐴

𝐿
0 0 −

𝐸𝐴

𝐿
0 0

0
12𝐸𝐼

𝐿3
6𝐸𝐼

𝐿2
0 −

12𝐸𝐼

𝐿3
6𝐸𝐼

𝐿2

0
6𝐸𝐼

𝐿2
4𝐸𝐼

𝐿
0 −

6𝐸𝐼

𝐿2
2𝐸𝐼

𝐿

−
𝐸𝐴

𝐿
0 0

𝐸𝐴

𝐿
0 0

0 −
12𝐸𝐼

𝐿3
−
6𝐸𝐼

𝐿2
0

12𝐸𝐼

𝐿3
−
6𝐸𝐼

𝐿2

0
6𝐸𝐼

𝐿2
2𝐸𝐼

𝐿
0 −

6𝐸𝐼

𝐿2
4𝐸𝐼

𝐿 ]
 
 
 
 
 
 
 
 
 

  (50) 

 Element with end A is FR connection, and end B is pin connection: 

[𝑘𝐿−𝐸𝑠]𝑒 =

[
 
 
 
 
 
 
 
 
𝐸𝐴

𝐿
0 0 −

𝐸𝐴

𝐿
0 0

0
3𝐸𝐼

𝐿3
3𝐸𝐼

𝐿2
0 −

3𝐸𝐼

𝐿3
0

0
3𝐸𝐼

𝐿2
3𝐸𝐼

𝐿
0 −

3𝐸𝐼

𝐿2
0

−
𝐸𝐴

𝐿
0 0

𝐸𝐴

𝐿
0 0

0 −
3𝐸𝐼

𝐿3
−
3𝐸𝐼

𝐿2
0

3𝐸𝐼

𝐿3
0

0 0 0 0 0 0]
 
 
 
 
 
 
 
 

  (51) 
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 Element with end A is pin connection, and end B is FR connection: 

[𝑘𝐿−𝐸𝑠]𝑒 =

[
 
 
 
 
 
 
 
 
𝐸𝐴

𝐿
0 0 −

𝐸𝐴

𝐿
0 0

0
3𝐸𝐼

𝐿3
0 0 −

3𝐸𝐼

𝐿3
3𝐸𝐼

𝐿2

0 0 0 0 0 0

−
𝐸𝐴

𝐿
0 0

𝐸𝐴

𝐿
0 0

0 −
3𝐸𝐼

𝐿3
0 0

3𝐸𝐼

𝐿3
−
3𝐸𝐼

𝐿2

0
3𝐸𝐼

𝐿2
0 0 −

3𝐸𝐼

𝐿2
3𝐸𝐼

𝐿 ]
 
 
 
 
 
 
 
 

  (52) 

 Element with both ends are pin connections: 

[𝑘𝐿−𝐸𝑠]𝑒 =

[
 
 
 
 
 
 
𝐸𝐴

𝐿
0 0 −

𝐸𝐴

𝐿
0 0

0 0 0 0 0 0
0 0 0 0 0 0

−
𝐸𝐴

𝐿
0 0

𝐸𝐴

𝐿
0 0

0 0 0 0 0 0
0 0 0 0 0 0]

 
 
 
 
 
 

  (53) 

These established special cases are correspondingly equal to the linear elastic stiffness matrices of element whose 

connections at the ends are FR or pin, in FEM. 

2.4. Establishing the Geometric Stiffness Matrix Formula 

The linear elastic stiffness matrix is determined by the formula: 

𝜕𝑈𝑃−𝐷𝑠,𝑒

𝜕𝛿𝑠
= [𝑘𝐺𝑠]𝑒{𝛿𝑠}𝑒  (54) 

Or, in an expanded form: 

{
𝜕𝑈𝑃−𝐷𝑠,𝑒

𝜕𝑢𝐴

𝜕𝑈𝑃−𝐷𝑠,𝑒

𝜕𝑣𝐴

𝜕𝑈𝑃−𝐷𝑠,𝑒

𝜕𝜃𝑒𝐴

𝜕𝑈𝑃−𝐷𝑠,𝑒

𝜕𝑢𝐵

𝜕𝑈𝑃−𝐷𝑠,𝑒

𝜕𝑣𝐵

𝜕𝑈𝑃−𝐷𝑠,𝑒

𝜕𝜃𝑒𝐵
}
𝑇

= [𝑘𝐺𝑠]𝑒{𝛿𝑠}𝑒  (55) 

Substitute Equations 30 and 31 into Equation 21 and integrate 

𝑈𝑃−𝐷𝑠,𝑒 =
𝐸𝐴

2𝐿
(𝑢𝐵 − 𝑢𝐴)  

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 + (𝑑1

2𝐿 + 6𝑑1𝑑2𝐿
2 − 2𝑑1𝑑3𝐿

3 + 12𝑑2
2𝐿3 − 9𝑑2𝑑3𝐿

4 +
9

5
𝑑3
2𝐿5) 𝑣𝐴

2

+(
9

5
𝑑2
2𝐿5 + 2𝑑2𝑑4𝐿

3 − 3𝑑2𝑑5𝐿
4 + 𝑑4

2𝐿 − 2𝑑4𝑑5𝐿
2 +

4

3
𝑑5
2𝐿3) 𝜃𝑒𝐴

2

+(𝑑1
2𝐿 + 6𝑑1𝑑2𝐿

2 − 2𝑑1𝑑3𝐿
3 + 12𝑑2

2𝐿3 − 9𝑑2𝑑3𝐿
4 +

9

5
𝑑3
2𝐿5) 𝑣𝐵

2

+(𝑑6
2𝐿 + 2𝑑6𝑑7𝐿

2 − 2𝑑6𝑑8𝐿
3 +

4

3
𝑑7
2𝐿3 − 3𝑑7𝑑8𝐿

4 +
9

5
𝑑8
2𝐿5) 𝜃𝑒𝐵

2

+(−2𝑑1𝑑2𝐿
3 − 2𝑑1𝑑4𝐿 + 2𝑑1𝑑5𝐿

2 − 9𝑑2
2𝐿4 +

18

5
𝑑2𝑑3𝐿

5 − 6𝑑2𝑑4𝐿
2 + 8𝑑2𝑑5𝐿

3 + 2𝑑3𝑑4𝐿
3 − 3𝑑3𝑑5𝐿

4) 𝑣𝐴𝜃𝑒𝐴

+(−2𝑑1
2𝐿 − 12𝑑1𝑑2𝐿

2 + 4𝑑1𝑑3𝐿
3 − 24𝑑2

2𝐿3 + 18𝑑2𝑑3𝐿
4 −

18

5
𝑑3
2𝐿5) 𝑣𝐴𝑣𝐵

+(2𝑑1𝑑6𝐿 + 2𝑑1𝑑7𝐿
2 − 2𝑑1𝑑8𝐿

3 + 6𝑑2𝑑6𝐿
2 + 8𝑑2𝑑7𝐿

3 − 9𝑑2𝑑8𝐿
4 − 2𝑑3𝑑6𝐿

3 − 3𝑑3𝑑7𝐿
4 +

18

5
𝑑3𝑑8𝐿

5) 𝑣𝐴𝜃𝑒𝐵

+(2𝑑1𝑑2𝐿
3 + 2𝑑1𝑑4𝐿 − 2𝑑1𝑑5𝐿

2 + 9𝑑2
2𝐿4 −

18

5
𝑑2𝑑3𝐿

5 + 6𝑑2𝑑4𝐿
2 − 8𝑑2𝑑5𝐿

3 − 2𝑑3𝑑4𝐿
3 + 3𝑑3𝑑5𝐿

4) 𝜃𝑒𝐴𝑣𝐵

+(−2𝑑2𝑑6𝐿
3 − 3𝑑2𝑑7𝐿

4 +
18

5
𝑑2𝑑8𝐿

5 + 2𝑑4𝑑6𝐿 − 2𝑑4𝑑7𝐿
2 + 2𝑑4𝑑8𝐿

3 + 2𝑑5𝑑6𝐿
2 +

8

3
𝑑5𝑑7𝐿

3 − 3𝑑5𝑑8𝐿
4) 𝜃𝑒𝐴𝜃𝑒𝐵

+(−2𝑑1𝑑6𝐿 − 2𝑑1𝑑7𝐿
2 + 2𝑑1𝑑8𝐿

3 − 6𝑑2𝑑6𝐿
2 − 8𝑑2𝑑7𝐿

3 + 9𝑑2𝑑8𝐿
4 + 2𝑑3𝑑6𝐿

3 + 3𝑑3𝑑7𝐿
4 −

18

5
𝑑3𝑑8𝐿

5) 𝑣𝐵𝜃𝑒𝐵 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
(56) 

to determine the nonlinear deformation potential energy. 

In calculating the geometric stiffness matrix, consider the axial force in the element to be constant, and have the 

following value: 

𝑁 =
𝐸𝐴

𝐿
(𝑢𝐵 − 𝑢𝐴)  (57) 

The geometric stiffness matrix of the semi-rigid beam-column element is obtained by substituting Equation 57 into 

Equation 56, and continue substituting into Equation 55: 
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[𝑘𝐺𝑠]𝑒 = 𝑁

[
 
 
 
 
 
 
0 0 0 0 0 0

0 𝑘𝐺𝑠
2,2 𝑘𝐺𝑠

2,3 0 𝑘𝐺𝑠
2,5 𝑘𝐺𝑠

2,6

0 𝑘𝐺𝑠
3,2 𝑘𝐺𝑠

3,3 0 𝑘𝐺𝑠
3,5 𝑘𝐺𝑠

3,6

0 0 0 0 0 0

0 𝑘𝐺𝑠
5,2 𝑘𝐺𝑠

5,3 0 𝑘𝐺𝑠
5,5 𝑘𝐺𝑠

5,6

0 𝑘𝐺𝑠
6,2 𝑘𝐺𝑠

6,3 0 𝑘𝐺𝑠
6,5 𝑘𝐺𝑠

6,6
]
 
 
 
 
 
 

  (58) 

wherein: 

𝑘𝐺𝑠
2,2 = 𝑑1

2𝐿 + 6𝑑1𝑑2𝐿
2 − 2𝑑1𝑑3𝐿

3 + 12𝑑2
2𝐿3 − 9𝑑2𝑑3𝐿

4 +
9

5
𝑑3
2𝐿5  

𝑘𝐺𝑠
2,3 = 𝑘𝐺𝑠

3,2 = (−𝑑1𝑑2𝐿
3 − 𝑑1𝑑4𝐿 + 𝑑1𝑑5𝐿

2 −
9

2
𝑑2
2𝐿4 +

9

5
𝑑2𝑑3𝐿

5 − 3𝑑2𝑑4𝐿
2 + 4𝑑2𝑑5𝐿

3 + 𝑑3𝑑4𝐿
3 −

3

2
𝑑3𝑑5𝐿

4)  

𝑘𝐺𝑠
2,5 = 𝑘𝐺𝑠

5,2 = −𝑑1
2𝐿 − 6𝑑1𝑑2𝐿

2 + 2𝑑1𝑑3𝐿
3 − 12𝑑2

2𝐿3 + 9𝑑2𝑑3𝐿
4 −

9

5
𝑑3
2𝐿5  

𝑘𝐺𝑠
2,6 = 𝑘𝐺𝑠

6,2 = (𝑑1𝑑6𝐿 + 𝑑1𝑑7𝐿
2 − 𝑑1𝑑8𝐿

3 + 3𝑑2𝑑6𝐿
2 + 4𝑑2𝑑7𝐿

3 −
9

2
𝑑2𝑑8𝐿

4 − 𝑑3𝑑6𝐿
3 −

3

2
𝑑3𝑑7𝐿

4 +
9

5
𝑑3𝑑8𝐿

5)  

𝑘𝐺𝑠
3,3 =

9

5
𝑑2
2𝐿5 + 2𝑑2𝑑4𝐿

3 − 3𝑑2𝑑5𝐿
4 + 𝑑4

2𝐿 − 2𝑑4𝑑5𝐿
2 +

4

3
𝑑5
2𝐿3  

𝑘𝐺𝑠
3,5 = 𝑘𝐺𝑠

5,3 = (𝑑1𝑑2𝐿
3 + 𝑑1𝑑4𝐿 − 𝑑1𝑑5𝐿

2 +
9

2
𝑑2
2𝐿4 −

9

5
𝑑2𝑑3𝐿

5 + 3𝑑2𝑑4𝐿
2 − 4𝑑2𝑑5𝐿

3 − 𝑑3𝑑4𝐿
3 +

3

2
𝑑3𝑑5𝐿

4)  

𝑘𝐺𝑠
3,6 = 𝑘𝐺𝑠

6,3 = (−𝑑2𝑑6𝐿
3 −

3

2
𝑑2𝑑7𝐿

4 +
9

5
𝑑2𝑑8𝐿

5 + 𝑑4𝑑6𝐿 − 𝑑4𝑑7𝐿
2 + 𝑑4𝑑8𝐿

3 + 𝑑5𝑑6𝐿
2 +

4

3
𝑑5𝑑7𝐿

3 −
3

2
𝑑5𝑑8𝐿

4)  

𝑘𝐺𝑠
5,5 = 𝑑1

2𝐿 + 6𝑑1𝑑2𝐿
2 − 2𝑑1𝑑3𝐿

3 + 12𝑑2
2𝐿3 − 9𝑑2𝑑3𝐿

4 +
9

5
𝑑3
2𝐿5  

𝑘𝐺𝑠
5,6 = 𝑘𝐺𝑠

6,5 = (−𝑑1𝑑6𝐿 − 𝑑1𝑑7𝐿
2 + 𝑑1𝑑8𝐿

3 − 3𝑑2𝑑6𝐿
2 − 4𝑑2𝑑7𝐿

3 +
9

2
𝑑2𝑑8𝐿

4 + 𝑑3𝑑6𝐿
3 +

3

2
𝑑3𝑑7𝐿

4 −
9

5
𝑑3𝑑8𝐿

5)  

𝑘𝐺𝑠
6,6 = 𝑑6

2𝐿 + 2𝑑6𝑑7𝐿
2 − 2𝑑6𝑑8𝐿

3 +
4

3
𝑑7
2𝐿3 − 3𝑑7𝑑8𝐿

4 +
9

5
𝑑8
2𝐿5  

Similarly, the linear elastic stiffness matrix, special cases of the geometric stiffness matrix are obtained by finding 

the limits of the matrix terms in Equation 58. The calculation results are in Table 2 as follows: 

Table 2. Terms of the geometric stiffness matrix of semi-rigid beam-column element in a particular case 

Matrix term 

[𝑘𝐺𝑠]𝑒 

Both ends FR 

𝑘𝐴 → ∞, 𝑘𝐵 → ∞ 

End A FR, end B pin 

𝑘𝐴 → ∞, 𝑘𝐵 → 0 

End A pin, End B FR 

𝑘𝐴 → 0, 𝑘𝐵 → ∞ 

Both ends pin 

𝑘𝐴 → 0, 𝑘𝐵 → 0 

𝑘𝐺𝑠
2,2

 
6

5𝐿
 

6

5𝐿
 

6

5𝐿
 

1

𝐿
 

𝑘𝐺𝑠
2,3, 𝑘𝐺𝑠

3,2
 

1

10
 

1

5
 0 0 

𝑘𝐺𝑠
2,5, 𝑘𝐺𝑠

5,2
 −

6

5𝐿
 −

6

5𝐿
 −

6

5𝐿
 −

1

𝐿
 

𝑘𝐺𝑠
2,6, 𝑘𝐺𝑠

6,2
 

1

10
 0 

1

5
 0 

𝑘𝐺𝑠
3,3

 
2𝐿

15
 

𝐿

5
 0 0 

𝑘𝐺𝑠
3,5, 𝑘𝐺𝑠

5,3
 −

1

10
 −

1

5
 0 0 

𝑘𝐺𝑠
3,6, 𝑘𝐺𝑠

6,3
 −

𝐿

30
 0 0 0 

𝑘𝐺𝑠
5,5

 
6

5𝐿
 

6

5𝐿
 

6

5𝐿
 

1

𝐿
 

𝑘𝐺𝑠
5,6, 𝑘𝐺𝑠

6,5
 −

1

10
 0 −

1

5
 0 

𝑘𝐺𝑠
6,6

 
2𝐿

15
 0 

𝐿

5
 0 

Compiling Table 2 into a matrix, for each special case, as follows: 

- Element with both ends are FR connections: 
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[𝑘𝐺𝑠]𝑒 = 𝑁

[
 
 
 
 
 
 
 
0 0 0 0 0 0

0
6

5𝐿

1

10
0 −

6

5𝐿

1

10

0
1

10

2𝐿

15
0 −

1

10
−

𝐿

30

0 0 0 0 0 0

0 −
6

5𝐿
−

1

10
0

6

5𝐿
−

1

10

0
1

10
−

𝐿

30
0 −

1

10

2𝐿

15 ]
 
 
 
 
 
 
 

  (59) 

- Element with end A is FR connection, and end B is pin connection: 

[𝑘𝐺𝑠]𝑒 = 𝑁

[
 
 
 
 
 
 
0 0 0 0 0 0

0
6

5𝐿

1

5
0 −

6

5𝐿
0

0
1

5

𝐿

5
0 −

1

5
0

0 0 0 0 0 0

0 −
6

5𝐿
−
1

5
0

6

5𝐿
0

0 0 0 0 0 0]
 
 
 
 
 
 

  (60) 

- Element with end A is pin connection, and end B is FR connection: 

[𝑘𝐺𝑠]𝑒 = 𝑁

[
 
 
 
 
 
 
 
0 0 0 0 0 0

0
6

5𝐿
0 0 −

6

5𝐿

1

5

0 0 0 0 0 0
0 0 0 0 0 0

0 −
6

5𝐿
0 0

6

5𝐿
−
1

5

0
1

5
0 0 −

1

5

𝐿

5 ]
 
 
 
 
 
 
 

  (61) 

- Element with both ends are pin connections: 

[𝑘𝐺𝑠]𝑒 = 𝑁

[
 
 
 
 
 
 
0 0 0 0 0 0

0
1

𝐿
0 0 −

1

𝐿
0

0 0 0 0 0 0
0 0 0 0 0 0

0 −
1

𝐿
0 0

1

𝐿
0

0 0 0 0 0 0]
 
 
 
 
 
 

  (62) 

The geometric stiffness matrix for the special case of a beam-column element with both FR ends coincides with the 

geometric stiffness matrix according to Przemieniecki (1968) [38], McGuire et al. (2014) [39], Chen & Lui (1987) [2]. 

These stiffness matrices are used in analysis of frame structure with beam-column elements with FR or pin ends. 

3. Establishing the Equivalent Nodal Load Vector for a Semi-rigid Beam-column Element 

Consider a semi-rigid beam element subjected to uniformly distributed loads and concentrated loads as shown in 

Figure 2. This section establishes the equivalent load vector converted to a node according to FEM in local coordinate 

system. 

 

Figure 2. The load on the semi-rigid beam element is converted to nodes 

3.1. Uniformly Distributed Load 

From Equation 16, in case of uniformly distributed load 𝑞(𝑥) = 𝑞, as shown in Figure 2-a, the equivalent nodal load 

vector {𝑃𝑞𝑠}𝑒 can be calculated according to the formula: 

{𝑃𝑞𝑠}𝑒 = 𝑞 ∫
[𝑁(𝑥)]𝑇
𝐿

0
𝑑𝑥 = 𝑞 ∫ [

𝑁2(𝑥)
𝑁3(𝑥)
𝑁5(𝑥)

𝑁6(𝑥)

]
𝐿

0
𝑑𝑥 = 𝑞 ∫

[
 
 
 
 
1 − 𝑑1𝑥 − 3𝑑2𝑥

2 + 𝑑3𝑥
3

𝑑4𝑥 − 𝑑5𝑥
2 + 𝑑2𝑥

3

𝑑1𝑥 + 3𝑑2𝑥
2 − 𝑑3𝑥

3

−𝑑6𝑥 − 𝑑7𝑥
2 + 𝑑8𝑥

3 ]
 
 
 
 

𝐿

0
𝑑𝑥  (63) 



Civil Engineering Journal         Vol. 11, No. 01, January, 2025 

382 

 

Integrating the above expression, obtaining the equivalent nodal load vector: 

{𝑃𝑞𝑠}𝑒 =
{𝑃𝐴𝑞𝑠 𝑀𝐴𝑞𝑠 𝑃𝐵𝑞𝑠 𝑀𝐵𝑞𝑠}𝑒

𝑇 = 𝑞

[
 
 
 
 
 
 −

𝑑1𝐿
2

2
− 𝑑2𝐿

3 +
𝑑3𝐿

4

4
+ 𝐿

𝑑2𝐿
4

4
+
𝑑4𝐿

2

2
−
𝑑5𝐿

3

3

𝑑1𝐿
2

2
+ 𝑑2𝐿

3 −
𝑑3𝐿

4

4

−
𝑑6𝐿

2

2
−
𝑑7𝐿

3

3
+
𝑑8𝐿

4

4 ]
 
 
 
 
 
 

  (64) 

Similarly, four special cases of uniformly distributed load vectors converted to nodes are determined as follows: 

 Element with both ends are FR connections: 

{𝑃𝑞𝑠}𝑒 = {
𝑞𝐿

2

𝑞𝐿2

12

𝑞𝐿

2
−
𝑞𝐿2

12
}
𝑇

  (65) 

 Element with end A is FR connection, and end B is pin connection: 

{𝑃𝑞𝑠}𝑒 = {
5𝑞𝐿

8

𝑞𝐿2

8

3𝑞𝐿

8
0}

𝑇

  (66) 

 Element with end A is pin connection, and end B is FR connection: 

{𝑃𝑞𝑠}𝑒 = {
3𝑞𝐿

8
0

5𝑞𝐿

8
−
𝑞𝐿2

8
}
𝑇

  (67) 

- Element with both ends are pin connections: 

{𝑃𝑞𝑠}𝑒 = {
𝑞𝐿

2
0

𝑞𝐿

2
0}

𝑇

  (68) 

3.2. Concentrated Load Inside the Element 

From Equation 16, in case of concentrated load P at location 𝑥 = 𝜇𝐿 as shown in Figure 2-b, the equivalent nodal 

load vector {𝑃𝑃𝑠}𝑒 can be calculated according to the formula: 

{𝑃𝑃𝑠}𝑒 = {𝑃𝐴𝑃𝑠 𝑀𝐴𝑃𝑠 𝑃𝐵𝑃𝑠 𝑀𝐵𝑃𝑠}𝑒
𝑇 = 𝑃[𝑁(𝑥)]𝑇 = 𝑃

[
 
 
 
𝑁2(𝜇𝐿)

𝑁3(𝜇𝐿)

𝑁5(𝜇𝐿)

𝑁6(𝜇𝐿)]
 
 
 

= 𝑃

[
 
 
 
 
1 − 𝑑1𝜇𝐿 − 3𝑑2𝜇

2𝐿2 + 𝑑3𝜇
3𝐿3

𝑑4𝜇𝐿 − 𝑑5𝜇
2𝐿2 + 𝑑2𝜇

3𝐿3

𝑑1𝜇𝐿 + 3𝑑2𝜇
2𝐿2 − 𝑑3𝜇

3𝐿3

−𝑑6𝜇𝐿 − 𝑑7𝜇
2𝐿2 + 𝑑8𝜇

3𝐿3 ]
 
 
 
 

  (69) 

Similarly, four special cases of concentrated load vector converted to nodes are as follows: 

 Element with both ends are FR connections: 

{𝑃𝑃𝑠}𝑒 = 𝑃{2𝜇
3 − 3𝜇2 + 1 𝐿(𝜇3 − 2𝜇2 + 𝜇) −2𝜇3 + 3𝜇2 𝐿(𝜇3 − 𝜇2)}𝑇  (70) 

 Element with end A is FR connection, and end B is pin connection: 

{𝑃𝑃𝑠}𝑒 = 𝑃 {
𝜇3

2
−

3𝜇2

2
+ 1 𝐿 (

𝜇3

2
−

3𝜇2

2
+ 𝜇) −

𝜇3

2
+

3𝜇2

2
0}

𝑇

  (71) 

 Element with end A is pin connection, and end B is FR connection: 

{𝑃𝑃𝑠}𝑒 = 𝑃 {
𝜇3

2
−

3𝜇

2
+ 1 0 −

𝜇3

2
+

3𝜇

2
𝐿 (

𝜇3

2
−

𝜇

2
)}
𝑇

  (72) 

 Element with both ends are pin connections: 

{𝑃𝑃𝑠}𝑒 = 𝑃{1 − 𝜇 0 𝜇 0}𝑇  (73) 

3.3. Equivalent Load Vector Converted to A Node of Semi-Rigid Beam-Column Element 

Let {𝑃𝑗}𝑒 be the concentrated load vector located at the nodes in the local coordinate system. The nodal load vector 

of a semi-rigid beam-column element in the local coordinate system {𝑃𝑠}𝑒 is calculated by the formula: 

{𝑃𝑠}𝑒 = {𝑃𝑠}𝑒 + {𝑃𝑗}𝑒  (74) 

Here, {𝑃𝑠}𝑒 is the vector of loads placed inside the nodal element (including evenly distributed load and concentrated 

load) of the semi-rigid beam-column element, calculated according to the formula: 
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{𝑃𝑠}𝑒 = {𝑃𝑞𝑠}𝑒 +
{𝑃𝑃𝑠}𝑒  (75) 

4. Set of Equilibrium Equation and Solution Method 

4.1. Establishing the Set of Equilibrium Equations in Global Coordinate System 

Because of the framework is made up of many different elements with different local coordinate systems, in 

calculations it is necessary to return to the global coordinate system. The 𝑒𝑡ℎ element in the global coordinate system 

𝑂′𝑥′𝑦′  has the nodal load vector, stiffness matrix and nodal displacement vector denoted {𝑃𝑠
′}𝑒 , [𝑘𝑠

′]𝑒 , {𝛿𝑠
′}𝑒 , 

respectively. According to FEM, the relationship between load and displacement between two coordinate systems is 

determined as follows: 

{𝑃𝑠}𝑒 = [𝑇]𝑒{𝑃𝑠
′}𝑒

{𝛿𝑠}𝑒 = [𝑇]𝑒{𝛿𝑠
′ }𝑒

  (76) 

wherein, [𝑇]𝑒 is the coordinate transformation matrix, and is a square matrix, so it has orthogonal properties: 

[𝑇]𝑒
−1 = [𝑇]𝑒

𝑇  (77) 

Equation 76 can be rewritten as follows: 

{
{𝑃𝑠

′}𝑒 = [𝑇]𝑒
𝑇{𝑃𝑠}𝑒

{𝛿𝑠
′ }𝑒 = [𝑇]𝑒

𝑇{𝛿𝑠}𝑒
  (78) 

Simultaneously, according to FEM, having the following formula: 

[𝑘𝑠
′ ]𝑒 = [𝑇]𝑒

𝑇[𝑘𝑠]𝑒[𝑇]𝑒  (79) 

Combining the element according to the FEM: 

𝛴[𝑘𝑠
′ ]𝑒{𝛿𝑠

′ }𝑒 = 𝛴{𝑃𝑠
′}𝑒  (80) 

In Equation 80, the sum sign is made according to the principles of structural combination according to FEM. 

Applying the boundary conditions to Equation 80, determining the system of equilibrium equations of the entire 

structural system in the global coordinate system: 

[𝐾𝑠
∗]{𝛿𝑠

∗} = {𝑃𝑠
∗}  (81) 

Solving the system of Equation 81, obtaining the displacements and internal forces of the semi-rigid steel frame, 

including the influence of the P-Delta effect. 

4.2. The Method of Analyzing Semi-Rigid Steel Frames Considering the P-Delta Effect 

The stiffness matrix in Equations 49 and 58 represents two nonlinear problems that need to be solved in the set of 

equations, including nonlinearities in the connections (if any) and nonlinearities due to the secondary P-Delta effect. 

Therefore, to solve Equation 81, one of several methods can be used, or a combination of nonlinear analysis methods 

according to Chan & Chui (2000) [5] can be used. 

The linear analysis method is applied when the connection has constant stiffness. When the connection has a 

nonlinear model, use the pure incremental method, whereby the load is divided into many loading steps small enough 

to meet the convergence conditions of the method. Next, in the consideration 𝑖𝑡ℎ loading step, geometric nonlinear 

analysis is conducted according to the direct iterative method, whereby the stiffness matrices (depending on the change 

of longitudinal force) and internal forces are updated in each iterative calculation step, the convergence condition is met 

when the longitudinal force is approximately equal between two consecutive calculation steps. After each loading step 

𝑖𝑡ℎ , the stiffness matrix, internal forces and geometric changes of the frame will be updated to serve the (𝑖 + 1)𝑡ℎ 

calculation step. In case the frame is subjected to cyclic loads, it is necessary to divide the load into even incremental 

steps according to the amplitude and cycle of the load. The symbols n and Eps represent the number of loading steps 

and and the limit variation of the axial force between two adjacent calculation steps, respectively. Similarly, the symbols 

N0, N1, and Nmax denote the axial force of the previous calculation, the axial force of the next calculation, and the axial 

force of the element with the largest change in axial force value after each calculation step, respectively. A brief 

flowchart of the methodology process is presented in Figure 3. 
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Figure 3. The second-order static analysis of semi-rigid steel frame flowchart 

5. Semi-rigid Connections Modeling 

Although connections can be deformed in many different forms (e.g. axial, shear, bending and torsional), only 

bending is considered. The behavior of the connection is expressed through the relationship between its moment and 

rotation. To describe the behavior of connections, various mathematical formulas have been proposed. Many 

experimental results have proven that the moment-rotation relationship is nonlinear. To simplify calculations, linear or 

multilinear models can be used. In this article, linear model, three-parameter exponential model of Kishi-Chen (1990) 

[40], and the four-parameter exponential model of Richard-Abbott (1975) [41] are used in Example 1, Example 2, and 

Example 3, respectively. 

The three-parameter power model proposed by Kishi-Chen (1990) [40], includes three parameters: initial connection 

stiffness 𝑘0, ultimate connection moment capacity 𝑀𝑢 and shape parameter 𝑛, as follows: 

𝑀 =
𝑘0𝜃

[1+(
𝜃

𝜃0
)
𝑛
]

1
𝑛

  
(82) 

wherein, 𝑀 and 𝜃 are respectively the moment and rotation angle at the consideration loading step of connection; 𝜃0 =
𝑀𝑢/𝑘0 is reference plastic rotation, and the corresponding tangent stiffness of the connection is given by: 

𝑘 =
𝑑𝑀

𝑑𝜃
=

𝑘0

[1+(
𝜃

𝜃0
)
𝑛
]

(𝑛+1)
𝑛

  
(83) 

The four-parameter exponential model was proposed by Richard-Abbott (1975) [41], including four parameters: 

initial stiffness 𝑘0, strain-hardening stiffness 𝑘𝑝 , reference moment 𝑀0 and parameter defining the sharpness of the 

curve 𝑛. The formula of the model is as follows: 

𝑀 =
(𝑘0−𝑘𝑝)|𝜃|

[1+|
(𝑘0−𝑘𝑝)|𝜃|

𝑀0
|

𝑛

]

1
𝑛

+ 𝑘𝑝|𝜃|  
(84) 

and the corresponding tangent stiffness of the connection is given by: 

𝑘 =
𝑑𝑀

𝑑𝜃
|
|𝜃|=|𝜃|

=
(𝑘0−𝑘𝑝)

[1+|
(𝑘0−𝑘𝑝)|𝜃|

𝑀0
|

𝑛

]

𝑛+1
𝑛

+ 𝑘𝑝  
(85) 
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6. Numerical Verification and Discussion 

To validate the proposed method for establishing the shape function, stiffness matrices, and the equivalent nodal 

load vector for semi-rigid beam-column element, a series of numerical examples are provided. These examples are 

compared against published research results to verify accuracy and applicability. 

6.1. Example 1 - Single-Span Two-Story Steel Frame with Linear Semi-Rigid Connection 

The results of displacement and internal force of the two-story single-span steel frame in Figure 4 were calculated 

and verified with the SAP2000 structural analysis program, Bhatti & Hingtgen (1995) [42], Dhillon & O’Malley III 

(1999) [16] and Abolmaali & Choi (2004) [43]. Horizontal load H = 44.5 𝑘𝑁 (100 𝑘𝑖𝑝𝑠), vertical load P = 444.8 𝑘𝑁 

(100 𝑘𝑖𝑝𝑠). Frame elements are erected from 𝑊12 × 96 steel columns and 𝑊14 × 48 steel beams, 𝐴36 steel according 

to AISC standards. Elastic modulus E = 199948.04 𝑀𝑃𝑎 (29000 𝑘𝑠𝑖). The column bases are pin supports. The semi-

rigid column-beam connection has a stiffness of 88.889 𝑘𝑁.𝑚/𝑟𝑎𝑑 (786.732 𝑘𝑖𝑝𝑠. 𝑖𝑛/𝑟𝑎𝑑). 

 

Figure 4. Single-span two-story frame with concentrated loads at the node 

The programming was performed using Matlab software, the calculation results are summarized in table for 

comparison and verification. The results of horizontal displacement calculations at nodes 3 and 5 during first-order 

elastic analysis and second-order elastic analysis of a rigid frame are presented in Table 3, while the results of second-

order elastic analysis of a semi-rigid frame are shown in Table 5. The maximum bending moments in each element of 

the frame are provided in Table 4 for first-order and second-order elastic analyses of rigid frames, and in Table 6 for 

second-order elastic analysis of semi-rigid frames. 

Table 3. Horizontal displacement of rigid frame (mm), Example 1 

Node # 

Rigid frame, 

elastic-first order 
Rigid frame, elastic-second order 

Bhatti & 

Hingtgen [42] 

Present 

study 
SAP 2000 

Bhatti & 

Hingtgen [42] (A)  

Dhillon & 

O’Malley III [16] 

Abolmaali & 

Choi [43] 

Present 

study (B) 

(B-A)/(A) 

(%) 

3 25.7 25.6896 25.691 29.7 29.6 29.7 29.6890 -0.04% 

5 38.3 38.3513 38.354 44.0 43.8 44.0 43.9818 -0.04% 

Table 4. Maximum bending moment of rigid frame (kN.m), Example 1 

Member 

# 

Rigid frame,  

elastic-first order 
Rigid frame, elastic-second order 

Bhatti & 

Hingtgen [42] 

Present 

study 
SAP 2000 

Bhatti & Hingtgen 

[42] (A)  

Dhillon & 

O’Malley III [16] 

Abolmaali & 

Choi [43] 

Present 

study (B) 

(B-A)/(A) 

(%) 

1 163.8 163.8852 187.17 186.9 186.8 187.1 187.1927 0.16% 

2 80.3 80.3692 89.81 89.8 89.8 89.8 89.8144 0.02% 

3 163.0 163.1010 189.57 189.5 189.4 189.5 189.5958 0.05% 

4 162.4 162.4610 188.7 188.6 188.6 188.6 188.7185 0.06% 

5 80.3 80.3224 89.76 89.7 89.7 89.7 89.7674 0.08% 

6 80.3 80.3692 89.81 89.8 89.8 89.8 89.8144 0.02% 
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Table 5. Horizontal displacement of semi-rigid frame (mm), Example 1 

Node # 
Semi-rigid frame, elastic-second order 

SAP 2000 Bhatti & Hingtgen [42] (A)  Dhillon & O’Malley III [16] Abolmaali & Choi [43] Present study (B) (B-A)/(A) (%) 

3 37.534 37.5 37.4 37.5 37.5378 0.10% 

5 58.233 58.2 58.1 58.2 58.2318 0.05% 

Table 6. Maximum bending moment of semi-rigid frame (kN.m), Example 1 

Frame # 
Semi-rigid frame, elastic-second order 

SAP 2000 Bhatti & Hingtgen [42] (A) Dhillon & O’Malley III [16] Abolmaali & Choi [43] Present study (B) (B-A)/(A) (%) 

1 184.86 184.6 184.6 184.8 184.9128 0.17% 

2 101.93 101.9 101.9 101.9 101.9183 0.02% 

3 196.55 196.5 196.4 196.5 196.5903 0.05% 

4 195.67 195.6 195.5 195.7 195.6889 0.05% 

5 101.89 101.9 101.9 101.8 101.8970 0.00% 

6 101.93 101.9 101.9 101.9 101.9183 0.02% 

Verification shows that the calculation results of the present study closely align with the results published in the 

above references, particularly those by Bhatti & Hingtgen [42]. Thus, it can be seen that the proposed analysis method 

according to the present theory is reliable. 

6.2. Example 2 - Single-Span Two-Story Steel Frame with Nonlinear Semi-Rigid Connection 

According to Chan & Chui [5], Stelmack (1982) [1] tested the behavior of a two-story single-span steel frame with 

concentrated static load as shown in Figure 5. This steel frame was chosen as the benchmark frame for verification in 

the study of Kim & Choi (2001) [17], and this study. Frame elements are erected from 𝑊12 × 96 steel columns and 

𝑊14 × 48 steel beams, 𝐴36  steel according to AISC standards. Elastic modulus E = 199948.04 𝑀𝑃𝑎 (29000 𝑘𝑠𝑖). The 

column bases are pin supports. The semi-rigid beam-column connection is made of 𝐴325, 3/4 𝑖𝑛 bolts and 𝐴36, 𝐿4 ×

4 × 1/2 𝑖𝑛 angle steel, at the upper and lower flanges of the beam. The concentrated load in gravity direction on the 

first floor beam span P1 = 10.68 𝑘𝑁 (2.4 𝑘𝑖𝑝𝑠) was first applied at third points of the beam, and then two horizontal 

loads act together, proportionally. 

 

Figure 5. Two-story, single-span frame with concentrated static load according to Stelmack's experiments 

In Figure 6, the load-horizontal displacement curve (u) at the first floor almost coincides with the experimental 

results of Stelmack (1982) [1]. In Figure 7, the moment-rotation curve in connection A is very close to the theoretical 

calculation results obtained using Explicit Equations (the parameters of the semi-rigid connection model were calculated 

according to the formula, depending on the type of semi-rigid connection) by Kim & Choi (2001) [17], and there is a 

small degree of difference compared with the moment-rotation curve from the experiment. Thus, it can be seen that the 

proposed calculation method according to the present theory is reliable. 
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Figure 6. Comparison of the load-horizontal displacement curve u at the 1st story for verification study 

 

Figure 7. Comparison of the moment-rotation curve at A connection for verification study 

The relationship between horizontal load P and horizontal displacement u at first story, and relationship between 

moment-rotation at A connection are calculated and verified with the experiments of Stelmack (1982) [1], and Kim & 

Choi (2001) [17]. The beam-column connections according to Kishi-Chen (1987) exponential model with three 

parameters including: 𝑘0 = 3373.16𝑘𝑁.𝑚/𝑟𝑎𝑑 (29855𝑘𝑖𝑝𝑠. 𝑖𝑛/𝑟𝑎𝑑), 𝑀𝑢 = 20.90𝑘𝑁.𝑚 (185𝑘𝑖𝑝𝑠. 𝑖𝑛), 1.65n . 

After programming with Matlab software, the calculation results are shown in Figures 6 and 7. 

6.3. Example 3 - Single-Span Two-Story Steel Frame with Nonlinear Semi-Rigid Connection, Cyclic Loads 

In this example, the two-story single-span steel frames with cyclic lateral load steel frame tested by Stelmack et 

al. (1986) [44] was used for validation calculations. The structure of the frame is stated in Example 2. The frame is 

subjected to cyclic lateral load with load increment equal to ±4.45𝑘𝑁(±1.0𝑘𝑖𝑝𝑠)  and increased up to 

±22.24𝑘𝑁(±5.0𝑘𝑖𝑝𝑠). For the second story, the load is always one-half of the load at first story. Frame model, 

cycle load history, experimental results and moment-rotation relationship curve in the connection according to the 

Richard-Abbott model in Figure 8. 

Calculation to verify the framework according to the experiments of Stelmack et al. (1986) [44], Chan & Chui (2000) 

[5], and Valipour & Bradford (2013) [45]. The beam-column connections according to the Richard-Abbott (1975) [41] 
exponential model with four parameters including: 𝑘0 = 2372.68𝑘𝑁.𝑚/𝑟𝑎𝑑  (21000𝑘𝑖𝑝𝑠. 𝑖𝑛/𝑟𝑎𝑑) , 𝑘𝑝 =
135.58𝑘𝑁.𝑚/𝑟𝑎𝑑 (1200𝑘𝑖𝑝𝑠. 𝑖𝑛/𝑟𝑎𝑑), 𝑀0 = 15.82𝑘𝑁.𝑚 (140𝑘𝑖𝑝𝑠. 𝑖𝑛), 𝑛 = 1.8. 
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a) Steel frame calculation model b) Lateral load history  

 

c) Moment-rotation angle relationship of experimental connection by Stelmack (1986) [44] and by Richard-Abbott model (1975) [41] 

Figure 8. Two-story, single-span frame with cyclic lateral load according to Stelmack's experiments 

In the frame, each beam or column member is simulated with only one semi-rigid beam-column element as 

established. After programming with Matlab software to calculate using the FEM, we obtained the analysis results as 

follows: horizontal displacement curve u at the second-story and load P with cycle 2 and cycle 3 as shown in Figure 9, 

the horizontal displacement curve u1 at the first-story and the load P are as shown in Figure 10, and the moment-rotation 

angle relationship curve in connection A is as shown in Figure 11. The total load application procedure is divided into 

6,000 steps. 

It can be observed in Figures 9 to 11 that the displacement and force responses obtained from the analysis of the 

present theory show a strong correlation with the experimental results and the theoretical calculation results of other 

authors. The results of the present theory are quite close to the experimental results. The discrepancy between the results 

of the present theory and those of other studies may be due to the application of the semi-rigid connection behavior 

model or the use of different computational programming techniques. The loading/unloading model can exert a local or 

global effect on the frame structure subjected to cyclic loads. Thus, it can be seen that the proposed calculation method 

based on the present theory is reliable. 

  

a) Cycle 2 b) Cycle 3 

Figure 9. P-u Relationship 



Civil Engineering Journal         Vol. 11, No. 01, January, 2025 

389 

 

  

a) Cycle 4 b) Cycle 5 

 

c) Cycle 6 

Figure 10. P-u1 Relationship 

  

a) Cycle 3 b) Cycle 4 

 

c) Cycle 5 

Figure 11. Relationship between moment-rotation angle in connection A 
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7. Conclusions 

This paper has presented a novel method for establishing the shape functions for semi-rigid beam-column element 

in the second-order analysis of steel frames. The proposed method offers a comprehensive framework for developing 

stiffness matrices that effectively account for both the P-Delta effect and the flexibility of semi-rigid connections. The 

key findings and contributions of this study are summarized as follows: 

1. Shape Function Development: The shape functions for semi-rigid beam-column element were derived based on 

the geometric properties of the element and the stiffness of its connections. The resulting shape functions are 

expressed as polynomials, facilitating straightforward calculation and implementation within the finite element 

method (FEM). 

2. Stiffness Matrices: The linear elastic stiffness matrix and the geometric stiffness matrix for semi-rigid beam-

column element were derived using Castigliano's theorem (Part 1). These matrices are crucial for accurate second-

order analysis, effectively capturing the influence of semi-rigid connections on the overall structural response. 

3. Equivalent Nodal Load Vectors: The equivalent nodal load vectors for the semi-rigid beam-column element were 

derived from the established shape functions and the FEM. These vectors are essential for calculating loads 

applied to the element, converted to nodal forces in the analytical model. 

4. Special Cases: The proposed method was successfully applied to special cases, including fully rigid (FR) and 

pinned connections. The resulting stiffness matrices and equivalent nodal load vectors for these scenarios were 

simplified, demonstrating the method's flexibility and applicability to various connection types. 

5. Numerical Verification: The proposed method was validated through several numerical examples, investigating 

steel frames with semi-rigid connections as benchmark cases. These frameworks, widely recognized for 

validation, showed excellent agreement with analytical solutions, published research, and finite element analysis 

(FEA) simulations, confirming the accuracy and robustness of the proposed approach. 

6. Practical Applications: The method is well-suited for practical applications in structural engineering, particularly 

in the design and analysis of steel frames with semi-rigid connections. By accounting for both the connection 

flexibility and P-Delta effects, the proposed approach provides a more realistic and reliable analysis framework 

for modern steel structures. 

In conclusion, the new method for establishing shape functions and stiffness matrices for semi-rigid beam-column 

element offers significant advantages in the second-order analysis of steel frames. Future research could explore further 

applications of this method to more complex structural systems and the integration of non-linear material behavior. 
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