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Abstract 

This study presents a novel approach to modeling the soil–water characteristic curve in unsaturated soils, employing Monte 

Carlo simulations to capture the complex behavior of the pore network. The primary objective is to develop an alternative 

method to represent the hysteretic nature of the soil–water characteristic curve, which is critical for understanding 

unsaturated soil behavior in various engineering applications. The proposed approach conceptualizes soil as a network of 

interconnected pores, where each pore interacts with its nearest neighbors. Monte Carlo simulations are used to model the 

pore-filling distribution as a function of pressure differences during drying and wetting cycles. The model effectively 

reproduces the characteristic hysteresis curves associated with the hydraulic and mechanical processes in unsaturated soils. 

A key finding is that the simulated soil–water characteristic curve captures the impact of pore-scale interactions and reflects 

the complex hysteresis effects observed in experimental data. The novelty of this work lies in integrating pore network 

modeling with Monte Carlo simulations, addressing limitations of traditional models and offering a more accurate 

representation of unsaturated soil behavior. While the model has not yet undergone experimental validation, it provides 

valuable insights into the dynamics of soil moisture retention and serves as a foundation for future experimental testing 

and refinement of soil–water models. 
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1. Introduction 

Unsaturated soils are fundamental to a wide range of geotechnical and engineering applications. Unlike saturated 

soils, where properties such as permeability, compression index, and Young’s modulus are often treated as constants, 

these properties in unsaturated soils vary significantly with the degree of saturation [1]. This variability has prompted 

the development of soil property functions to characterize and predict soil behavior under unsaturated conditions. 

Among these, the soil–water characteristic curve (SWCC) has emerged as a cornerstone for estimating critical 

unsaturated soil properties [2], including hydraulic conductivity, shear strength [3], and deformation [4]. 

The SWCC describes the relationship between soil suction and water content, with distinct drying and wetting paths 

that define critical points such as the air entry value (AEV), residual water content (𝜓𝑟), and the water entry value (𝜓𝑤). 

Consequently, the SWCC is inherently hysteretic—its behavior depends not only on the applied suction but also on the 

history of wetting and drying cycles [5]. This hysteresis is primarily caused by pore-scale phenomena, such as the "ink 

bottle" effect and variability in the contact angle of water within pores [6, 7]. Understanding and accurately modeling 

hysteresis is crucial for predicting unsaturated soil behavior in practical applications, as it significantly affects flow, 

deformation, and strength properties. 
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In Figure 1, the typical SWCC is presented, depicting the distinct drying and wetting paths of unsaturated soils. The 

air entry value (𝜓𝑎) is identified as the point at which air begins to enter the soil pores during drainage or is expelled 

during the wetting process. Initially, as soil suction (𝜓) increases from zero to 𝜓𝑎 , the water content (𝜃𝑤) remains 

relatively constant. However, beyond 𝜓𝑎, further increases in suction result in a gradual decline in water content until 

the residual water content (𝜃𝑟) is reached, indicating the discontinuity of the water phase within the soil matrix. The 

suction corresponding to 𝜃𝑟 is known as the residual soil suction (𝜓𝑟). Moreover, the water entry value (𝜓𝑤) is defined 

as the matric suction at which the water content of the soil begins to rise significantly during the wetting process. This 

understanding of the SWCC is fundamental for predicting the hydraulic behavior of unsaturated soils, which is critical 

in various geotechnical and environmental engineering applications [8, 9]. 

 

Figure 1. Volumetric water content as function of soil suction 

Despite advances in experimental techniques such as pressure plate apparatus [10], tensiometers [11] and electrical 

conductivity sensors [12, 13], measuring the SWCC in the laboratory remains costly and time-consuming [14]. 

Consequently, numerous theoretical models have been proposed to simplify SWCC determination. These models often 

rely on empirical fitting parameters or mean-field approximations, which assume homogeneity and average out the 

complexities of pore-scale interactions [15-23]. While computationally efficient, such approximations fail to capture the 

intricate nonlinear and collective behaviors that occur at the pore scale. 

Recognizing these limitations, pore network models have emerged as a more accurate representation of soil 

microstructure [24]. Traditional models for predicting unsaturated soil properties, such as the bundle-of-capillary-tubes 

model, simplify the pore structure by treating it as a collection of independent capillaries [25]. While these models offer 

computational simplicity, they overlook the critical influence of pore connectivity and structural heterogeneity on soil 

behavior. 

Recent advancements in machine learning techniques have shown potential in overcoming these limitations by 

directly predicting the SWCC from experimental data without relying on oversimplified assumptions or mean-field 

approximations. These models can capture complex, non-linear relationships between suction, water content, and soil 

properties, providing a more accurate representation of the SWCC in unsaturated soils [26, 27]. However, despite their 

promising capabilities, machine learning models also face several limitations. They often require large and high-quality 

datasets for training, and the performance of the model is heavily dependent on the quality of the data. 

In contrast, models that conceptualize soil as interconnected pore networks enable the simulation of water flow and 

hysteresis at the pore scale. These approaches are particularly valuable for estimating hydraulic conductivity, as they 

incorporate essential characteristics of the pore structure. However, despite these advances, many pore network models 

do not account in detail for hysteresis phenomena, which are critical in unsaturated soils due to the distinct behaviors 

observed during wetting and drying cycles [25]. 

Traditional pore network approaches often overlook the complex interactions among pores or rely on simplified 

assumptions, commonly represented by mean-field approximations. Such methods, akin to those used in statistical 

mechanics to simulate atomic and molecular systems—such as lattice gases [28] and neural networks [29]—have been 

extensively utilized [30–32]. However, the unique behavior of SWCC has sparked discussions regarding the adequacy 

of relying solely on approximations for porous systems. Furthermore, pressure gradients across distant boundaries within 

a soil sample during drainage may yield retention curves of greater complexity than those typically captured by 

theoretical models [33]. 
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To address these limitations, Monte Carlo simulations offer a powerful alternative. By modeling individual pores 

and their interactions probabilistically, these simulations capture the stochastic and collective dynamics of pore 

networks, including hysteresis effects and phase transitions. Although Monte Carlo methods have been used to calibrate 

parameters for van Genuchten-type models [34], their direct application to simulate and analyze hysteresis in pore 

networks has been limited. This study aims to bridge this gap by integrating a pore network model with Monte Carlo 

simulations to explore the SWCC and its hysteretic behavior. Unlike mean-field approximations, this approach explicitly 

considers pore-to-pore interactions and their impact on macroscopic soil properties. By simulating wetting and drying 

processes in detail, it provides a robust framework for understanding and theoretically predicting unsaturated soil 

behavior. 

Additionally, we investigated the collective interactions of pores under pressure using Monte Carlo simulations to 

model and analyze the soil drainage process. In this context, Monte Carlo techniques perform statistical analyses by 

substituting probability distributions for factors with inherent uncertainty [35]. By recalculating interactions thousands 

of times, these simulations generate detailed retention curves that reflect the complex dynamics of porous systems. 

Unlike previous treatments that relied on approximations [33], this method provides a more comprehensive 

representation of the pore-scale processes driving soil behavior. 

The rest of this paper is structured as follows: Section 2 introduces the methodology; Section 3 explores hysteresis 

in the SWCC; Section 4 outlines the theoretical framework for pore interactions in soils; Section 5 describes the 

statistical model used to simulate the porous network; Section 6 explains the Monte Carlo simulation process; Section 

7 presents numerical results, including the retention curves obtained; and Section 8 concludes with key findings and 

future directions. 

2. Research Methodology 

This study aimed to develop a theoretical model based on a pore network approach to simulate the SWCC and 

analyze hysteresis in unsaturated soils. The following methodological steps were undertaken (Figure 2): 

 Review of Hysteresis in Unsaturated Soils: The initial phase involved an extensive review of the hysteresis 

phenomenon in unsaturated soils, focusing on the primary causes and characteristics affecting soil–water 

interactions. This review provided essential context for understanding how hysteresis arises in soils due to factors 

such as the "ink bottle" effect and variations in contact angles. These insights were critical for accurately modeling 

the behavior of the SWCC. 

 Pore Network Simulation: Following the hysteresis review, the soil was modeled as a complex network of 

interconnected pores, approximating the soil structure as a lattice system. Each pore was represented as a node, 

with the channels between pores modeled as connections. The state of each pore, influenced by its neighboring 

pores, governed the flow behavior within the network. 

 Application of the Ising Model: A two-dimensional Ising model was adapted to study the interactions among soil 

pores. Originally developed for ferromagnetic systems, this model was repurposed to simulate the tendency of 

pores with similar water saturation states to cluster together. In this approach, pores were represented in one of 

two states: filled or unfilled, corresponding to water retention or expulsion, respectively. Additionally, an external 

pressure field was incorporated into the model to simulate the effects of soil suction on the pore network. 

 Monte Carlo Simulation: Monte Carlo simulations were employed to explore water flow behavior in porous media 

under varying pressure conditions. A probability distribution was utilized to simulate multiple configurations of 

the pore network, effectively capturing the nonlinearity and hysteretic nature of the SWCC. Thousands of pore 

interactions were recalculated, enabling the statistical analysis of variables such as pore filling states, mean energy, 

and phase transitions. 

 Hysteresis Analysis: The hysteresis behavior in the soil–water characteristic curve (SWCC) was analyzed by 

simulating wetting and drying cycles within the pore network. Changes in water content and suction over time 

were observed, and the network's filling states were evaluated during each cycle, successfully reproducing the 

characteristic hysteretic loop of the SWCC. 

3. Hysteresis in the Soil–Water Characteristic Curve 

This section describes the theoretical derivation of hysteretic behavior in the SWCC. Soils retain more water at a 

given tension during desorption than during absorption [36]. This history-dependent behavior, analogous to similar 

physical processes, is known as hysteresis. Hysteresis in the soil suction–water content relationship, observed when soils 

are cyclically wetted and dried, refers to the nonunique relationship between the pressure head and the water content in 

the SWCC [37]. 

During infiltration, as the water content increases, the pressure head also increases. Therefore, the SWCC can be 

described by a unique function. However, when the input direction reverses during drainage, the pressure head and water 

content (𝜓, 𝜃) do not follow the original path, requiring a different but still unique function to describe the SWCC. 
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Analyses of hysteresis typically adopt one of three approaches: 1) Theoretical models. 2) Experimental–analytical 

models. 3) Numerical simulations. 

 

Figure 2. Research flowchart 

3.1. Theoretical Models 

Theoretical models for describing the retention behavior of soils are typically divided into independent [38-40] and 

dependent pore models [33, 41, 42]. These classifications depend on whether pore drainage is assumed to be independent 

of or influenced by the state of neighboring pores. In both types of models, the soil matrix is divided into pore domains 

characterized by: 

 Wetting pore radii: Control water filling. 

 Drying pore radii: Control water emptying. 

3.2. Experimental–Analytical Models 

Experimental–analytical models often scale the primary, secondary, and higher-order scanning curves from the main 

hysteresis curve [43–46]. These models use various analytical expressions to describe the SWCC. Commonly applied 

models include: Brooks–Corey, Farrell–Larson, Fredlund–Xing, Gardner, McKee–Bumb, Kosugi, van Genuchten, 

Campbell, Russo, Tani, Omuto, and Dexter models [2, 21, 22]. These models allow the determination of shape 

parameters, referred to as hydraulic parameters, by fitting experimental data to water-retention functions. However, the 

Hysteresis Results 

Conclusions 

Data Analysis 

Application of the Ising Model Monte Carlo Simulation 

Pore Network Simulation 

Simulation Methods 

Unsaturated Soils Hysteresis in SWCC 

 

Literature review 

Start 

end 



Civil Engineering Journal         Vol. 11, No. 02, February, 2025 

767 

 

methods for measuring soil hydraulic parameters are often time-consuming and expensive. Generating datasets suitable 

for calibrating analytical models may take several months [37]. To address this challenge, transient experiments 

involving hysteresis have been proposed, where data are analyzed using computational tools to obtain information about 

soil hydraulic properties [47]. Other methods leverage experimental techniques like X-ray microtomography and 

numerical simulations to examine the internal liquid distribution in soil pores [48–50]. However, numerical simulations 

are typically limited to relatively small numbers of pores in the soil matrix. 

3.3. Theoretical and Computational Framework 

In this work, a theoretical and computational framework was explored to address these limitations. This framework 

considers the collective interactions of pores in unsaturated soils. Without relying on parametric fitting or analytical 

approximations, the behavior of the main SWCC curves was derived. For this analysis, the soil system was 

conceptualized as a solid frame divided into pore domains characterized by their filling states. The bulk domain behavior 

was studied using concepts derived from magnetic materials. In these systems, small groups of atoms (where all electrons 

share the same magnetic orientation) are analyzed. One of the simplest and most important statistical physics models 

for studying domain formation in magnetic systems is the Ising model. In the absence of external forces, the Ising model 

provides an analytical solution. However, under the influence of external fields, a numerical solution is required. In this 

study, the collective interactions of pores in unsaturated soils were examined under external pressures, and their effects 

on the SWCC were analyzed using the Ising statistical model. This model, initially developed to predict hysteresis in 

the magnetization of magnetic materials, was adapted to study the hysteresis phenomenon in soil systems. The main 

characteristics of the Ising model and the numerical methodology used to approach this problem are described in the 

next section. 

4. Model of Porous Systems 

In this study, we propose a theoretical model to describe the hysteresis behavior observed in the SWCC of 

unsaturated soils. The model is constructed using a pore network approach, representing the soil as a lattice of 

interconnected pores. This representation enables effective simulation of fluid dynamics and hysteresis effects in 

unsaturated soils, which are fundamental for understanding the interaction between soil and water under varying pressure 

conditions. 

The decision to model soil as a network of pores is based on the premise that the soil’s hydraulic properties, 

particularly its water retention and flow behavior, are primarily governed by the geometry and connectivity of the pores. 

In reality, soils consist of large voids (pore bodies) and smaller, narrower sections (pore throats) that regulate fluid 

movement between these voids. By modeling these elements as a network, we aim to capture the complex flow behavior 

and hysteresis phenomena that occur when soils undergo cycles of wetting and drying [51]. Traditional models often 

emphasize macroscopic properties, such as porosity or permeability, but fail to account for the finer-scale behavior 

arising from pore connectivity and the dynamics of water movement at the pore scale. By representing soil as a network 

of interconnected pores, our model simulates and examines the underlying processes responsible for the characteristic 

hysteresis in the SWCC. This approach captures the intricate interplay of capillary forces, surface tension, and pore 

connectivity, which dictate how water enters and exits the soil during wetting and drying cycles. 

Furthermore, the pore network model provides a flexible framework that can be tailored to various soil types and 

conditions by adjusting the parameters of the pore network. 

4.1. Assumptions for Pore Network Modeling 

To simplify the complex behavior of unsaturated soils and ensure computational feasibility, several assumptions 

were made in constructing the pore network model. These assumptions include: 

 Two-Dimensional Pore Network: The pore structure is represented as a two-dimensional lattice. While this 

simplification does not fully capture the three-dimensional complexity of soil, it allows for efficient computation 

and is considered sufficient for modeling the primary hydraulic and hysteretic behaviors. This framework 

effectively incorporates variations in pore connectivity and accounts for the influence of local heterogeneities 

within the soil matrix. 

 Binary Pore State: Each pore in the network is modeled with only two possible states: filled with water (𝜎 = 1) or 

filled with air (𝜎 = −1). This binary representation is effective for describing the fundamental hysteretic behavior 

of soils during wetting and drying cycles, where pores transition between retaining water and expelling air. 

 Pore Connectivity and Aggregation: Pores are interconnected by "tunnels," and those sharing the same filling state 

(either filled with water or air) tend to form domains or clusters. This assumption enables the model to simulate 

the collective behavior of the pore network and observe cluster formation, which significantly contributes to the 

hysteresis observed in the soil–water characteristic curve (SWCC). 
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 External Pressure as an External Field: The model incorporates an external pressure field to simulate the effects of 

suction and pressure on the pore network. This external pressure influences the state of individual pores and, 

consequently, the overall soil–water characteristics. The approach is analogous to the influence of an external 

magnetic field in ferromagnetic systems, where the field drives state transitions within the system. 

4.2. Model 

This section presents the details of the model developed to describe the hysteresis observed in the SWCC for 

unsaturated soils. The model incorporates the effect of external pressure on the SWCC and is based on the assumption 

that the soil can be represented as a network of interconnected pores, as discussed in Section 4.1. This representation 

enables the investigation of energy changes associated with transitions between wet and dry states of the soil and their 

contribution to hysteresis. 

First, a soil element of volume V was considered (Figure 3). The total volume of the sample can be expressed as: 

𝑉 = 𝑉𝑠 + 𝑉𝑣 , where 𝑉𝑠 represents the solid volume and 𝑉𝑣 , the void space. For simplicity, the void space is modeled as a 

set of interconnected pores on a two-dimensional lattice. Additionally, it is assumed that these pores can only be filled 

with water or air; therefore, the void volume consists of contributions from these two components: 𝑉𝑣 = 𝑉𝑤 + 𝑉𝑎 . 

 

Figure 3. Illustration of soil with a qualitative depiction of its porous structure. An external field is applied in the +z direction 

(perpendicular to the plane). The soil is represented as a composite system consisting of solid material, air, and water 

The aim of the model is to determine the energy required for a pore to transition between filled and empty states (or 

vice versa). Furthermore, the coordination number was examined, considering that each pore is connected to its 

neighbors through "tunnels," and pores with the same filling state tend to form clusters (domain formation). To calculate 

the change in a pore's state, the influence of external pressures in the soil system must be considered. This external 

influence is incorporated as a field affecting the entire network, analogous to an external magnetic field in a magnetic 

system (arrows in Figure 3). 

For a pore at site 𝑖 in the lattice, initially filled with water, the energy required to empty it Δ𝐸𝑖 is given by: 

Δ𝐸𝑖 = Δ𝐸𝑤𝑎 + Δ𝐸𝑠 + 𝑊𝑤𝑎 ,  (1) 

where Δ𝐸𝑤𝑎 represents the change in surface energy, which quantifies the disruption of intermolecular bonds when a 

surface is created or destroyed. The surface energy of a pore strongly depends on the filling of all 𝑁  connected 

neighboring pores with index 𝑗.  

If the pore transitions from 𝜎𝑖 = 1 → −1 while a neighboring pore is in the state 𝜎𝑗 = −1, a surface disappears, and 

the corresponding energy per unit area is 𝛾𝑤𝑎𝑗
 (see Figures 4-a and 4-b). This leads to: 

Δ𝐸𝑤𝑎𝑗
= −𝛾𝑤𝑎𝑗

,  (2) 

and when considering all neighboring pores, 

Δ𝐸𝑤𝑎 = ∑  𝑁
𝑗=1 ± 𝛾𝑤𝑎𝑗

𝑎𝑡,𝑗 ,  (3) 

where 𝛾𝑤𝑎𝑗
 is the surface energy between pore pairs, and 𝑎𝑡,𝑗 the area of the tunnels connecting pore 𝑖 to its 𝑁 closest 

neighbors, each with area 𝑎𝑡,𝑗. The transitions in pore states (𝜎𝑖) are influenced by the states of neighboring pores (𝜎𝑗), 

allowing the model to dynamically capture local variations in connectivity and their effects on the overall structure of 

the pore network. 
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Figure 4. Schematic representation of identical porous assembly elements. (a) A single pore i initially filled with water (𝝈𝒊 =

𝟏) interacting with the external soil frame (𝜸𝒔𝒘) and neighboring empty pores (𝜸𝒘𝒂). (b) Illustration of the surface changes 

due to the emptying of the pore 𝒊(𝝈𝒊 = −𝟏), showing the destruction of the filled surface and creation of an empty surface as 

the pore transition to its dry state. 

The term Δ𝐸𝑠 represents the change in surface energy at the solid–water and solid–air interfaces. For instance, when 

pore 𝑖 is filled with water (𝜎𝑖 = 1) and surrounded by solid material, the destruction of the solid–water interface during 

emptying results in a change of energy in the boundary interface from 𝛾𝑠𝑤 to 𝛾𝑠𝑎 (see Figures 4-a and 4-b). Thus: 

Δ𝐸𝑠 = (𝛾𝑠𝑎 − 𝛾𝑠𝑤)𝐴𝑝, (4) 

where 𝐴𝑝 is the solid interface area of the pore.  

Finally, the term 𝑊𝑤𝑎 in Equation 1 accounts for the volume work associated with the pressure change (𝜓ext ) in 

pore 𝑖 of volume 𝑉𝑣  during emptying. Therefore, if the pore state transitions from 𝜎𝑖 = 1 → −1, the corresponding 

energy difference is: 

𝑊𝑤𝑎 = 𝜓𝑒𝑥𝑡𝑉𝑝. (5) 

A similar argument applies during filling (𝜎𝑖 = −1 → 𝜎𝑖 = 1), with the signs in Equations 2, 4 and 5 reversed. In 

the following section, the physical model and its main implications are used to demonstrate how this theory predicts the 

hysteresis behavior in the SWCC. 

5. Ising Model in Porous Systems 

The physical model used in this study to reproduce the characteristic hysteresis curves associated with the hydraulic 

and mechanical processes in unsaturated soils was adapted from the Ising model [35], originally developed to describe 

ferromagnetic systems. This section details the rationale behind this adaptation, the specific implementation of the 

model, and its key limitations. 

The Ising model, a fundamental tool in statistical physics, was first introduced by Lenz in 1920 to describe magnetic 

domain formation in ferromagnetic materials [52]. It provides a robust conceptual framework for understanding phase 

transitions in systems composed of individual elements (e.g., spins) that interact with their nearest neighbors. This 
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framework closely aligns with the behavior of soil pore systems, where each pore (or grid cell) can exist in one of two 

states (e.g., saturated or unsaturated), and interactions between neighboring pores significantly influence the system's 

overall dynamics. 

Similar to how spins in the Ising model align to minimize system energy [53], neighboring pores in soil systems 

exhibit a tendency to aggregate into organized spatial patterns, particularly under critical conditions. These 

characteristics make the Ising model an effective choice for representing the dynamics of pore-filling behavior [33]. 

To adapt the Ising model for soil systems, the pore network was represented as a bidimensional lattice where each 

site i on layer k was assigned an Ising variable 𝜎𝑖(𝜎𝑖 = 1) to indicate its filling state (saturated or unsaturated). The total 

energy of the system, or Hamiltonian, was derived under the following assumptions: 

 Nearest-Neighbor Interactions: Pores interact primarily with their immediate neighbors within the same soil layer. 

These interactions represent local processes, such as water redistribution. 

 Tendency for Aggregation: To reflect the natural clustering tendency of pores with similar filling states, 

"ferromagnetic" interactions were included within the lattice. These interactions mimic the energy minimization 

observed in spin alignment in ferromagnetic systems. 

The Hamiltonian, formulated in terms of intralayer coupling, quantitatively describes the energy dynamics within 

the system by capturing interactions between neighboring pores. The dimensionless Hamiltonian describing these 

intralayer interactions is expressed as: 

𝐻(𝜎𝑖) = −𝛽 ∑  ⟨𝑖,𝑗⟩ 𝐽𝑗𝜎𝑖𝜎𝑗 − 𝛽𝜓′ ∑  𝑖 𝜎𝑖 ,  (6) 

where the 𝛽 factor in Equation 6 represents the reciprocal of the thermodynamic temperature for systems with thermal 

interactions. Because energy transfer in the form of heat was not considered in this work, a statistical interpretation of β 

was used. In this framework, a large ensemble of copies of a porous sample is considered, with each copy having a 

distinct distribution of filling states. Copies with the same energy form a microstate. In this context, 𝛽 is a property of 

the system that defines the variation in the number of accessible states as a function of energy. Here, the number of 

accessible states represents the diverse and complex combinations of pores with a given filling state. Additionally, 𝛽 

preserves certain conditions that define the system at a macroscopic level. For example, if 𝛽 increases, the system tends 

to adopt more ordered configurations, indicating lower energy. 

The term 𝐽𝑗 in Equation 6 is the interaction energy between pore 𝑖 and its neighboring pore 𝑗 in the lattice. This 

interaction is derived as: 

𝐽𝑗 =
𝛾𝑤𝑎𝑗

𝑎𝑡,𝑗

2
.  (7) 

Additionally, the pore state of a neighboring site 𝑗 is characterized by 𝜎𝑗 = ±1, indicating whether it is saturated or 

unsaturated. 

To account for external mechanical forces, an additional term 𝜓′ was introduced in the Hamiltonian, analogous to 

an external magnetic field in the Ising model. This term simulates the effects of soil pressure and is expressed as: 

𝜓′ =
Δ𝐸𝑠−𝜓𝑒𝑥𝑡𝑉𝑝 

2
.  (8) 

The introduction of an external field to simulate soil pressure effects in the model accounts for the influence of 

external mechanical forces on pore states, akin to the role of an external magnetic field in the Ising model. While the 

specific formulation of the external field in this model is novel, it is grounded in established physical principles and 

aligns with prior theoretical frameworks in unsaturated soil mechanics. In these frameworks, external stresses are known 

to modify soil water retention behavior by altering pore connectivity and geometry [54]. 

Although direct experimental studies on the exact implementation of the external field are not available, the modeled 

behavior qualitatively aligns with observed soil responses in experimental studies [55]. For instance, SWCC under 

varying mechanical stresses exhibits trends consistent with the model, such as shifts in saturation thresholds with 

increased pressure. Additionally, the hysteresis captured by the external field closely mirrors experimentally observed 

hysteresis in soil-water retention caused by changes in effective stress. 

Considering these interactions, the total interaction energy 𝐽 = ∑𝑗=1
𝑁  𝐽𝑗, external pressure 𝜓′, and the factor 𝛽 are 

regarded as the primary control parameters of the system. Depending on the values of these parameters, the system may 

exhibit ordered or disordered states, as well as intermediate critical states. 
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6. Monte Carlo Simulation 

One of the main properties of the Ising model is its ability to calculate phase transitions in the system of interest. 

During a phase transition, certain properties change, often discontinuously, due to changes in external conditions such 

as temperature or pressure. 

To examine the emergent phases of the Ising model, a Monte Carlo simulation was performed under fixed boundary 

conditions in a porous lattice subjected to external pressure. Conceptually, this simulation can be viewed as a random 

walk through the state space of the system. To ensure reliable results, averages of the variables of interest were calculated 

over a large number of iterations. The Monte Carlo method was implemented in C++, which allowed for accurate 

modeling of stochastic processes by generating the necessary random numbers. 

At the start of the simulation, the porous system was initialized with all pores completely filled with liquid. While 

deterministic, this initial configuration provided a consistent baseline for analysis. The algorithm randomly selected 

pores and attempted to change their states based on energy considerations governed by the transition rates defined in 

Equation 9. Transitions that reduced the system’s energy (Δ𝐸𝑖 ≤ 0) were accepted, while others were rejected. This 

process was repeated iteratively until the system reached equilibrium, defined as the convergence of running averages 

for the energy per pore (⟨𝐸⟩) and the filling states (⟨𝜎⟩) within a small tolerance. 

𝑅𝑎𝑡𝑒[𝜎𝑖 = 1 → 𝜎𝑖 = −1]  = Γ,         if Δ𝐸𝑖 ≤ 0

 = 0,        otherwise 
  (9) 

6.1. Simulation Robustness and Sensitivity Analysis 

To ensure the robustness of the results, multiple iterations of the Monte Carlo simulation were conducted. Across 

different runs, the system consistently demonstrated reliable convergence of averages, confirming stability under the 

given conditions. While minor statistical variations in the critical point (1/𝛽) were observed due to the inherent 

randomness of the method, these deviations were negligible and did not affect overall trends. Specifically, the behavior 

of critical points, such as their shift with increasing external pressure (𝜓′), was reproducible across simulations, further 

validating the model. 

A sensitivity analysis was conducted by varying the lattice size (N) and the number of Monte Carlo steps (NMC). 

Larger lattices and longer simulation times produced smoother fluctuations and more precise estimates of critical points. 

However, the fundamental behaviors—such as phase transitions and hysteresis phenomena—remained consistent, 

confirming that the results reflect the system’s intrinsic dynamics rather than artifacts of simulation parameters. 

6.2. Exploring Hysteresis Behavior 

After the system reached equilibrium, average energy and pore filling states were obtained. To explore phase 

transitions, the hysteresis behavior in the SWCC was reproduced using the following procedure: 

 Initialization: Start with a sufficiently large negative external pressure 𝜓′ so that all pores are in the filled state 

𝜎 = 1. 

 Pressure Increase: Slowly increase the applied pressure. At a certain value of 𝜓′, the local pressure at specific 

pores will become positive, causing those pores to change state. 

 Cascading Effect: The change in state alters the effective pressure of neighboring pores, potentially causing them 

to transition as well. This cascading effect was observed until the system stabilized. 

 Stable State Measurement: After stabilization, the total average filling state ⟨𝜎⟩ was recorded. 

 Incremental Pressure: Increment the applied pressure slightly and repeat the process until all pores transitioned to 

the same state. This procedure generated the lower half of the hysteresis loop ⟨𝜎𝑢⟩. 

 Reversing Pressure: The upper half of the hysteresis loop was obtained by reversing the procedure—decreasing 

the external pressure 𝜓′. The symmetry between the upper and lower halves of the loop ⟨𝜎𝑙⟩ is expressed as: 

⟨𝜎𝑢⟩(𝜓′) = −⟨𝜎𝑙⟩(−𝜓′).  (10) 

6.3. Key Features of the Dynamics 

 State Transitions: If the system starts in a stable configuration and the external pressure increases while allowing 

the system to relax, no pore changes its state more than once. 

 Final Configuration Stability: The final stable configuration remains consistent regardless of the order in which 

unstable pores transition. 

 Symmetry in Hysteresis: The symmetry in the hysteresis loop reflects the system’s inherent energy dynamics under 

varying external pressures, as observed in experimental studies. 
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This method reliably reproduced the characteristic hysteresis loops associated with the SWCC, demonstrating how 

external pressure influences the dynamic interactions within the pore network. 

7. Results 

The simulation algorithm constructs a random two-dimensional lattice with 𝑁 × 𝑁 sites (representing the pores), 

such that each site has exactly four neighbors (Figure 5). The precise algorithm involves labeling each site (each pore) 

with a pair of indices (𝑖, 𝑗). Each site (𝑖, 𝑗) is connected to its neighbors (𝑖, 𝑗 + 1), (𝑖, 𝑗 − 1), (𝑖 + 1, 𝑗), (𝑖 − 1, 𝑗) for all 

sites. Periodic boundary conditions are applied. In this simulation, 𝑁 = 102 and 𝑁𝑀𝐶 = 104 Monte Carlo steps were 

used. 

 

Figure 5. Top view of a porous lattice structure representing a section of soil. The white spheres denote empty pores, while 

the blue spheres represent filled pores. The rectangular connections between the pores depict tunnels facilitating fluid 

movement. The red arrow indicates the applied external pressure direction. 

To analyze the system's critical behavior, specific order parameters were calculated. An order parameter measures 

the degree of order across boundaries in a phase-transition system. Two order parameters were considered: the average 

energy of interactions per pore ⟨E⟩ and the filling states for all pores ⟨σ⟩. 

In Figure 6-a, the results of ⟨𝐸⟩ are presented as a function of the inverse 𝛽 factor for three values of external pressure 

𝜓′: 0,0.3,0.5. The behavior of ⟨𝐸⟩ reflects the soil system's energy state as it transitions between saturated (water-filled 

pores) and unsaturated (air-filled pores) phases. Critical transition points, marked by changes in the slope of the curves, 

correspond to the energy required to shift the system from one phase to another. At zero external pressure, the system 

transitions between phases at a relatively low 1/𝛽, meaning less energy is required for phase transitions. This behavior 

mimics soils in environments without external stress (e.g., free drainage), where phase changes occur more readily. As 

external pressure increases, critical points shift to higher 1/𝛽, indicating that more energy is needed for phase transitions. 

This behavior resembles unsaturated soils under mechanical stress or capillary tension, where external forces stabilize 

the water-filled state and resist drainage. The observed energy shift with increasing external pressure (𝜓′) directly 

correlates with the concept of matric suction in unsaturated soils. Higher suction forces energetically favor water-filled 

pores, delaying transitions to air-filled states. This reflects the influence of capillary forces in unsaturated soils, where 

water retention increases under tension. 

The dependency on 1/𝛽 illustrates how macrostate transitions depend on the diversity of accessible microstates and 

the overall ordering of pore configurations. Here, 𝛽  does not represent thermodynamic temperature but instead 

characterizes the system's variation in accessible states as a function of energy. 

At lower 1/𝛽 (higher 𝛽), the system tends toward ordered configurations with lower energy states, corresponding to 

stable pore filling states that minimize system energy. Conversely, at higher 1/𝛽  (lower 𝛽), greater variability in 

microstates allows access to higher-energy configurations, leading to phase transitions. 

This framework relates to the complexity and heterogeneity of unsaturated soils. A higher 𝛽 suggests the system 

stabilizes in specific configurations (e.g., water-filled or air-filled pores), resembling soils under strong retention forces. 

A lower 𝛽  implies more disorder, allowing phase transitions as the system explores a wider range of states. This 

highlights the interplay between pore filling states and the energy landscape, where 𝛽 modulates the balance between 

order and configurational diversity. 
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Figure 6. Order parameters (a) ⟨𝑬⟩ and (c) ⟨𝝈⟩, along with their fluctuations in (b) 𝝌𝒆 and (d) 𝝌𝝈. The peaks in (b) and (d) 

indicate the 𝟏/𝜷 values corresponding to phase transitions in mean energy and pore filling states, contingent on the applied 

external pressure. 

In Figure 6-c, 〈𝜎〉 is plotted as a function of 1/𝛽. When 𝜓′ = 0, the system fluctuates between positive (water-filled 

pores) and negative (air-filled pores) states, depending on 1/𝛽 value. 

With increasing 𝜓′, the curves shift rightward, indicating that external pressure biases the system toward water-filled 

pores, making phase transitions more energetically difficult. This aligns with the interpretation of external pressure 

stabilizing certain configurations. At higher 𝜓′, the system resists transitioning to air-filled states due to the additional 

energy barrier imposed by external forces. 

The rightward shift in curves can also be understood through the system's energy landscape. With 𝜓′ = 0, the energy 

barrier for state transitions is symmetric, allowing frequent fluctuations between water-filled and air-filled pores. 

However, with 𝜓′ > 0, the landscape becomes asymmetric, favoring water-filled configurations. This explains why 

larger 1/𝛽 (lower 𝛽) values are required to overcome the bias imposed by external pressure. 

The point at which the system transitions sharply from one state to another (e.g., from 〈𝜎〉 = 1 to 〈𝜎〉 = 0) represents 

the critical point of the phase transition. For 𝜓=0, this critical point occurs at a lower 1/𝛽, indicating lower energy 

requirements for the transition. When 𝜓′ > 0, the critical point shifts to a higher 1/𝛽, reflecting an increase in the 

energetic threshold required for the transition due to external pressure. 

The fluctuation dynamics for 𝐸  and 𝜎  are presented in Figures 6-b and 6-d, respectively, to provide a detailed 

analysis of the system's behavior near the critical points. These graphs offer significant insights into the energetic and 

configurational instabilities characteristic of phase transitions. 

Figure 6-b depicts the fluctuations in the energy per pore (𝜒𝐸) as a function of 1/𝛽. The maxima of these fluctuations 

correspond to the critical points, where the system's energy landscape exhibits heightened instability, facilitating 

frequent transitions between metastable and equilibrium states. With increasing external pressure 𝜓′, these peaks in 𝜒𝐸  

shift to higher values of 1/𝛽, signifying an elevated energetic threshold required to trigger phase transitions. Moreover, 

the observed reduction in peak intensity at higher 𝜓′ indicates that external pressure acts as a stabilizing factor, 

attenuating energy fluctuations and thereby promoting a more ordered and stable configuration within the pore network. 

Similarly, Figure 6-d illustrates the fluctuations in pore filling states (𝜒𝜎), which also exhibit sharp peaks near the 

critical points. These peaks signify rapid transitions between water-filled and air-filled configurations, reflecting the 

system's instability during phase transitions. Consistent with 𝜒𝐸  in Figure 6-b, the peaks in 𝜒𝜎  shift to higher 1/𝛽 as 𝜓′ 
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increases, aligning with the observation in Figure 6-c that external pressure raises the energy barrier required for phase 

transitions. At higher 𝜓′, the system undergoes fewer state changes, indicating increased stability and a pronounced 

preference for water-filled configurations due to the biasing effect of external pressure. 

The nonequilibrium response of the Ising lattice at constant energy (1/𝛽), or equivalently, the saturation-varying 

pressure 𝜓′ (SWCC curve) is investigated in Figure 7.  

 

Figure 7. Plots showing the saturation as a function of external pressure 𝝍′, for different 𝟏/𝜷 values. Panels correspond to 

(a) 𝟏/𝜷 = 𝟏. 𝟓, (b) 𝟏/𝜷 = 𝟏. 𝟗, and (c) 𝟏/𝜷 = 𝟐. 𝟓. Notice the hysteresis loop formed by changing the external pressure from 

−1 to 1. The orange points represent the initial direction, while the blue points correspond to the reversed direction. 

In Figure 7-a, the hysteresis loop exhibits a pronounced rectangular shape, indicating strong metastability during the 

saturation process. In this state, the system takes distinctly different paths for pore filling and emptying under varying 

external pressure (𝜓′). This behavior is characteristic of first-order phase transitions, where metastable states dominate 

and significant energy is required to transition to equilibrium. The wide area of the loop reflects the high energy barrier 

between water-filled and air-filled states, a feature typical of systems operating at low energy or high disorder. 

As shown in Figure 7-b, the area of the hysteresis loop decreases compared to Figure 7-a. With increasing energy, 

the system exhibits reduced metastability, and the paths for filling and emptying become more similar. This behavior 

suggests that the energy barriers between states are smaller, allowing the system to transition more easily between water-

filled and air-filled configurations. The reduction in loop area is consistent with the expected behavior of porous systems 

as they approach equilibrium at higher energy levels, where disorder is lower and transitions are less constrained. 

Finally, in Figure 7-c, the hysteresis loop disappears entirely, indicating that the system transitions smoothly between 

states without path-dependent behavior. This suggests that the system has reached a state where it is no longer 

metastable, and the filling and emptying processes have become fully reversible. This marks the progression from a 
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strongly metastable regime to one of equilibrium, highlighting the diminishing influence of energy barriers as the system 

approaches higher energy levels. 

This disappearance of hysteresis marks the transition from a first-order to a second-order-like phase transition, where 

the system equilibrates without energetic barriers. 

To further understand the behavior of the statistical quantities, Figures 8-a to 8-c present the spatial patterns of the 

pores in the lattice corresponding to equilibrium microstates with 1/𝛽 = 2.5. At a pressure of 𝜓′ = −0.48, the system 

predominantly exhibits water-filled pores, representing a saturated state. This condition reflects the scenario where the 

external pressure matches the pressure of the soil material, thereby stabilizing the water-filled configuration. In contrast, 

when 𝜓′ = 0.48  becomes positive, the pores are primarily air-filled, mimicking a drainage process. These 

configurations correspond to the left and right sides of the hysteresis loop, respectively, as shown in Figure 7. This 

demonstrates how external pressure biases the system toward specific configurations, directly impacting the shape and 

area of the hysteresis loops. 

 

Figure 8. Three random microstates of a 𝟏𝟎𝟐 × 𝟏𝟎𝟐 porous lattice with periodic boundary conditions, corresponding to an 

equilibrium macrostate with 𝟏/𝜷 = 𝟐. 𝟓 under varying external pressure. Subfigures (a), (b) and (c) illustrate the system 

configurations at external pressures 𝝍′ = −𝟎. 𝟒𝟖. (b) 𝝍′ = 𝟎. (c) 𝝍′ = 𝟎. 𝟒𝟖, respectively. The energy per pore for these 

configurations is shown in subfigures (d), (e), and (f) as (d) 𝝍′ = −𝟎. 𝟒𝟖, (e) 𝝍′ = 𝟎, and (f) 𝝍′ = 𝟎. 𝟒𝟖, respectively. These 

configurations and energy distributions highlight the interplay between the system's energetic landscape and configurational 

dynamics, emphasizing their roles in determining the stability and transitions of the porous structure. 

Additional insight into the system's behavior is provided in Figures 8-d to 8-f, which display the energy per pore for 

a microstate with 1/𝛽 = 2.5 under different external pressure values. These spatial patterns intuitively illustrate how 

saturation (Figure 6), 𝜒𝐸 , 𝜒𝜎  (Figures 6-b and 6-d) evolve with changes in energy (1/𝛽 ). At the critical point, a 

bifurcation occurs, leading to two equally probable equilibrium macrostates, corresponding to positive (1) or negative 

(−1) saturation. The system alternates between these two states, which explains the sharp peaks observed in 𝜒𝐸  and 𝜒𝜎  

at the critical point. 

These spatial patterns establish a clear connection between microstates, energy, and the transitions observed in the 

hysteresis loops. They highlight how external pressure modulates both the system's energetic landscape and its 

configurational dynamics, emphasizing its role in determining the stability and transitions of the porous structure. 

8. Conclusions 

This study introduces a novel approach to modeling the soil–water characteristic curve (SWCC) in unsaturated soils, 

providing a robust theoretical and numerical framework for estimating soil properties. By adapting the Ising model, 

traditionally used for ferromagnetic systems, this research effectively represents pore interactions and phase transitions 

in soils, shedding light on the aggregation tendencies of similarly filled pores. The incorporation of an external field to 

simulate soil pressure effects highlights the influence of external forces on pore filling states, moisture retention, and 

the SWCC. 

Key findings from Monte Carlo simulations reveal the critical role of external pressure in stabilizing water within 

pores, delaying drainage, and increasing the energy barrier for phase transitions. These results align with physical 
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observations of capillary and suction effects that govern the retention and release of water in unsaturated soils under 

varying pressures and temperatures. Fluctuations in pore filling states (𝜒𝜎) capture the configurational dynamics, while 

energy fluctuations (𝜒𝐸) highlight the system’s energetic instability at critical points. The observed shift in critical points 

and suppression of fluctuations with increasing external pressure (𝜓′) demonstrate how external forces promote more 

stable and ordered states, delaying phase transitions. 

Additionally, the term Δ𝐸𝑆 was shown to counteract external pressure effects, stabilizing water-filled pores, whereas 

increased external pressure facilitates pore drainage as 𝜓′ approaches zero.  

The model successfully captures hysteresis in the SWCC, which arises from global soil pressure effects. This 

hysteresis is critical for understanding soil–water retention dynamics and is attributed to phase transitions between 

metastable and equilibrium states, requiring specific energy thresholds dependent on soil pressure. These findings 

emphasize that energy input is fundamental to phase transitions, with significant implications for soil moisture retention 

under varying external forces. 

Despite its success, the Ising model has some limitations. Specifically, it does not account for variations in pore size, 

and it assumes only two pore states (fully filled or empty). To enhance the model’s realism, future work could focus on 

incorporating partially filled pores, which would better represent the intermediate states often observed in real soil 

systems. Experimental validation will also be essential to confirm the model’s applicability and refine its predictive 

capabilities. Despite the absence of experimental applications at this stage, this research establishes a strong theoretical 

foundation and opens new pathways for understanding soil behavior under varying moisture conditions. These 

advancements hold great potential for practical applications in soil science and engineering. 
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