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Abstract 

This study investigates the enhancement of optimal sensor placement (OSP) algorithms by incorporating modal reduction 

constraints and developing combined techniques. The primary goal is to optimize sensor placement for structural health 

monitoring (SHM), thereby improving the efficiency of information acquisition within practical constraints. The proposed 

methodology utilizes iterative elimination and combined criteria to evaluate various sensor configurations. Numerical 

experiments demonstrate distinct sensor layouts derived from diverse algorithmic approaches. The study's novel 

contributions include the integration of modal strain energy, effective independence (EI), and modal assurance criterion 

(MAC) techniques into a unified framework, enhancing adaptability to a wide range of SHM scenarios. 

Keywords: Optimal Sensor Placement; Fisher Information Matrix; Effective Independence; Modal Reduction; Modal Strain Energy; 
Combined Approach. 

 

1. Introduction 

Structural health monitoring (SHM) is a technique used to assess structural performance by measuring and analyzing 

responses to external and environmental excitations. Advances in measurement technology, including the development 

of sensitive sensors, have facilitated the emergence of various SHM techniques, which have been extensively applied to 

numerous structures. The primary objective of optimal sensor placement (OSP) is to strategically design a subset of 

candidate positions for measurement sensors. Due to practical limitations, such as cost constraints, OSP schemes 

employing a limited number of sensors have been rigorously investigated [1-6]. 

Most existing OSP algorithms utilize iterative methods to exclude degrees of freedom (DOFs) with minimal 

contributions to the objective function’s signal strength from the candidate sensor locations. These algorithms 

iteratively eliminate sensor positions with the least contribution to linear independence until the target number of 

sensors is attained. Various objective functions and analytical approaches, such as maximizing the determinant of the 

Fisher information matrix (FIM) or minimizing the sum of off-diagonal elements in the modal assurance criterion 

(MAC), are commonly employed in these methods. In practical applications, three variants of FIM—minimum 

singular value, determinant, and trace—are frequently used to optimize information acquisition and reduce parameter 

estimation uncertainties. Researchers have also introduced multi-objective optimization schemes for sensor 

placement, utilizing methods such as mode-shape interpolation and artificial bee colony algorithms. For instance, 

Gomes et al. [7] proposed a multi-objective sensor location optimization approach using FIM and mode-shape 

interpolation methods, while Sun & Buyukozturk [8] introduced a discrete optimization scheme based on an artificial 

bee colony algorithm and MAC-oriented objective functions. 
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Among OSP techniques, the effective independence (EI) method proposed by Kammer [9] has been widely adopted 

for maximizing the determination of FIM. This technique evaluates the information efficiency of a sensor array by 

employing FIM to measure the amount of information collected from sensors. The EI method iteratively optimizes 

sensor positions by excluding rows of the diagonal elements in the EI matrix with the lowest signal strength at each step, 

ultimately positioning sensors at nodes with high EI values. Friswell and Castro-Triguero [10] explored the linear 

independence and signal strength of target modes in the EI method. Considering uncertainties in OSP algorithms, Castro-

Triguero et al. [11] compared sensor-layout designs, while Gonen et al. [12] examined the robustness of the EI method 

under structural uncertainties. 

The Guyan reduction technique has been shown to enhance OSP designs under specific conditions. Penny et al. [13] 

discussed two methods for Guyan reduction and FIM-based OSP approaches. Lu et al. [14] developed an OSP algorithm 

integrating a genetic algorithm, the Guyan reduction method, and a structural subsection approach. Mercer et al. [15] 

[9] compared various reduction methods, including Guyan reduction and equivalent reduction expansion processes. The 

MAC technique identifies optimal sensor layouts by comparing analytical and experimental mode shapes. It aims to 

design sensor layouts that maximize the off-diagonal elements of the MAC matrix. He et al. [16] introduced an improved 

adaptive genetic algorithm (IAGA) combined with a modified modal assurance criterion (MMAC) to address issues 

such as low modal energy and extended computation times. Fu & Yu [17] proposed an OSP scheme incorporating a 

mathematical MAC and single parenthood genetic algorithm (SPGA). Brehm et al. [18] enhanced the conventional 

MAC algorithm by introducing physical information into the numerical model. Coote et al. [19] compared existing OSP 

algorithms for helicopter fuselage measurements. 

The placement of sensors often considers the distribution of modal strain energy (MSE), which effectively 

captures a system’s modal characteristics by locating sensors in areas with high MSE. MSE is a sensitive damage 

indicator and has been widely used for structural damage detection [20-24]. Zhang et al. [25] proposed an OSP 

scheme based on information gain and modal expansion methods within a Bayesian framework. Liu et al. [26] 

introduced an improved genetic algorithm for OSP using MSE and MAC. Other researchers, such as Zheng et al. 

[27], combined MSE with graph theory for optimal matching in sensor placements. Additionally, Seyedpoor et al. 

[28] developed a damage detection method using OSP and MSE indices, while Salama et al. [29] evaluated candidate 

sensor locations based on modal kinetic energy (MKE). Li et al. [30] explored the relationship between MKE and EI 

techniques. 

Hybrid OSP techniques combine multiple criteria to achieve comprehensive and efficient sensor 

configurations. For instance, Chen et al. [1] employed an energy revision factor to measure MSE and proposed a 

hybrid OSP algorithm combining MAC and EI techniques. He et al. [16] introduced an OSP method integrating a 

modified MMAC and an improved adaptive genetic algorithm to address limitations of the traditional MAC 

approach. 

Recent advancements in SHM methodologies have highlighted the importance of optimizing sensor layouts to 

maximize information efficiency under cost and resource constraints. Despite significant progress, challenges remain 

in balancing computational efficiency and real-world applicability. This study addresses these gaps by proposing 

modified and hybrid OSP techniques. Recent studies emphasize the need for algorithms adaptable to diverse 

structural environments, yet comprehensive comparisons and practical implementations are limited [31-37]. By 

integrating MSE, EI, and MAC techniques, this research contributes a novel framework for efficient sensor 

placement.  

This study effectively addresses challenges in sensor layout design by introducing robust, iterative, and hybrid 

approaches that enhance the accuracy and adaptability of sensor placements. These results are highly applicable to a 

wide range of SHM applications, providing a strong foundation for further innovations in monitoring infrastructure.  

Preliminary sensors are typically designed using reduced models retained through methods such as the Guyan 

condensation technique or modal reduction constraints. The dynamic system can be condensed using these constraints 

and subsequently expanded to a full set of DOFs. The proposed methods iteratively move DOFs with low 

independence in master locations to slave DOFs, determining final sensor placements based on high signal strength 

and independence. The validity and comparative performance of the proposed methods are illustrated through a 

numerical example, revealing that inconsistencies in sensor layouts stem from differences in objective functions and 

analytical processes. This study concludes that sensor design should align with the specific measurement  purpose, as 

summarized in Figure 1, which outlines the research flow for deriving and applying optimal sensor design algorithms 

from measured data.  
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Figure 1. Research flowchart 

2. Modification of Existing OSP Algorithms 

Most OSP algorithms are derived from the modal analysis of a structural finite element model and employ iterative 

schemes to determine the optimal sensor layout. The algorithms identify the final sensor layout by excluding coordinates 

that exhibit the lowest independence from the objective function at each iteration. The effects of the excluded DOFs can 

be ignored in subsequent iterations or retained for consideration. In this study, the removed mode shapes affect the 

following iterations through modal constraints, and the OSP algorithms identify the locations with high signal strength. 

This section introduces OSP algorithms designed to determine l target sensor positions from an initial set of n 

candidate sensor locations (𝑙 ≤ 𝑛) of the reduced analytical model while satisfying the constraint conditions. Initially, 

the candidate sensor locations correspond to the entire DOF 𝑛 of the analytical model. Modal constraints are expressed 

as a relationship between master and slave DOFs. This study proposes modified OSP algorithms, applying the FIM 

obtained through data expansion and modal reduction using constraints from the condensed modal matrix coefficients 

to the EI algorithm. This section also introduces modified forms of the MSE and MAC methods using modal reduction 

constraints, as well as a combined technique that integrates these two methods. The validity of the proposed methods is 

illustrated through analytical and numerical comparisons. 

2.1. Modal Reduction-based EI Approach 

2.1.1. Modal Reduction 

The constraints of the reduced modal matrix, mediated by master and slave modal matrices between generalized 

coordinates and modal coordinates, are established. Sensor positions are predicted by minimizing the covariance matrix 

of the response estimation error. The dynamic equation for an analytical model with n DOFs (without damping) can be 

expressed as: 

Mẍ + Kx = 0  (1) 

where M and K denote the 𝑛 × 𝑛 positive-definite mass and stiffness matrices, respectively, and 𝐱(t) represents the 𝑛 ×
1 displacement vector. The initial candidate sensor locations correspond to the entire DOF of the system. Since modal 

characteristics directly relate to dynamic responses, sensor positions are derived from modal analysis. 

The generalized and modal displacement vectors have the following relationship: 

x(t) = ϕq(𝑡)  (2) 
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where ϕ represents the 𝑛 × 𝑟 incomplete target mode shape matrix corresponding to the lowest 𝑟 modes and q(𝑡) is the 

𝑟 × 1 modal displacement vector. The number of considered mode shape vectors 𝑟 must be less than or equal to the 

number of target sensors 𝑙. 

Dividing the generalized coordinates into master and slave coordinates yields: 

x𝑚 = ϕ𝑚q(𝑡) and x𝑠 = ϕ𝑠q(𝑡) (3) 

here, ϕ𝑚 and ϕ𝑠 represent the (𝑛 − 𝑣) × 𝑟  master and 𝑣 × 𝑟  slave mode shape matrices, respectively. The (𝑛 −
𝑣) master coordinates correspond to candidate sensor locations, while the 𝑣 slave coordinates are excluded from the 

candidate sensor positions. The candidate sensor locations are initially set equal to the entire DOFs, and the DOFs with 

expected low signal strength are excluded at each iteration step. 

In the first attempt, to start, the candidate sensor locations are set equal to 𝑛 − 1, excluding the DOF where signal 

strength is expected to be low. The slave coordinates increase by one after each iteration, whereas the master decreases 

by one. This process is repeated until the master DOFs match the number of target sensors. The modal data that moves 

to the slave DOFs is used in the next iteration of the reduced model using Equation 3.  

Constraint conditions were generated by reducing the mode shape matrix to the master DOFs, and these constraints 

were used to modify the existing OSP techniques. By solving the first Equations in Equation 3 with respect to the modal 

coordinate vector q(𝑡) with the help of the generalized inverse, we obtain 

q(𝑡) = ϕ𝑚
+ x𝑚  (4) 

where the superscript “+” indicates the Moore-Penrose inverse. Substituting Equation 4 into the second equation of 

Equation 3 yields the following relationship between the master and slave displacement vectors: 

x𝑠 = ϕ𝑠ϕ𝑚
+ x𝑚  (5a) 

x = [
x𝑚

x𝑠
] = Tx𝑚  (5b) 

where, T = [
I

ϕ𝑠ϕ𝑚
+ ] and I is the (𝑛 − 𝑣) × (𝑛 − 𝑣) identity matrix, and 𝑣 denotes the number of slave DOFs excluded 

from the total DOFs. Equation (5a) represents the constraint condition for establishing the relationship between the 

master and slave coordinates of the target modes in each iteration. It is observed that the displacement vector of the 

entire DOFs of the dynamic system is condensed only by the master DOFs.  

The observation responses including external white noise at measurement from Equation 5b can be expressed by: 

x(𝑡) = Tx𝑚 + ξ(𝑡)  (6) 

where ξ(𝑡) is the 𝑛 × 1 Gaussian white noise vector. 

The observation displacement vector, x𝑚, can be expressed by  

x𝑚 = T+(x(𝑡) − ξ(𝑡))  (7) 

The unbiased estimated displacement vector corresponding to the master DOFs x̂𝑚, is written as: 

x̂𝑚 = T+x(𝑡)  (8) 

Equations 7 and 8 represent the values necessary for estimating the covariance matrix of the displacement response 

estimation error, which we denote as the method M-1. 

2.1.2. Constrained Modal Reduction 

This technique estimates the displacement vector corresponding to the entire DOFs using the incomplete mode shape 

matrix and the constraints written as:  

[ϕ𝑠ϕ𝑚
+ −I] [

x𝑚

x𝑠
] = 0  (9) 

The displacement vector is estimated by iteratively adjusting master DOFs using a least-squares approach. This 

process minimizes the difference between the analytical displacement vector and the displacement vector obtained from 
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the incomplete mode shape matrix. Letting matrix A be the coefficient matrix in Equation 9, it can be expressed in 

matrix form as: 

Ax = 0  (10) 

where A = [ϕ𝑠ϕ𝑚
+ −I𝑣×𝑣] and x = [

x𝑚

x𝑠
]. Solving Equation 10 with respect to the displacement vector by the solution 

of the linear Equations using Moore-Penrose inverse, it yields 

x = (I − A+A)h  (11) 

where h is an 𝑛 × 1 arbitrary vector.  

The objective function of the difference between two displacement vectors is established as follows: 

𝑃 = (x − x𝑎)𝑇(x − x𝑎)  (12) 

where x𝑎  represents the analytical displacement vector obtained using the full mode shape matrix of the analytical 

model, while x denotes the displacement vector to be estimated. 

The displacement vector of the entire DOFs is estimated by determining an arbitrary vector h. This is achieved by 

minimizing the performance index based on the least-squares approach. By substituting Equation 11 into Equation 12 

and considering the minimization condition, we obtain 

h = (I − A+A)x𝑎 + A+Ag  (13) 

where g denotes an 𝑛 × 1 arbitrary vector. Substituting Equation 13 into Equation 11, it gives  

x = (I − A+A)x𝑎  (14) 

where (I − A+A)𝑇 = I − A+A and A+AA+ = A+. Equation 14 expresses the displacement vector to be expanded to a full 

set of DOFs. Since Equation 14 represents the displacement-based relationship, the corresponding relationship based on 

acceleration would be as follows: 

ẍ = (I − A+A)ẍ𝑎  (15) 

Equation 15 corresponds with the constrained motion Equation proposed by Udwadia and Kalaba, yielding the same 

result as assuming the weight matrix as the identity matrix instead of the mass matrix.  

Equation 14 in terms of the displacement vector corresponding to the master DOFs can be expressed by 

x𝑚 = B1x = B1(I − A+A)x𝑎  (16) 

where B1 denotes the (𝑛 − 𝑣) × 𝑛 Boolean matrix specifying the master DOFs. The biased and unbiased displacement 

vectors can be expressed, respectively, by 

x𝑚 = B1(I − A+A)(x𝑎 + γ)  (17) 

x̂𝑚 = B1(I − A+A)x𝑎  (18) 

Similarly, utilizing Equations 17 and 18 as in M-1, we denote it as the method M-2. 

2.1.3. Modal Reduction-based EI Approach 

In previous sections, two methods (M-1 and M-2) were introduced to estimate biased and unbiased displacement 

vectors. Estimation accuracy is evaluated by mean square error, which measures the average squared difference between 

the true parameter and its estimate. The covariance matrix of the displacement response estimation error for the M-1 

method can be expressed as: 

Cov(x̂) = FIM−1𝜎2  (19) 

where FIM denotes the Fisher information matrix, and 𝜎2 represents the stationary Gaussian white variance matrix. 

Similarly, the covariance matrix for the M-2 method can be expressed by substituting relevant values into the above 

Equation. 
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The EI algorithm designs an optimal sensor layout by selecting positions that correspond to the maximum FIM. If a 

small FIM indicates low independence, the corresponding master DOF is moved to a slave DOF, and the coefficient 

matrices are updated in subsequent iterations. This process continues until the desired number of sensors is obtained. 

Thus, the covariance matrix of the displacement response estimation error of the M-1 in section 2.1.1 can be expressed 

as follows: 

𝐽 = 𝐸[(x𝑚 − x̂𝑚)(x𝑚 − x̂𝑚)𝑇] = (T̂+ξ(𝑡)) (T̂+ξ(𝑡))
𝑇

= (
1

ξ(𝑡)ξ(𝑡)𝑇)
+

(T̂𝑇T̂)
+

  (20) 

where T̂ = B1T. T̂𝑇T̂ is the (𝑛 − 𝑣) × (𝑛 − 𝑣) FIM utilized as an objective function to estimate the OSP. ξ(𝑡) is the 

(𝑛 − 𝑣) × 1 Gaussian white noise vector and 
1

ξ(𝑡)ξ(𝑡)𝑇 represents the stationary Gaussian white variance matrix.  

Similarly, the covariance function using the displacement vectors of the M-2 in section 2.1.2 can be written by  

𝐽 = 𝐸[(x𝑚 − x̂𝑚)(x𝑚 − x̂𝑚)𝑇] = (R+γ(𝑡))(R+γ(𝑡))
𝑇

= (
1

γ(𝑡)γ(𝑡)𝑇)
+

(R𝑇R)+  (21) 

where R𝑇R represents the (𝑛 − 𝑣) × (𝑛 − 𝑣) FIM and R = B1(I − A+A), γ(𝑡) is the (𝑛 − 𝑣) × 1 Gaussian white noise 

vector and 
1

γ(𝑡)γ(𝑡)𝑇 represents the stationary Gaussian white variance matrix. 

It is observed in Equations 20 and 21 that the objective function 𝑱 is minimized at the maximum FIM. This indicates 

that the observed and estimated displacement vectors nearly coincide at the maximum FIM. The EI algorithm designs 

the optimal sensor layout at positions corresponding to the maximum FIM. If a small FIM exhibits low independence 

from the OSP, the corresponding master DOF moves to the slave DOF, and the coefficient matrices T̂ and R are 

recalculated for the next iteration. The master DOFs in the iteration process are continuously selected and moved to the 

slave DOFs, and the final 𝑙 (𝑙 ≥ 𝑟) optimal positions are ultimately obtained at the end of the repeated process. 

The mode shapes are linearly independent, and the EI algorithm designs the sensors at positions that represent the 

high independence of the mode-shape matrix. The EI distribution matrix of the candidate sensors, 𝐸𝐸 , provided by 

Kammer [10] can be expressed as: 

𝐸𝐸1 = [T̂𝜂1]⨂[T̂𝜂1]λ1
−1{1}  (22a) 

or; 

𝐸𝐸2 = [R𝜂2]⨂[R𝜂2]λ2
−1{1}  (22b) 

where λ𝑖  and 𝜂𝑖 (𝑖 = 1,2) represent the eigenvalue and the corresponding eigenvector of the (𝑛 − 𝑣) × (𝑛 − 𝑣) FIMs, 

T̂𝑇T̂ and R𝑇R, respectively. The vector 𝜂𝑖 (𝑖 = 1,2) is orthogonal, {1} is a (𝑛 − 𝑣) × 1 column vector with all elements 

of 1, and ⨂ represents the term-by-term matrix multiplication. The subscripts 1 and 2 correspond to the methods M-1 

and M-2, respectively. Equation (22b) represents the EI distribution matrix corresponding to the master DOFs in the 

method M-2.  

It can be observed that the sensor layout design is sensitive to the signal strength related to the eigenvalue of the 

FIM. The contribution of sensor placement to spatial independence can be evaluated using the EI matrices 𝐸𝐸𝑖  (𝑖 =

1, 2). The DOF with the smallest EI, which represents the lowest independence among the master DOFs of Eq. (22b), 

is moved to the slave location.  

Alternatively, EI can be calculated using the diagonal of 𝐸𝐷 as follows: From the properties of the eigenvalue and 

eigenvector of the FIM, η1
𝑇T̂𝑇T̂η1 = λ1, η2

𝑇R𝑇Rη2 = λ2, and η𝑖
𝑇η𝑖 = I (𝑖 = 1,2), the EIs on the M-1 and M-2 can also 

be written by: 

𝐸𝐷1 =  𝑑𝑖𝑎𝑔{T̂𝜂1λ−1η1
𝑇T̂𝑇}  (23a) 

𝐸𝐷2 =  diag{Rη2λ2
−1η2

𝑇R𝑇}  (23b) 

Matrix 𝐸𝐷 is an orthogonal projection and idempotent matrix, and its trace corresponds to its rank. The 𝐸𝐷 indices 

in Equations 23 represent the contribution of the sensor locations.  

Equations 23 are another forms of Equations 22a and 22b for the EI scheme. In each iteration, the coefficient matrix 

of Equations 23 is re-established. The master DOF of the smallest 𝐸𝐷 index is moved to the slave sensor location, and 

the same process is repeated until the sensor number reaches the target number. 
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2.2. Static Condensation-based Modal Energy Techniques 

The static condensation method reduces the size of a system by eliminating slave DOFs. Modal energies such as 

MSE and MKE are used as indices for OSP. MSE is expressed as a function of the stiffness and mode shape matrices 

and is sensitive to structural damage, making it a valuable metric for sensor placement. The MSE is sensitive to structural 

damage because the modal strain is closely related to the dynamic characteristics of a structure. The structural MSE of 

the overall structural stiffness matrix in mode i can be written as follows: 

MSE𝑖 =
1

2
ϕ𝑖

𝑇Kϕ𝑖  (24) 

where ϕ𝑖 denotes the ith normalized mode shape vector, and K is the stiffness matrix. The MSE of the jth element for the 

ith order mode can be expressed as: 

MSE𝑖𝑗 =
1

2
ϕ𝑖

𝑇K𝑗ϕ𝑖  (25) 

This modified MSE (MMSE) tracks the OSP using the modal strain energy, which is determined by the reduced 

stiffness matrix and the corresponding reduced mode shape matrix, in terms of master DOFs. The master DOFs with 

low indices in the objective function are moved to slave DOFs, and static condensation technique is performed. The 

MMSE technique is obtained by multiplying the condensed stiffness matrix corresponding to the master DOFs with the 

reduced mode shape matrix. This MMSE is used to re-establish the condensed objective function in each iteration. By 

substituting Equation 4 into the first equation of Equation 3, a relationship involving only the master DOFs is utilized: 

x𝑚 = ϕ𝑚ϕ+q  (26) 

The stiffness matrix is condensed into master DOFs using Guyan’s static condensation method. The static 

equilibrium equation can be written by: 

Kx=F (27) 

where the stiffness matrix K can be partitioned into four submatrices: 

K = [
K𝑚𝑚 K𝑚𝑠

K𝑠𝑚 K𝑠𝑠
]  (28) 

where K𝑚𝑚 corresponds to (𝑛 − 𝑣) master DOFs, K𝑠𝑠 𝑣 slave DOFs, and K𝑚𝑠 and K𝑠𝑚 are the coupling terms between 

master and slave DOFs. And x = [x𝑚
𝑇 x𝑠

𝑇]𝑇  and F = [F𝑚
𝑇 F𝑠

𝑇]𝑇 . Assuming that the forces on the slave DOFs are 

negligible and solving for the slave displacement x𝑠, it leads to: 

x𝑠 = −K𝑠𝑠
−1K𝑠𝑚x𝑚  (29) 

where x𝑚 represents the master displacement vector. Inserting x𝑠 in the first equilibrium equation of Equation 27, it 

yields: 

(K𝑚𝑚 − K𝑚𝑠K𝑠𝑠
−1K𝑠𝑚)x𝑚 = F𝑚  (30) 

where F𝑚 represents the master force vector. The (𝑛 − 𝑣) × (𝑛 − 𝑣) condensed stiffness matrix K𝑟𝑒𝑑 is written by 

K𝑟𝑒𝑑 = K𝑚𝑚 − K𝑚𝑠K𝑠𝑠
−1K𝑠𝑚  (31) 

The MMSE can be written by: 

MMSE =
1

2
LG𝑇K𝑟𝑒𝑑GL𝑇  (32) 

where G](𝑛−𝑣)×𝑛 = ϕ𝑚ϕ+ and L denotes an (𝑛 − 𝑣) × 𝑛 Boolean matrix to define the candidate sensor locations or 

master DOFs. The objective function effectively reduces the computational complexity by focusing on the master DOFs 

and incorporating the effects of the slave DOFs through the condensation process. 

Multiplying and summing the ith row of the MMSE matrix and its transpose, and taking the results of the square root 

gives: 

MMSE𝑖 = √∑ MMSE𝑖𝑗 × MMSE𝑗𝑖
𝑛−𝑣
𝑗=1  , 𝑖 = 1,2, … , 𝑛 − 𝑣 (33) 
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The candidate sensor positions corresponding to the lowest MMSE indices are moved to the slave DOFs, and the 

coefficient matrix G is updated. A similar process is repeated until the candidate sensor positions correspond with the 

number of target sensors. 

If weighting matrix K in Equation 24 is replaced by mass matrix M, which is the MKE, we obtain: 

MKE𝑖𝑗 =
1

2
ϕ𝑖

𝑇M𝑗ϕ𝑖  (34) 

Since the mode shapes are orthogonal with respect to the mass matrix, the mass matrix in Equation 34 can be assumed 

to be an identity matrix. The result takes the same form as the FIM in Equation 20 based on the mode shapes, and the 

identical OSP results can be estimated. 

2.3. MMAC 

The MAC is a statistical measure used to quantify the degree of consistency between mode shapes obtained from 

different sources, such as experimental data and analytical models. MAC values range from 0 to 1, indicating the 

correlation between two mode shapes. A MAC value close to 1 signifies a high degree of correlation, while a value close 

to 0 indicates low or no correlation. Mathematically, MAC is defined as: 

MAC(ϕ𝑖 , ϕ𝑗) =
|ϕ𝑖

𝑇ϕ𝑗|
2

(ϕ𝑖
𝑇ϕ𝑖)(ϕ𝑗

𝑇ϕ𝑗)
  (35) 

where ϕ𝑖  and ϕ𝑗  denote the i-th and j-th mode shapes, respectively. The numerator in the equation represents the 

squared magnitude of the inner product of ϕ𝑖 and ϕ𝑗, while the denominator is the product of their norms. 

For OSP, MAC is computed using the reduced mode shape matrix corresponding to the master DOFs, rather than 

considering all DOFs. A modified version of MAC, denoted as MMAC, is derived for OSP using the same process but 

focused on the reduced model. The MMAC technique is derived for the OSP: 

MMAC(G𝑖 , G𝑗) =
|G𝑖

𝑇G𝑗|
2

(G𝑖
𝑇G𝑖)(G𝑗

𝑇G𝑗)
  (36) 

In this method, the master DOFs with low signal strength are moved to the slave coordinates iteratively until the 

desired sensor layout is achieved. 

2.4. Combined Approaches (CA) 

In practical applications, it is often beneficial to integrate multiple OSP techniques to achieve a comprehensive and 

effective sensor configuration. CA merge techniques like MMSE and MMAC to consider both modal strain energy and 

modal consistency. The objective is to create a sensor layout that maximizes both criteria, allowing for flexibility in 

prioritizing one objective over the other based on specific structural analysis requirements. 

The combined optimization objective is formulated as the product of normalized MMSE and MMAC values for each 

mode shape, defined as: 

𝐽𝑖 = 𝜆 ∙ MMSE𝑖 + (1 − 𝜆) ∙ MMAC𝑖  (37) 

where 𝐽𝑖 is the combined objective function for the i-th sensor location and 𝜆 is a scalar coefficient that balances the 

contribution of MMSE and MMAC. By adjusting 𝜆 , the weighting of each criterion can be tuned based on the 

measurement goals. The iteration process follows the same procedure as in the MMSE and MMAC techniques, 

ultimately resulting in an optimal sensor placement. 

3. Numerical Example 

The proposed modifications to the OSP techniques and their CA were validated using a numerical example involving 

a simply supported truss structure. Figure 2 depicts the truss structure and the distribution of nodes and members. The 

truss was modeled using 21 displacement DOFs, with two displacement DOFs in the horizontal and vertical directions 

at each node, excluding the boundary conditions at both ends. The upper and lower chords of the truss and diagonal 

members had lengths of 4 and 5 m, respectively, and the vertical members each had a length of 3 m. The modulus of 

elasticity of the truss members was 200 GPa, and the cross-sectional area was appropriately defined as 5500 mm2. The 

optimal sensor locations were determined by targeting the first six mode shapes. 
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Figure 2. A simply supported truss structure for a numerical example. The circle numbers indicate the member number 

In this numerical experiment, six target sensors were employed to track OSP using the first six mode shapes. Initially, 

the DOF at node 2 in the horizontal direction 2x was regarded as having low independence and was thus designated as 

a slave DOF. During the iterative process, the proposed objective functions were evaluated at each step to relocate one 

master DOF to a slave DOF. This process was repeated until the number of candidate sensors matched the number of 

target sensors. 

Figure 3 showcases the final sensor configurations determined by the five proposed algorithms: EI-M1, EI-M2, 

MMSE, MMAC, and the combined approach (CA). All methodologies integrated constraints based on modal reduction, 

yet the resultant sensor layouts differed due to variations in objective functions and methodologies. The EI-based 

methods consistently placed sensors across the span of the truss focusing on high-signal-strength regions while ensuring 

coverage across the structure. MMSE and MMAC-based approaches prioritized symmetrical sensor placements with 

higher strain energy or improved modal consistency. The CA method balanced the strengths of MMSE and MMAC, 

demonstrating versatility for varied structural objectives. The differences in sensor layouts are attributed to the distinct 

objective functions used in each technique. EI methods aim for independence and uniformity, while MMSE emphasizes 

areas with high modal energy for damage sensitivity. 

 

(a) 

 

(b) 

 

(c) 
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Figure 3. Final sensor designs by the proposed algorithms: (a) E𝐈 − 𝐌𝟏 and E𝐈 − 𝐌𝟐, (b) MMSE , (c) MMAC, (d) CA 

The iteration routes for these methods, as presented in Table 1, highlight the distinct paths each algorithm takes to 
achieve the final sensor layouts. The results underscore the influence of objective functions, with EI methods 
emphasizing uniformity and independence, while MMSE and MMAC prioritize specific high-energy or symmetry-
related criteria. 

Table 1. Iteration route for the OSP according to the proposed algorithms 

Algorithm Iteration process 

EI-M1 and EI-M2 2𝑥 → 12y → 11y →  10y →  9y →  8y → 11𝑥 →  6𝑥 → 5𝑥 →  4x → 3x →  3y →  2y →  5𝑦 →  6y 

MMSE 2𝑥 → 11𝑥 → 5x → 4x → 12x→ 6x → 10x → 7x → 3x → 11y → 5y → 6y → 12y → 10y → 4y 

MMAC 2𝑥 → 12y → 11y → 10y → 9y → 8y → 7𝑥 → 6𝑥 → 5𝑥 → 4𝑥 → 3𝑥 → 3y → 2y → 4y → 5y 

CA 2𝑥 → 12y →  6y → 8y →  2y → 4y → 11𝑥 →5𝑥 → 11y → 5𝑥 → 11𝑥 → 12x→ 6x →7x→ 10y 

* The number indicates the node number, and x and y are the displacement DOFs in the horizontal and vertical directions, respectively. 

The study highlights the strengths of integrating modal reduction constraints and the adaptability of hybrid OSP 
algorithms. The comprehensive numerical validations provide robust evidence supporting the efficiency and practicality 
of these methods in SHM applications. Future extensions could include validations under more complex and diverse 
structural scenarios, enhancing the generalizability of the findings. 

The study provides a comprehensive evaluation of OSP algorithms, illustrating their strengths and trade-offs through 
analytical and numerical comparisons. These findings set a foundation for further refinement and application in real-
world SHM systems, where adaptability and efficiency are critical. The study effectively tackles significant challenges 

in sensor layout design by introducing modified and hybrid OSP algorithms, which address issues such as efficiency, 
accuracy, and adaptability in SHM. 

The analytical and numerical comparisons in the study provide convincing evidence to support the performance of 
the proposed OSP algorithms. The combination of rigorous theoretical validation and practical numerical experiments 
demonstrates the algorithms' effectiveness, adaptability, and alignment with SHM objectives. While the results are 
compelling, further validation across diverse and complex scenarios could enhance the robustness of the findings. 

The study provides a strong foundation for reproducibility through detailed descriptions of numerical examples, 
mathematical formulations, and iterative procedures. However, explicit details about computational tools, boundary 
conditions, and parameter sensitivities could further enhance reproducibility. With minor additions, the results could be 
confidently replicated in similar experimental and analytical setups. 

4. Conclusion 

This study introduces advanced methodologies for OSP in SHM, addressing efficiency and reliability in sensor 

layout design. By integrating modal reduction constraints with innovative analytical frameworks, the research offers 

iterative algorithms that maintain high signal fidelity while meeting the constraints of limited sensor deployment. Hybrid 

methodologies combining MSE, MAC, and EI ensure balanced optimization between data capture and computational 

efficiency. 

The study emphasizes the importance of aligning sensor layouts with specific structural and monitoring objectives. 

Modal reduction constraints enable meaningful contributions from excluded DOFs in iterative processes, enhancing the 

accuracy of sensor placement. Numerical validations demonstrate the adaptability of these approaches, yielding 

configurations tailored to varying performance criteria. The proposed methodologies have broad implications, especially 

in cost-sensitive or resource-constrained SHM applications. By leveraging hybrid frameworks, stakeholders can achieve 

effective monitoring with minimal resources. The integration of MSE, MAC, and EI techniques establishes a new 

benchmark for sensor optimization, facilitating the development of SHM systems for complex infrastructures such as 

bridges, skyscrapers, and aerospace structures. Validation through numerical experiments, including a simply supported 

truss structure, confirms the robustness and versatility of these approaches. 
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Future research could extend this work by exploring real-time adaptive algorithms, integrating machine learning, 

addressing nonlinear dynamics, and validating the methodologies in real-world scenarios. By harmonizing theoretical 

innovation with practical applications, this research lays a solid foundation for future advancements in sensor 

deployment strategies. 
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