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Abstract 

Objectives: This study aims to develop A Novel Approach to Detect Parking Space Occupancy for Efficient Urban 

Management utilization and enhance user experience with real-time, accurate data. Methods/Analysis: The proposed 

system detects the parking space occupancy for efficient urban management by using a Multi-Component Attention Graph 

Convolutional Neural Network (DPSO-MCAGCNN) and processes data from the PKLot dataset. Pre-processing is 

performed using the Maximum Correntropy Quaternion Kalman Filter (MCQKF) for normalization. Key features like area, 

perimeter, and aspect ratio are extracted using the Second-Order Time-Reassigned Multi synchro squeezing Transform 

(SOTRMT) and analyzed through MCAGCNN. The Leaf-in-Wind Optimization (LWO) technique is incorporated to 

optimize the MCAGCNN for higher accuracy. Findings: The proposed system achieves significant improvements over 

existing methods, including 27.84%-29.27% higher accuracy, 25.87%-29.84% improved R², and 16.27%-19.84% reduced 

Mean Squared Error (MSE). Evaluation metrics such as RMSE, MAE, and MAPE confirm its robust performance. 

Novelty/Improvement: The integration of LWO into MCAGCNN enhances optimization and precision, surpassing the 

performance of state-of-the-art methods like EUPE-SVM, RTPM-YOLOv5, and MASP-LSTM, making it an innovative 

solution for intelligent parking management. 

Keywords: PKLot Dataset; Leaf In Wind Optimization; Maximum Correntropy Quaternion Kalman Filter; Multi Component Attention 

Graph Convolutional Neural Network; Second-Order Time-Reassigned Multisynchrosqueezing Transform. 

1. Introduction 

In recent years, the rapid urbanization and surge in vehicular usage have highlighted the critical need for efficient 

parking management systems [1]. With cities becoming more densely populated, the availability of parking spaces has 

emerged as a major concern, directly impacting traffic congestion, fuel consumption, and environmental pollution. 

Highly developed technologies, including computer vision, machine learning, and IoT, have begun to transform urban 

infrastructure, enabling smarter and more adaptive solutions [2, 3]. Among these, detecting parking space occupancy 

has become a focal point for improving urban mobility and reducing inefficiencies [4, 5]. This innovation not only 

alleviates the frustration of searching for parking but also contributes to sustainable city planning. Despite these 

advancements, existing systems often face several limitations [6]. Many solutions rely on hardware-intensive setups 

such as sensors embedded in the ground, which can be costly to install and maintain [7, 8]. Alternatively, some systems 

use outdated methods, like manual monitoring, which lack scalability and accuracy [9]. Furthermore, the integration of 

data from disparate sources often poses challenges, leading to errors in real-time occupancy detection [10]. These 

drawbacks undermine the efficiency of parking systems and limit their widespread adoption in resource-constrained 

urban areas. 

                                                           
* Corresponding author: phdanuradhaanilpore@gmail.com 

 
http://dx.doi.org/10.28991/CEJ-2025-011-02-015 

 

© 2025 by the authors. Licensee C.E.J, Tehran, Iran. This article is an open access article distributed under the terms and 
conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). 

 

http://www.civilejournal.org/
http://creativecommons.org/
https://orcid.org/0009-0007-6363-9126
https://orcid.org/0000-0001-9705-6964
https://creativecommons.org/licenses/by/4.0/


Civil Engineering Journal         Vol. 11, No. 02, February, 2025 

659 

 

1.1. Literature Survey  

Among the frequent research work that depends on Parking Space Occupancy Detection Systems with the help of 

deep learning, some of the recent investigations were presented as follows: 

Channamallu et al. [11] have introduced a solution to address these problems that worsen traffic and pollution while 

reducing urban productivity by applying machine learning algorithms to categorize occupancy levels and accurately 

predict parking spot availability. It makes use of a dataset that was gathered from January 2022 to June 2023 from a 

college campus garage. Rafique et al. [12] have presented a sophisticated parking management system that uses the 

quick inference speed and high YOLO v5 performance for vehicle recognition instead of parking slot categorization, 

overcoming the limitations of data-driven systems. The parking lot's condition was assessed using the plot dataset as a 

baseline, and the model's 99.5% accuracy reflected state-of-the-art performance. 

Canli & Toklu [13] have developed a new smartphone app called "smart parking" to reduce the issue of parking, 

which was developed using deep learning and cloud computing. The program developed a deep learning-based parking 

space prediction service that uses long short-term memory (LSTM). Harish Padmanaban & Sharma [14] have introduced 

road mapping and traffic flow management; open parking spots were identified and used. The suggested method uses 

data from sensors, cameras, and other sources to identify available parking spots and accurately predict their availability. 

A machine learning technique was used to optimize the use of open parking spaces in road mapping and traffic flow 

management. 

Elomiya et al. [15] have presented a novel fusion of deep learning (DL) methods with the ANFIS to overcome these 

drawbacks. DL models outperformed non-linear modeling, automated feature learning, and long-term connection 

identification in parking data over time. In the suggested regard, ANFIS was selected specifically because it was 

effective at representing uncertainty using fuzzy set theory. The fusion models ANFIS-RNN, ANFIS-GRU, and ANFIS-

LSTM were developed by combining ANFIS with long short-term memory (LSTM), recurrent neural networks (RNN), 

and gated recurrent units (GRU). Neupane et al. [16] have developed a brand-new technology called "Shine" that 

recognizes license plate, car, and handicap badges (also known as cards, badges, or access badges) using an object 

identification algorithm based on deep learning. The system verifies the driver's eligibility to use accessible parking 

spaces by interacting with the central server. The mean absolute error was high, as was the mean square error. Deep 

learning-based object detection method that recognizes the car, disability badges, and license plate (henceforth referred 

to as badges, cards, or access badges) and, through communication with a central server, confirms the driver's eligibility 

to use accessible parking spots. 

Balamutas et al. [17] have presented a system that was then used for the identification of cars. The system was 

developed on the theory that every vehicle leaves behind distinct magnetic traces that may be compared and matched. 

It makes use of anisotropic magnetoresistive sensors. Signal-to-noise ratio computation for module derivatives between 

signal and ambient noise provides crucial information for neural network input. 

1.2. Research Gap 

Recent research on Parking Space Occupancy Detection Systems using deep learning has made significant strides, 

but several gaps and drawbacks remain. One approach uses a machine learning method to forecast parking spot 

availability and classify occupancy levels based on data gathered from a college campus garage, though it may not 

generalize well to urban or high-traffic areas, and fails to account for factors such as weather or traffic changes. Another 

method employs a high-performance vehicle recognition system, achieving high accuracy, but focuses only on vehicle 

detection rather than comprehensive parking space categorization, which can be affected by varying lighting or weather 

conditions. A smartphone app for smart parking integrates deep learning and cloud computing with Long Short-Term 

Memory (LSTM) to forecast available spaces, but its reliance on cloud services introduces delays and requires stable 

internet, while its ability to handle unpredictable parking environments remains uncertain.  

A system combining cameras, sensors, and machine learning to identify open parking spots for traffic 

management faces scalability challenges in large urban areas with dense traffic. A fusion of deep learning and 

Adaptive Neuro-Fuzzy Inference System (ANFIS) overcomes some modeling limitations but introduces 

computational complexity and longer training times, and its performance could be hindered by a lack of historical 

data or sudden shifts in parking demand. A deep learning-based object identification system to verify eligibility for 

accessible parking struggles with accuracy, as indicated by high mean absolute and square errors, likely due to poor 

image quality or insufficient training data for detecting smaller objects. Lastly, a system using anisotropic magneto-

resistive sensors to detect vehicles through magnetic traces faces issues with electromagnetic interference, reducing 

reliability, and doesn't account for dynamic parking behaviors like overlapping magnetic traces in busy areas. 

Overall, while these methods show promise, they face challenges related to scalability, processing efficiency, 

adaptability, and data reliability, highlighting the need for more robust, generalized, and efficient solutions capable 

of addressing complex parking conditions. 
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1.3. Contribution 

 This research Paper discusses to Detect Parking Space Occupancy for Efficient Urban Management using Multi 

Component Attention Graph Convolutional Neural Network (DPSO-MCAGCNN). 

 The PKLot dataset of the information gathered. 

 During the pre-processing stage, normalize the data by Maximum Correntropy Quaternion Kalman Filter 

(MCQKF). 

 The Feature extraction Using Second-Order Time-Reassigned Multisynchrosqueezing Transform (SOTRMT). 

 The Intelligent Parking Space Occupancy Detection System Leveraging Computer Vision is added using the Multi 

Component Attention Graph Convolutional Neural Network (MCAGCNN). 

 The Leaf in wind optimization (LWO) which increases the performance of the MCAGCNN. 

1.4. Organization  

The remaining portion of this work is structured as follows: sector 2 describes the proposed methodology, sector 3: 

illustrates the results and discussion, and Sector 4: the conclusion. 

2. Proposed Methodology  

In this section, Detect Parking Space Occupancy for Efficient Urban Management using MCAGCNN (DPSO-

MCAGCNN) is proposed. The proposed technique makes clever use of computer vision to determine parking spot 

occupancy. To differentiate between occupied and vacant parking spots, live video streams are analyzed using machine 

learning and image processing techniques. The input data is first obtained from the PKLot dataset. The acquired data is 

then passed into the MCQKF for pre-processing. The data is normalized using the MCQKF. The pre-processed data is 

then passed through a transform procedure to feature extraction using Second-Order Time-Reassigned 

Multisynchrosqueezing Transform (SOTRMT). Then the extracted data is fed to the network for detection using a Multi-

Component Attention Graph Convolutional Neural Network (MCAGCNN). This technique is used to detect the Parking 

Space Occupancy. Consequently, in order to optimize the MCAGCNN weight parameters, the Leaf in Wind 

Optimization (LWO) is proposed in this research. The block diagram of the proposed DPSO-MCAGCNN approach is 

represented in Figure 1. Accordingly, detailed descriptions are given below. 

 

Figure 1. Block diagram of DPSO-MCAGCNN.0 
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2.1. Data Acquisition 

The 12,416 parking lot images in the PKLot dataset were taken from security camera frames. Images of sunny, 

overcast, and rainy days are included, and the parking spots are marked as either occupied or vacant. The original 

dataset's rotated rectangle annotations were surrounded by a bounding box, which allowed us to convert the annotations 

to several common object detection formats [18]. 

Figure 2 shows the input data image. The input data consists of images extracted from the PKLot dataset, which 

includes 12,416 images of parking lots captured under varying weather conditions such as cloudy, sunny, and rainy 

days. Figure 2 shows examples of the input images where each parking space is labeled as either occupied or empty. 

The images are taken from surveillance cameras, providing a top-down view of the parking area. To prepare the dataset 

for object detection tasks, the original rotated rectangle annotations were converted into standard bounding boxes, 

enabling compatibility with popular object detection frameworks. This ensures precise detection of vehicles within 

individual parking spaces while maintaining consistency across various lighting and weather scenarios. 

 
(a)                                                                       (b)                                                                         (c) 

Figure 2. Input data images 

2.2. Pre-Processing Using Maximum Correntropy Quaternion Kalman Filter (MCQKF) 

In this section, the Maximum Correntropy Quaternion Kalman Filter (MCQKF) [19] is discussed. MCQKF offers 

significant advantages for data normalization, particularly in dynamic, noisy environments such as urban parking 

systems. Unlike conventional normalization strategies like z-score normalization or min-max scaling, which assume 

Gaussian distributions and may struggle with outliers or irregularities, MCQKF leverages the maximum correntropy 

criterion (MCC) to enhance robustness by capturing non-linear dependencies and focusing on higher-order moments. 

This reduces sensitivity to noise and outliers, ensuring more accurate normalization of complex, multi-dimensional data. 

The recursive nature of MCQKF allows for real-time processing, continuously adapting to changing conditions like 

varying parking space occupancy. Its quaternion-based filtering preserves the interdependencies among data features, 

making it well-suited for sensor data normalization in challenging environments. By normalizing the data, MCQKF 

improves the performance of the Intelligent Parking Space Occupancy Detection System, which utilizes computer vision 

to track car movements. The filter's ability to withstand non-Gaussian noise and outliers increases the accuracy of 

occupancy status updates, ensuring reliable performance and optimizing the effectiveness of parking management 

systems. 

𝑦𝑙 = 𝐵𝑙𝑦𝑙−1 + 𝑥𝑙−1  (1) 

where, 𝑦𝑙  represents the state vector at length 𝑙,𝐵𝑙  represents the state transition matrix, 𝑥𝑙−1represents the process 

objective function𝑙. 

𝑧𝑙 = 𝐼𝑙𝑧𝑙 + 𝑤𝑙   (2) 

where, 𝑍𝑙 represents the output vector at length 𝑙, 𝐼𝑙  represents the output matrix at time step 𝑙, 𝑧𝑙 represents the state 

vector at time 𝑙 and𝑤𝑘 represents the measurement noise at time step. 

𝑌̂𝑙|𝑙 = 𝑌̂𝑙|𝑙−1 + 𝐿𝑙(𝑧𝑙 − 𝐼𝑙𝑦̂𝑙|𝑙−1)  (3) 

where, 𝑌̂𝑙|𝑙  represents the prior state of 𝑦𝑘 , 𝑌̂𝑙|𝑙−1  represents the posterior state estimates of 𝑦𝑘 , 𝐿𝑙  represents the 

estimator gain matrix, (𝑧𝑙 − 𝐼𝑙𝑦̂𝑙|𝑙−1) represents the correction term.  

𝑌̂𝑙|𝑙−1 = 𝐵𝑙𝑌̂𝑙−1|𝑙−1  (4) 

where, 𝑌̂𝑙|𝑙−1 represents the prior state estimate at the time𝑙, 𝐵𝑙  represents the state transition matrix, 𝑌̂𝑙−1|𝑙−1 represents 

the previous state estimate at time 𝑙 − 1. 
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𝐾𝑙 = 𝐹 [(𝑦𝑙 − 𝑦̂𝑙|𝑙)
𝐼
(𝑦𝑙 − 𝑦̂𝑙|𝑙)]  (5) 

where, 𝐾𝑙  represents the variation between the posterior estimate 𝑦̂𝑙|𝑙 and the state𝑦𝑙 ,𝐹 denotes the process objective 

function𝐼. Finally, the MCQKF is successfully normalized the data. Then, the pre-processed output is fed to Second-

Order Time-Reassigned Multisynchrosqueezing Transform (SOTRMT) for feature extraction. 

2.3. Feature Extraction Using Second-Order Time-Reassigned Multisynchrosqueezing Transform (SOTRMT) 

In this section, the Second-Order Time-Reassigned Multisynchrosqueezing Transform (SOTRMT) [20] is used for 

feature extraction. SOTRMT offers significant advantages for feature extraction in dynamic environments, such as 

parking space occupancy. Unlike traditional methods like Short-Time Fourier Transform (STFT) or Fourier Transform 

(FT), which struggle with non-stationary signals, SOTRMT excels in handling rapid, transient changes by providing 

superior time-frequency resolution. Its second-order reassignment mechanism enhances the detection of short-term 

fluctuations, making it more effective than techniques like Empirical Mode Decomposition (EMD) or Wavelet 

Transform (WT), which may suffer from resolution trade-offs or noise interference. This fine-grained localization of 

signal components allows for more accurate and robust feature extraction, which is crucial for dynamic sensor data 

analysis. The extracted features, including area, perimeter, and aspect ratio; provide improved time-frequency 

localization, resulting in more accurate and reliable recognition of vehicle presence in parking slots. By reducing noise 

and interference, this technique enhances detection accuracy, ultimately optimizing resource allocation and improving 

the overall efficiency of parking management systems. Extraction of Area, is shown in Equation 6. 

𝑆𝑡(𝑠, 𝜂) = ∫ 𝑈𝑤
ℎ+∞

−∞
(𝑠, 𝑥)𝛿(𝜂 − 𝑥̂(𝑠, 𝑥))𝑐𝑥  (6) 

where, 𝑆𝑡(𝑠, 𝜂)  represents the Extraction of Area, 𝑈𝑤
ℎ(𝑠, 𝑥)  represents the Short-Time Fourier Transform n time-

domain, 𝛿()represents the Dirac delta function, 𝑥̂(𝑠, 𝑥) represents the instantaneous frequency. Extraction of Perimeter, 

is shown in Equation 7: 

𝑆𝑡(𝑠, 𝜂)[𝑀] = ∫ 𝑆𝑡(𝑠, 𝜂)[𝑀−1]+∞

−∞
𝛿(𝜂 − 𝑥̂(𝑠, 𝑥))𝑐𝑥  (7) 

where, 𝑆𝑡(𝑠, 𝜂)[𝑀]indicates the Extraction of perimeter,𝑀 indicates the iteration number, 𝛿() represents the Dirac delta 

function, 𝑥̂(𝑠, 𝑥) and represents the instantaneous frequency. 

𝑊(𝑥) = 𝐵𝑓−(𝑥−𝑥0)2/2𝑡2
𝑓−𝑖(𝑏+𝑎𝑥+𝑑𝑥2/2)  (8) 

where, 𝑊(𝑥) represents the frequency domain signal model, B represents the constant part of the signal frequency 

amplitude, t  represents the single frequency amplitude's frequency spread parameter, 0x  represents the single frequency 

amplitude's center frequency, ab, and d represents the coefficients of a quadratic polynomial. Extraction of aspect ratio, 

is shown in Equation 9: 

𝜏̂(𝑠0, 𝑥0) = −𝜁(𝑟𝑤(𝑠0, 𝑥0)𝑥 + 𝑂𝑤(𝑠0, 𝑥0))  (9) 

where, 𝜏̂(𝑠0, 𝑥0) represents the aspect ratio, 𝜁(. )represents the imaginary part of the complex number, 𝑥0 represents the 

centre frequency of the single frequency amplitude. 

𝑤𝑞(𝑠) =
1

2𝜋𝐻∗(0)
∫∫ 𝑆𝑤[𝑀]

𝑄2 (𝑠, 𝑥)𝑓𝑖𝑥𝑠𝑐𝜏𝑐𝑥  (10) 

where, 𝑤𝑞(𝑠)  represents the reconstruction formula for Second-Order Time-Reassigned Multisynchrosqueezing 

Transform, 𝐻∗() represents the complex conjugate, 𝑀 represents the iteration number. Finally, the features like Area, 

Perimeter and Aspect Ratio are extracted. Then, the extracted features are fed to the MCAGCNN for prediction 𝑤𝑞(𝑠). 

2.4. Prediction using Multi-Component Attention Graph Convolutional Neural Network (MCAGCNN) 

In this section, MCAGCNN [21] is discussed. MCAGCNN is used to detect the parking space Occupancy. Through 

the integration of multi-component attention methods, MCAGCN improves the resilience and accuracy of occupied 

space detection while extracting features from parking image. This method makes it easier to manage parking 

availability, maximize resource consumption and improve user comfort in metropolitan settings. 

𝑂(𝑌) = ∏

𝑦0=0
𝑚−1

𝑂(𝑌𝑦0+1|𝑌𝑦0−𝑉𝑐+1
, . . . , 𝑌𝑦0)  

(11) 

where, 𝑂(𝑌) represents the multi-component history information,𝑉𝑐 denotes the sequence length, 𝑚 denotes the feature 

dimension of each data point, 𝑌𝑦0 represents the number of time slices included per hour. 
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𝐿𝑓 = 𝐿 + (𝐿 − 1)(𝑓 − 1)  (12) 

here, 𝐿𝑓 indicates the kernel of the dilated convolution, 𝐿indicates the convolutional kernel's size, 𝑓 and indicates the 

dilation factors. 

𝑌 ∗ 𝑔𝑣(⋅) = ∑ 𝑔𝑦(𝑑)𝑌(𝑦 − 𝑓 × 𝑑)𝐿−1
𝑑=0   (13) 

where,   represents the convolution operation, vg represents the time series and convolutional filter, 𝑌 represents the 

joint probability distribution of time series, 𝐿 signifies the quantity of nodes inside the graph. 𝑑 Signifies the quantity of 

time slices that are incorporated in an hour, 𝑔𝑦 represents missing a certain number. 

𝑋 = ∑ 𝑂𝑙𝐶𝐸𝑙
ℎ𝐿

𝐿=0   (14) 

where, 𝐿 represents the convolutional kernel's size, 𝑂𝑙  represents the series of diffusion matrices, 𝑋 represents the 

generalized the diffusion convolution layer, 𝐶 represents the details of the day of the week and time of day at the 

specified moment, 𝐸ℎ represents the step of the recognition information. 

𝑋̃𝑠𝑓𝑜 = 𝑆𝑜𝑓𝑡 𝑚𝑎𝑥(𝑅𝑒 𝐿 𝑈(𝑅1𝑅2
𝑌)) (15) 

here, 𝑋̃𝑠𝑓𝑜represents the create a normalized adaptive adjacency matrix, 𝑆𝑜𝑓𝑡𝑚𝑎𝑥represents the maxSoft function’s 

inherent characteristics, 𝑅𝑒 𝐿 𝑈represents the activation function is omitted, 𝑅1represents the parameter matrix of the 

source node, 𝑅2represents the parameter matrix of the target node. Finally, MCAGCNN detected the Parking Space 

Occupancy. In this work, Leaf in wind optimization (LWO)is assigned to enhance MCAGCNN. Here, LWO is assigned 

for turning weight parameter of MCAGCNN. 

2.5. Optimization using Leaf in Wind Optimization (LWO) 

The proposed Leaf in Wind Optimization (LWO) [22] is utilized to enhance the weight parameters of the proposed 

MCAGCNN. When it comes to an intelligent parking space occupancy detection system that uses computer vision, Leaf 

in Wind Optimization provides a number of benefits. By dynamically adapting to changes in the environment, it 

improves accuracy and ensures reliable identification even under difficult circumstances. Additionally, LWO offers the 

advantage of reduced processing time through its efficient resource usage, maximizing computational power without 

overloading the system. This methodology not only enhances system dependability but also facilitates scalability, 

making it ideal for various parking situations. Furthermore, LWO contributes to the robustness of the system, allowing 

it to perform consistently in diverse environmental conditions, and it improves the overall adaptability of the system for 

a wide range of applications. 

Step 1: Initialization 

Randomness is used to create the initial population of LWO. Equation 16 is then used to derive the initialisation. 

𝐷 =

[
 
 
 
𝑑1

1 𝑑1
2 ⋯ 𝑑1

𝑃

𝑑2
1 𝑑2

2 ⋯ 𝑑2
𝑃

⋮ ⋮ ⋮ ⋮
𝑑𝑀

1 𝑑𝑀
2 ⋯ 𝑑𝑀

𝑃 ]
 
 
 
  (16) 

where, D represents the set of all leaves, M indicates the total count of leaves, P  indicates the dimensionality of the 

leaf motion space. 

Step 2: Random Generation 

The input weight factor 𝐿𝑓𝑎𝑛𝑑𝑋 developed randomness through LWO technique. 

Step 3: Fitness Function  

A randomly generated solution is produced from initialized data. It is computed through parameter optimisation. 

Then the formula is derived in Equation 17 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑖𝑛𝑔[𝐿𝑓𝑎𝑛𝑑𝑋]  (17) 

The parameter 𝐿𝑓 represents the increasing the accuracy and 𝑋 represents the decreasing in Mean Absolute Error.  

Step 4: Breeze Driven Leaf Strategy for Optimizing 𝐿𝑓 

Optimizing𝐿𝑓 in the Breeze Driven Leaf strategy involves fine-tuning the adaptive amplitude of movement and the 

impact of breeze factors to improve the responsiveness and accuracy of the parking space detection system. 
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𝐿𝑓 = 𝑑𝑛𝑒𝑤
1,𝑘 + 𝐹1 ⋅ 𝑝𝑤𝑖𝑛𝑑

𝑡 ⋅ 𝑠𝑖𝑛(𝛿) ⋅ 𝛿 ⋅ 𝑗  (18) 

where, represents the uniformly distributed random number, 𝑝𝑤𝑖𝑛𝑑
𝑡 represents the magnitude of the impact of the breeze 

on the spiral motion, 𝐹1 represents the factor that determines the adaptive amplitude of movement. 

Step 5: Strong Wind Driven Leaf Strategy for Optimizing 𝑿 

Optimizing 𝑿 in the Strong Wind Driven Leaf strategy involves calibrating the wind-driven algorithms and 

environmental signal inputs to enhance the system's capacity to precisely identify parking space occupancy under 

varying conditions. 

𝑋 = {
𝐹𝑃𝑘 + 𝑎3 ⋅ (𝐺𝑃𝑘 − 𝐹𝑃𝑘)𝑖𝑓𝑎4 < 𝑏2

𝑑𝑛𝑒𝑤
2,𝑘               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (19) 

where, 𝑏2 represents the reset probability, 𝑎3and 𝑎4represents two uniformly distributed random numbers. 

Step 6: Termination Criteria 

In this stage, the weight factor value of generator 𝐿𝑓𝑎𝑛𝑑𝑋 Multi Component Attention Graph Convolutional Neural 

Network were improved with the use of LWO; continue step 3 iteratively until the stopping is met 𝐿𝑓𝑎𝑛𝑑𝑋.Then DPSO-

MCAGCNN assesses the detection by increasing the Accuracy. 

3. Result with Discussion 

The result of the proposed DPSO-MCAGCNN was discussed. The proposed DPSO-MCAGCNN is implemented on 

a Python platform on a PC with an Intel ®core (7M) i3-6100CPU @3[U1] and 12 GB of RAM.70 GHz CPU According 

to certain performance metrics, the number of iterations is similar to the number of batches needed to finish an epoch. 

Metrics such as accuracy, mean absolute percentage error (MAPE), mean square error (MSE), coefficient of 

determination (R2), mean absolute error (MAE), and root mean square error (RMSE) are used to assess the DPSO-

MCAGCNN method. The acquired outcomes of the proposed technique are evaluated to existing EUPE-SVM, RTPM-

YOLOv5, and LSTM-MASP methods. 

3.1. Performance Measures 

This is a vital stage in determining the optimisation algorithm's exploration. Performance measures to evaluate to 

access performance like RMSE, MAE, MSE, Accuracy, Coefficient of Determination (R2) and MAPE. 

3.1.1. Accuracy 

The proportion of samples (both positive and negative) relative to the total samples is measured by accuracy. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (20) 

here, the True positive is specifies by TP , the True Negative is specifies byTN , the false positive is specifies by FP , 

and the false negative is specifies by FN . 

3.1.2. Coefficient of Determination (R2) 

The coefficient of determination, or R2, is the proportion of variance in the dependent variable that can be predicted 

from the independent variable. 

𝑅2 = 1 −
𝑅𝑆𝑆

𝑇𝑆𝑆
  (21) 

3.1.3. Mean Square Error (MSE) 

The error in statistical models is computed using mean squared error, or MSE, which is the average squared 

difference between the observed and predicted values. 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑌𝑖 − 𝑌̂𝑖)

𝑛
𝑖=1

2
  (22) 

where, n represents amount of data points, iy  real value for 
thi data point, iŷ  signifies anticipated value for 

thi data 

point. 

3.1.4. Root Mean Square Error (RMSE) 

RMSE, calculates the residual mean, takes the square root of that mean, and finds the residual norm (difference 

between the actual and predicted value) for each image point. Because it employs accurate measurement at each 

anticipated image point, root mean square error (RMSE) is frequently utilized in supervised learning applications. 
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𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑌𝑖 − 𝑌̂𝑖)

𝑛
𝑖=1

2
  (23) 

here, 𝑅𝑀𝑆𝐸 represents the Root Mean Squared Error, 𝑙  represents the numeral of observations, 𝑘𝑗  represents the 

predicted values, 𝑘̂𝑗represents the observed values. 

3.1.5. Mean Absolute Error (MAE)  

The regression model’s performance is assessed using a statistic called MAE. It computes the average number of 

errors between the actual and expected values. 

𝑀𝐴𝐸 =
1

𝑙
∑ |𝑘𝑗 − 𝑘̂𝑗|

𝑙
𝑗=1   (24) 

where, 𝑀𝐴𝐸 indicates the Mean Absolute Error, 𝑙 indicates the amount of data points, 𝑘𝑗 denotes the observed value, 𝑘̂𝑗 

represents the predicted values. 

3.1.6. Mean Absolute Percentage Error (MAPE) 

By computing the average % difference between the actual and predicted values, a forecasting method's accuracy 

may be assessed using the Mean Absolute % Error measure. 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑌𝐹−𝑌

𝑌
|𝑛

𝑖=1   (25) 

3.2. Performance Analysis 

Figures 2 to 7 depicts the simulation of proposed DPSO-MCAGCNN method. Then the proposed DPSO-

MCAGCNN method is likened with existing EUPE-SVM, RTPM-YOLOv5, and LSTM-MASP methods respectively. 

 

Figure 3. Performance Analysis of Accuracy 

 

Figure 4. Performance Analysis of R2 
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Figure 5. Performance Analysis of Mean Square Error 

 

Figure 6. Performance Analysis of Root Mean Square Error 

 

Figure 7. Performance Analyses of Mean Absolute Error 

Accuracy is a critical metric in systems like Intelligent Parking Space Occupancy Detection, as it ensures reliable 

identification of occupied and vacant parking spaces, directly enhancing user experience and system efficiency. Figure 

3 demonstrates the significant improvement of the DPSO-MCAGCNN method, achieving 27.84%, 28.42%, and 29.27% 

higher accuracy over EUPE-SVM, RTPM-YOLOv5, and LSTM-MASP, respectively, showcasing its superior real-time 

performance and reliability in diverse conditions. High accuracy minimizes errors, such as false positives or negatives, 

reducing driver frustration and operational inefficiencies while saving time and costs by avoiding manual interventions. 

Furthermore, accurate systems build user trust, enabling scalability and seamless integration with other smart city 

solutions like traffic management. 
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The Coefficient of Determination (R²) is a critical metric for evaluating how well a model predicts parking space 

occupancy, indicating the percentage of variance in the data explained by the model. The graph in Figure 4 demonstrates 

the DPSO-MCAGCNN method's superiority, with R² increases of 29.84%, 25.87%, and 25.97% over EUPE-SVM, 

RTPM-YOLOv5, and LSTM-MASP, respectively, highlighting its enhanced predictive accuracy for parking space 

occupancy. A better-fitting model is indicated by a higher R2 value in systems such as DPSO-MCAGCNN. This ensures 

that the system makes more accurate and dependable predictions, which is crucial for effective parking management. R² 

helps assess the model’s predictive power and how well it generalizes across different scenarios, giving stakeholders 

confidence in the system’s performance. 

A crucial metric in systems such as Intelligent Parking Space Occupancy Detection is MSE, which computes the 

average squared difference between expected and actual values. Higher prediction accuracy, which guarantees that the 

system more closely reflects real conditions, is indicated by a lower MSE. The graph in Figure 5 highlights the proposed 

DPSO-MCAGCNN method’s superiority, with MSE reductions of 19.84%, 17.42%, and 16.27% compared to EUPE-

SVM, RTPM-YOLOv5, and LSTM-MASP, respectively, showcasing its precision in real-time applications. A lower 

MSE indicates higher prediction accuracy, ensuring the system closely aligns with real-world conditions. This minimizes 

significant errors, which is critical in dynamic environments, enhancing reliability and efficiency. By penalizing larger 

discrepancies more heavily, MSE helps optimize the system's performance, ensuring consistent results and reducing the 

need for manual corrections. 

RMSE is a critical metric for systems like Intelligence Parking Space Occupancy Detection as it measures the 

standard deviation of prediction errors, providing an intuitive way to assess accuracy. The graph in Figure 6 showcases 

the DPSO-MCAGCNN method’s effectiveness, with RMSE reductions of 12.22%, 13.34%, and 18.87% compared to 

EUPE-SVM, RTPM-YOLOv5, and LSTM-MASP, respectively, underscoring its superior performance for real-time 

applications. A lower RMSE indicates that predictions are closer to actual values, ensuring higher reliability and 

precision in dynamic scenarios such as detecting parking space availability. By heavily penalizing significant errors, 

RMSE helps the system prioritize minimizing impactful discrepancies and enhancing consistency and trustworthiness. 

The average magnitude of prediction errors is measured by Mean Absolute Error (MAE), which is a crucial metric 

in systems like Intelligent Parking Space Occupancy Detection because it offers a clear and understandable evaluation 

of accuracy. The graph in Figure 7 shows the DPSO-MCAGCNN method’s effectiveness, achieving MAE reductions 

of 12.77%, 13.78%, and 14.67% compared to EUPE-SVM, RTPM-YOLOv5, and LSTM-MASP, respectively, 

highlighting its superior precision for real-time parking management. A lower MAE indicates more reliable and 

consistent predictions, essential for real-time decision-making, such as accurately identifying parking space availability. 

Mean Absolute Percentage Error (MAPE) is a crucial metric in systems like Intelligent Parking Space Occupancy 

Detection because it expresses prediction accuracy as a percentage, making it easily interpretable and comparable across 

different scenarios. The graph in Figure 8 shows the DPSO-MCAGCNN method’s superiority, with MAPE reductions 

of 17.84%, 18.42%, and 19.27% compared to EUPE-SVM, RTPM-YOLOv5, and LSTM-MASP, respectively, 

highlighting its effectiveness in delivering precise, percentage-based predictions for real-time parking management. By 

determining the average percentage error between expected and actual values, MAPE aids in assessing the system's 

relative performance and offers a clear image of its performance. Minimizing MAPE ensures more accurate predictions, 

which is essential for decision-making and user experience, especially in dynamic environments like parking space 

detection. 

 

Figure 8. Performance Analysis of Mean Absolute Percentage Error 
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Table 1 illustrates a comparative performance analysis of the proposed DPSO-MCAGCNN method and three 

existing methods EUPE-SVM, RTPM-YOLOv5, and LSTM-MASP—based on recall and precision metrics. The 

proposed DPSO-MCAGCNN method outperforms all others, achieving the highest recall (97.8%) and precision 

(98.4%), indicating its superior capability in identifying and classifying relevant instances. EUPE-SVM demonstrates 

relatively low recall (85.7%) and precision (69.2%), reflecting its limitations in both sensitivity and accuracy. RTPM-

YOLOv5 performs moderately, with recall and precision values of 90.2% and 72.6%, respectively. LSTM-MASP shows 

a high precision (92.27%) but has the lowest recall (82.7%) among the methods, highlighting its trade-off between 

accuracy and sensitivity. These findings emphasize the effectiveness of the proposed DPSO-MCAGCNN technique. 

Table 1. Performance Analysis of Proposed and Existing Method 

Methods Recall Precision 

DPSO-MCAGCNN (proposed) 97.8% 98.4% 

EUPE-SVM [11] 85.7% 69.2% 

RTPM-YOLOv5 [12] 90.2% 72.6% 

LSTM-MASP [13] 82.7% 92.27% 

4. Conclusion 

In conclusion, the DPSO-MCAGCNN system represents an important advancement in the management of urban 

parking spaces, offering substantial improvements in both detection accuracy and efficiency. The system has proven its 

ability to provide accurate and dependable parking space occupancy detection by using the PKLot dataset and improving 

data processing with the MCQKF. The performance of DPSO-MCAGCNN surpasses that of existing methods such as 

EUPE-SVM, RTPM-YOLOv5, and LSTM-MASP, with accuracy improvements of 27.84%, 28.42%, and 29.27%, 

respectively. Furthermore, the system effectively reduces the MAPE by 17.84%, 18.42%, and 19.27%, highlighting its 

robustness and potential to improve urban parking management. The system’s superior performance underscores its 

potential as an essential tool in the development of smarter urban infrastructure. As cities around the world continue to 

grow, efficient space utilization becomes increasingly important. The DPSO-MCAGCNN system not only optimizes 

parking management but also provides valuable data that can contribute to the broader goal of creating more sustainable 

and efficient urban environments. Its ability to detect parking space occupancy with high accuracy makes it a promising 

solution for reducing congestion, minimizing the environmental impact of searching for parking, and improving the 

overall urban experience. However, the quality of the input data determines the system's success, and integrating it with 

the older infrastructure still presents difficulties. To address these challenges, future work will focus on enhancing the 

system’s robustness in adverse conditions, optimizing real-time processing for larger urban areas, and conducting 

extensive real-world testing. Additionally, improving integration with other smart city components and refining the 

system’s usability will be critical in furthering the development of a comprehensive, efficient urban management 

solution. 
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