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Abstract 

This study enriches structural optimization research using direct analysis for steel truss structures, which is often hampered 

by high computational demands. The main objective of this work is to evaluate multi-objective optimization algorithms in 

truss sizing optimization with discrete variables, focusing on minimizing total mass and controlling inter-story drift under 

multiple load combinations. Five leading multi-objective metaheuristic algorithms were assessed: SPEA2, GDE3, NSGA2, 

MOEA/D, and the novel MOEA/D-EpDE, which uniquely combines MOEA/D with Dynamical Resource Allocation and 

pbest Differential Evolution. Four performance indicators, such as Generational Distance (GD), GD Plus (GD+), Inverted 

GD+ (IGD+), and Hypervolume (HV), were utilized. Findings from four truss optimization problems revealed that all 

considered algorithms located feasible optimal solutions, but MOEA/D-EpDE excelled, consistently securing the lowest 

GD, GD+, IGD+, and anchor point values, along with the highest HV values in most scenarios. This indicates its superior 

capability in addressing the problem efficiently. NSGA2 and MOEA/D also performed well, outperforming GDE3 and 

SPEA2. This study is pioneering in its application of these algorithms to steel truss optimization via direct analysis, 

highlighting the potential for advanced computational techniques in structural engineering. 
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1. Introduction 

Direct analysis offers several advantages over conventional methods based on linear analysis, including: (1) 

accounting for the nonlinear inelastic responses of structures, (2) considering the redistribution of internal forces within 

the structure, and (3) evaluating the structural load-bearing capacity, thereby simplifying the assessment of structural 

performance. With direct analysis, the tedious and complex process of individually checking each structural component, 

as required in member-based analysis methods, becomes unnecessary. With the robust computational power available 

today, direct analysis methods are increasingly being utilized in structural design, particularly for steel structures, which 

inherently exhibit nonlinear characteristics. Notable studies that have employed direct analysis for steel truss structures 

include those referenced in Habibi & Bidmeshki [1] and Thai & Kim [2], among others. 

Truss design optimization has been a significant area of research for decades, with hundreds of studies published 

annually in recent years. This research encompasses various aspects, including problem formulation and the 

development of optimization algorithms. Truss optimization problems are typically divided into single-objective 

optimization (SOO) and multi-objective optimization (MOO) categories. Typical objectives in truss optimization 

include minimizing mass and displacement, with design variables that can be either continuous or discrete. Common 
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design constraints involve stress, displacement, bifurcation buckling, and natural frequencies. The presence of 

nonlinear factors, such as complex search regions, non-convex feasible spaces, nonlinear structural responses, and 

multiple constraints, can pose challenges for gradient-based optimizers in identifying optimal solutions. 

Consequently, metaheuristic algorithms (MHs) have become popular alternatives for optimization, appreciated for 

their enhanced capability to locate global optimal solutions. In particular, Sheng-Xue [3] successfully applied the 

medalist learning algorithm to address the highly nonlinear optimization challenges of truss structures while 

considering frequency constraints. Ouardani & Tbatou [4] utilized a genetic algorithm (GA) to develop a two-step 

optimization procedure for optimizing the layout of seismic isolators. Altay et al. [5] introduced an enhancement to 

the salp swarm algorithm (SSA) aimed at sizing optimization of planar trusses. Kaveh & Hosseini [6] improved the 

Bat algorithm by incorporating the Doppler effect to optimize truss structures. Additional noteworthy contributions 

can be found in references [7-9].  

Common advantages of MHs are derivative-free nature, robustness, ease of understanding, and flexibility in coding 

and implementation. In MOO, another key advantage of MHs is their ability to explore the Pareto front in a single run. 

MHs are particularly well-suited for truss design involving discrete shape and sizing variables, providing practical 

solutions by addressing concurrent topology, shape, and sizing problems and accommodating non-differentiable 

constraints. While MHs offer high-quality solutions, they do not always reach the absolute optimum and require 

substantial structural analyses to evaluate constraints, leading to excessive computational demands. 

Most research on truss optimization has concentrated on SOO, typically focusing on minimizing structural mass 

while satisfying safety constraints under various combination loads. Over the past three decades, numerous 

metaheuristic-based optimization algorithms for truss structures have been developed. For example, in 1995, Hajela & 

Lee [10] utilized a genetic algorithm (GA) to develop a topology optimization procedure of trusses. That same year, 

Bennage & Dhingra [11] addressed the optimization problem of truss structures using a Tabu search algorithm. In 2008, 

Lamberti [12] employed a simulated annealing (SA) algorithm to minimize the mass of truss structures while considering 

numerous constraints. Additionally, Serra & Venini [13] introduced various applications of the ant colony optimization 

(ACO) algorithm for optimizing planar trusses in 2006. Furthermore, particle swarm optimization (PSO) [14] and 

differential evolution (DE) [15] were also applied to solve truss optimization problems as early as the 20th century. Over 

time, numerous algorithms have emerged, including many newly proposed algorithms and improved versions of existing 

ones. Some interesting algorithms are Jaya [16], the coyote algorithm (COA) [17], and colliding bodies optimization 

(CBO) [18]. Most studies utilize linear analysis for truss structural analysis, while only a few focus on truss optimization 

using nonlinear inelastic analysis. Among the limited studies addressing truss optimization with an emphasis on 

structural nonlinearity, Madah & Amir [19] investigated geometric nonlinearity through co-rotational beam modeling 

in truss optimization. Missoum et al. [20] developed a displacement-based optimization method specifically for the 

sizing optimization of nonlinear truss structures. Similarly, Hrinda & Nguyen [21] took geometric nonlinearity into 

account in the optimization of shallow truss structures. Additionally, Kameshki & Saka [22] optimized the geometry of 

braced domes by considering geometric nonlinearity. Incorporating direct analysis to account for structural nonlinearity 

and the discreteness of design variables is anticipated to make truss structure optimization significantly more complex 

and nonlinear than traditional truss optimization problems. Given the ongoing development of new MHs, it is essential 

to compare their performance to identify the most effective algorithms for specific optimization problems, potentially 

revealing powerful new methods. 

In the context of MOO for truss structures, there has been significantly less research compared to SOO problems. 

However, real-world design tasks typically involve multiple objectives to meet various cost and technical requirements. 

Designers often seek an optimal set of trade-off solutions based on several design criteria to facilitate decision-making. 

MHs are well-suited for MOO of trusses due to their ability to effectively generate such solutions in a single run while 

also requiring fewer function evaluations. Based on MHs, many multi-objective MH algorithms (MOMHs) have been 

developed, including multi-objective evolutionary algorithm based on decomposition (MOEA/D) [23], nondominated 

sorting genetic algorithm-II (NSGA2) [24], strength Pareto evolutionary algorithm (SPEA) [25], generalized differential 

evolution 3 (GDE3) [26], among others. Several notable studies have addressed the multi-objective optimization (MOO) 

of trusses, with most of the published works on linear structures. 

For instance, Gholizadeh & Fattahi [27] optimized steel structures under seismic loading using a performance-based 

design approach. Eid et al. [28] extended the Water Cycle Algorithm (WCA) to a multi-objective framework for 

optimizing truss structures. Kaveh & Ilchi Ghazaan [29] applied the vibrating particles system (VPS) to tackle MOO 

problems. Some other interesting topics have also been conducted including natural frequencies and stability [30] and 

reliability-based MOO [31]. Direct analysis has also been applied in truss MOO problems in very limited quantities. 

Cao et al. [32] introduced MOEAD-EpDE, a hybrid algorithm combining an improved pbest-based DE with MOEA/D, 

highlighting its effectiveness in MOO of nonlinear trusses. In a follow-up study, Cao et al. [33] compared six MOMHs 

for nonlinear inelastic trusses but focused predominantly on continuous design variables. While numerous MOO 
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algorithms and problems exist, there is a critical need for studies evaluating MOMH performance across distinct classes 

of MOO challenges. Addressing this need, Panagant et al. [34] conducted a comparative study of sixteen MOMHs 

specifically for truss optimization. Furthermore, Panagant et al. [35] examined MOMH performance in many-objective 

optimization of truss structures using four objectives: mass, compliance, first natural frequency, and buckling factor. 

Despite these efforts, existing research largely limits its scope to linear analysis and continuous design variables, leaving 

a gap in the literature regarding the evaluation of MOMHs under conditions involving discrete variables and nonlinear 

structural behavior. 

To contribute to the literature, we have, for the first time, conducted a comparison of MOMHs for the MOO of truss 

structures considering discrete variables using direct analysis. The design problem aims to optimize structural mass and 

inter-story drift or nodal displacements under multiple load combinations, using direct analysis to accurately capture the 

structure's nonlinear inelastic responses. Five prominent and contemporary multi-objective metaheuristic algorithms 

(SPEA2, GDE3, NSGA2, MOEA/D, and MOEA/D-EpDE) are evaluated. The study examines four widely used planar 

and spatial truss structures based on four performance measures. The remainder of the paper is structured as follows: 

Section 2 details the MOO truss problems using direct analysis. Section 3 briefly describes the MOMHs utilized in this 

study. The examples considered are examined in Section 4. Finally, Section 5 summarizes the key conclusions and 

proposes directions for future research. 

2. MOO Problem for Trusses using Direct Analysis 

2.1. Direct Analysis Model for Steel Trusses 

The fundamental principle of direct analysis involves divding the loads applied to the structure into very small load 

increments, with the structural responses and deformations being systematically recorded at each step. This approach 

enables direct capture of the nonlinear force-displacement relationship, which is crucial for determining the structure's 

ultimate load-carrying capacity which can be represented by the ultimate load factor (ULF). The structure is considered 

safe when the ULF is at least 1.0. Consequently, this method eliminates the need for the detailed safety checks of 

individual members required in linear analysis. 

In this study, we utilize the Practical Advanced Analysis Program (PAAP) [2] to determine ULF of steel trusses. 

The accuracy and reliability of PAAP have been well-documented in various studies within the literature, as cited in 

[36-38]. In PAAP, to capture the nonlinear response of an element, the constitutive model developed by Blandford [39] 

is employed. This model accounts for all key modes, including compression, tension, buckling, post-buckling, and post-

yielding. Detailed equations describing these behavior curves are provided in Blandford [39]. The element equation, 

expressed in an incremental form, is as follows Yang & Kuo [40]: 

([𝑘𝐸] + [𝑘𝐺] + [𝑠1] + [𝑠2] + [𝑠3]){𝑑} = { 𝑓 
2 } − { 𝑓 

1 }  (1) 

Here, 𝑓 
1  and 𝑓 

2  are nodal forces at two states; [k𝐸  ] and [k𝐺  ] denote stiffness matrices of elasticity and geometry; 

and, [s1 ], [s2 ], and [s3 ] are higher-order stiffness matrices that account for the axial strain’s nonlinear component. The 

Generalized Displacement Control (GDC) technique [41] is applied to handle the above nonlinear equation, effectively 

computing the equilibrium path with multiple limit points. 

2.2. MOO of Steel Trusses with Discrete Design Variables 

In an MOO problem, at least two conflicting objectives are evaluated. Typically, structural optimization includes 

minimizing the total cost or mass to ensure economic efficiency. Here, the structural members' cross-sections aim to 

minimize total cost/weight while satisfying design requirements for strength, serviceability, and constructability. 

However, smaller cross-sections can reduce stiffness and safety. To counter this, the maximum inter-story drift is often 

the second objective, as minimizing these can enhance global stiffness. Other potential objectives in structural design 

may include failure probability, cross-section types, and natural frequencies, among others. In this work, a bi-objective 

optimization problem with discrete design variables for steel trusses using direct analysis is to minimize the following 

objectives: 

𝐹1(𝑋) = 𝜌 ∑ ∑ 𝐴(𝑥𝑖)𝐿𝑖𝑗

𝑁𝑗

𝑗=1
𝐷
𝑖=1   (2) 

𝐹2(𝑋) = √∑ (𝑑𝑘)2𝑁𝑠𝑡𝑜𝑟𝑦

𝑘=1

  

(3) 

Where ρ is the material weight density, 𝐗 = (𝑥1, … 𝑥𝐷) is the vector of design variables where D is the number of design 

variables, A(𝑥𝑖) is the cross-sectional area for the design variable 𝑖𝑡ℎ in which 𝑥𝑖 the order of the selected section in the 

given discrete set of sections, 𝐿𝑖𝑗  is the length of the truss element 𝑗𝑡ℎ in the member group 𝑖𝑡ℎ, 𝑁𝑗 is the number of 

structural elements having the sectional-area A(𝑥𝑖), 𝑑𝑘 is the inter-story drift of story 𝑘𝑡ℎ, and 𝑁𝑠𝑡𝑜𝑟𝑦 is the number of 

structural stories. Equation 3 can also be expressed in terms of nodal displacements. 
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The strength constraints align with the strength load combinations. When using nonlinear inelastic analysis, 

structural safety is assessed in the view of the ultimate load factor ULF: 

𝐶𝑙
𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ

= 1 − 𝑈𝐿𝐹𝑙 ≤ 0𝑙 = 1, . . , 𝑁𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ

  

(4) 

For serviceability, the inter-story drifts are ensured as: 

𝐶𝑗
𝑠𝑒𝑟𝑣𝑖𝑐𝑒 = 𝑚𝑎𝑥

𝑘=1,𝑁𝑠𝑡𝑜𝑟𝑦

(
|𝑑𝑘,𝑗|

𝑑𝑘,𝑗
𝑢 ) − 1 ≤ 0𝑗 = 1, . . , 𝑁𝑠𝑒𝑟𝑣𝑖𝑐𝑒

  

(5) 

In which 𝑑𝑘,𝑗
𝑢  is the limit of 𝑑𝑘,𝑗. 

In this study, the penalty function method is utilized for constraint handling due to its simplicity and ease of use, 

leading to a reformulation of Equations 2 and 3 as: 

𝐹1
𝑢𝑛(𝑋) = 𝐹1(𝑋) × (1 + ∑ 𝛼𝑠𝑡𝑟,𝑙

𝑁𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ

𝑙=1
𝑚𝑎𝑥(𝐶𝑙

𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ
, 0) + ∑ 𝛼𝑑𝑖𝑠𝑝,𝑗 𝑚𝑎𝑥(𝐶𝑗

𝑠𝑒𝑟𝑣𝑖𝑐𝑒 , 0)
𝑁𝑠𝑒𝑟𝑣𝑖𝑐𝑒
𝑗=1 )

  

(6) 

𝐹2
𝑢𝑛(𝑋) = (1 + ∑ 𝛼𝑠𝑡𝑟,𝑙

𝑁𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ

𝑙=1 𝑚𝑎𝑥(𝐶𝑙
𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ

, 0) + ∑ 𝛼𝑑𝑖𝑠𝑝,𝑗 𝑚𝑎𝑥(𝐶𝑗
𝑠𝑒𝑟𝑣𝑖𝑐𝑒 , 0)

𝑁𝑠𝑒𝑟𝑣𝑖𝑐𝑒
𝑗=1 ) × 𝐹2(𝑋)

  

(7) 

where 𝛼𝑠𝑡𝑟,𝑙 and 𝛼𝑑𝑖𝑠𝑝,𝑗  are the penalty parameters to eliminate infeasible candidates during the optimization process by 

assigning large values 

3. Optimization Algorithms 

To address MOO problems, three main methods have been developed: (1) converting the problem into a SOO by 

combining individual objectives using a weighted sum method, (2) converting it into SOO by retaining one objective 

and transforming others into constraints, and (3) finding the Pareto front directly. The first method involves creating 

various SOO problems by adjusting weighting coefficients, suitable for solving with MHs. However, it requires 

significant computational effort, struggles with nonconvex spaces, and can be inefficient due to arbitrary coefficient 

selection. The second method transforms MOO into SOO by varying constraint values, but arbitrarily selecting these 

values poses challenges similar to the first method, though it handles nonconvex spaces better. The third method uses 

MOMHs tailored for MOO to find the entire Pareto front effectively, as these algorithms handle a population of solutions 

and are adept at locating global optima in complex, nonlinear, and non-convex problems. Accordingly, this study 

concentrates on MOMHs, specifically NSGA2, GDE3, SPEA2, MOEA/D, and MOEAD-EpDE with following detailed 

descriptions. 

3.1. NSGA2 

NSGA2 [42, 43] is a pioneering multi-objective optimization (MOO) method. NSGA2 follows the basic framework 

of a genetic algorithm (GA), which draws inspiration from Darwin’s evolutionary theory. In a typical GA, the next 

generation’s individuals, or chromosomes, are derived from “good” parents (individuals/chromosomes from the current 

generation) using mutation, crossover, and selection. Traditionally, a chromosome is represented in binary form with 

genes set as 1 or 0. Offspring are created by selecting two parent chromosomes using methods like roulette wheel, event 

selection, or rank-grounded selection to identify superior parents. These parents undergo crossover (such as one-point 

or two-point crossover) where genetic material is exchanged. A mutation operator with small rate changes gene values 

in the offspring to avoid local optima. An "elitist selection" keeps the best individual for quality assurance in the next 

generation. NSGA2 improves the process for MOO by integrating fast nondominated sorting and crowded comparison 

sorting. Fast nondominated sorting classifies individuals into nondomination fronts using domination count nt, 

representing how many solutions dominate a solution p, and the set Sp of solutions that p dominates, optimizing 

computational costs for sorting. Crowded comparison, using nondomination rank and crowding distance, ensures a 

diverse population by favoring solutions on lower ranks or in less crowded areas. NSGA2 employs simulated binary 

(SBX) for crossover and polynomial mutation operators, detailed in Zitzler & Thiele [44] and Zitzler et al. [45]. The 

main procedure of NSGA2 is presented in Figure 1. 

3.2. GDE3 

GDE3 [26] is an advanced variant of the DE algorithm designed for solving MOO problems. Originating from the 

robust framework of DE, GDE3 extends the capabilities of its predecessors by efficiently handling multiple conflicting 

objectives with improved adaptability and diversity management. The algorithm operates by maintaining a population 

of candidate solutions, characterized by vectors representing potential solutions in the search space. Each solution 

undergoes mutation, crossover, and selection processes to explore and exploit the search space effectively. 

In GDE3, the mutation strategy DE/rand/1/bin from DE is employed to create trial vectors. This mutation operator 

creates trial vectors by perturbing a target vector using a weighted difference between two randomly selected population 

vectors, thereby enhancing exploration and helping the algorithm avoid local optima. The crossover process, equally 
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crucial, merges trial vectors with current ones to produce offspring, fostering variability and promoting genetic diversity. 

The success of these offspring in populating the next generation relies on selection mechanisms tailored for multi-

objective contexts. Following the selection operation in GDE3, the population size can initially increase from NP to 

2NP after a generation. However, it is then reduced back to NP by applying fast nondominated sorting and crowding 

distance techniques from NSGA2. These methods ensure that solutions not only converge to the Pareto front but also 

maintain a well-distributed presence across it. Figure 2 presents the flowchart of GDE3. 

 

Figure 1. The flowchart of NSGA2 

 

Figure 2. The flowchart of GDE3 

3.3. SPEA2 

SPEA2 [46] significantly enhances the performance of its predecessor. It incorporates a fitness assignment strategy 

based on the strength of dominance, where each individual is assigned a fitness score according to how many other 

solutions it dominates and its proximity to other solutions in the objective space. SPEA2 stores non-dominated solutions 

in an external archive, ensuring diversity and preventing the loss of optimal solutions over generations. Additionally, it 

introduces a refined clustering technique to improve diversity within the population, allowing it to maintain a better 

spread of solutions across the Pareto front. The flowchart of SPEA2 is presented in Figure 3. 
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Figure 3. The flowchart of SPEA2 

3.4. MOEA/D 

MOEA/D, an evolutionary algorithm-based framework, innovatively decomposes an MOO problem into multiple 

SOO sub-problems [46]. These sub-problems are solved simultaneously and cooperatively, utilizing several 

evolutionary operators. The approach involves leveraging solutions from neighboring sub-problems to achieve and 

combine optimal solutions, aiming for Pareto points as illustrated in Figure 4. The primary solution of each sub-problem 

is derived from its neighbors, facilitating efficient exploration of the solution space. 

 

Figure 4. Neighborhood idea in MOEA/D 

The weighted Tchebycheff method, renowned for its decomposition capabilities, is suitable for breaking down MOO 

problems, especially those with non-convex Pareto fronts. However, it typically performs best with MOO problems that 

have normalized objective functions. The procedure of MOEAD is presented in Figure 5. 
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Figure 5. The procedure of MOEA/D 

3.5. MOEAD-EpDE 

MOEA/D-EpDE [33] represents one of the newest MOO algorithm advancements. It uniquely integrates the 

strengths of two distinct approaches: the recently developed pbest Differential Evolution (EpDE) algorithm and the 

MOEA/D with Dynamic Resource Allocation (MOEA/D_DRA). In MOEA/D-EpDE, the framework of 

MOEA/D_DRA is central to the optimization process. By employing DRA techniques, MOEA/D_DRA is able to 

manage computational resources efficiently across different sub-problems. This dynamic allocation ensures that 

computational efforts are focused where they are most needed, enhancing the overall problem-solving efficiency. 

Each sub-problem within this framework is tackled using EpDE operators, which are known for their efficiency and 

effectiveness in finding optimal solutions. Additionally, MOEA/D-EpDE incorporates an external archive to store more 

non-dominated solutions discovered during the optimization process. This archive plays a crucial role in boosting the 

algorithm's performance by preserving a diverse set of high-quality solutions. By retaining these non-dominant 

solutions, the archive helps in improving the diversity of solutions over consecutive iterations, thereby enhancing the 

exploration capabilities of the algorithm. The entire procedure of the MOEA/D-EpDE, including its structure and 

workflow, is visually represented and summarized in Figure 6. 

 

Figure 6. The procedure of MOEAD-EpDE 
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4. Numerical Examples 

4.1. Truss Design Problems 

In this section, we evaluate four truss structures with the layout and geometry presented in Figure 7. Comprehensive 

details of these case studies are outlined in Table 1. The algorithms used in this analysis were developed in Python, with 

system parameters optimized through a trial-and-error method to identify appropriate values, as detailed in Table 2. For 

all scenarios, a population size of 100 was utilized. The first truss analysis runs for 200 iterations, while the remaining 

studies were conducted over 300 iterations. Each algorithm was executed independently 20 times to mitigate the 

variability inherent in metaheuristic methods. The analyses were conducted on a computer equipped with an Intel Core 

i7-8700 processor, operating at a clock speed of 3.20 GHz. The average computational time for each optimization run 

is provided in Table 1. Clearly, direct analysis is computationally intensive. 

   

(a) 10-bar truss (b) Spatial 72-bar truss (c) 39-bar truss 

 

(d) 113-bar planar bridge 

Figure 7. Truss layouts and geometries 

Table 1. Case study information 

 Planar 10-bar Spatial 72-bar Planar 39-bar Planar 113-bar bridge 

Number of variables 10 16 39 43 

Radius of cross-

section list (mm) 

List [31] = [10-20, 22, 24, 26, 28, 

30, 32, 34, 36, 38, 40, 43, 46, 49, 

52, 55, 58, 61, 64, 67, 70] 

List [31] = [10-20, 22, 24, 26, 28, 

30, 32, 34, 36, 38, 40, 43, 46, 49, 

52, 55, 58, 61, 64, 67, 70] 

List [31] = [10-20, 22, 24, 26, 28, 

30, 32, 34, 36, 38, 40, 43, 46, 49, 

52, 55, 58, 61, 64, 67, 70] 

List [29] = [30-40, 42, 44, 46, 48, 

50, 52, 54, 56, 58, 60, 63, 66, 69, 

72, 75, 78, 81, 84] 

Material Mass density = 7850 (kg/m3), yield strength = 344.5 (MPa), Elastic modulus = 200 (GPa) 

Applied loads 
DL = 150 (kN), LL = 100 (kN), 

and W = 100 (kN) at all nodes 

DL = 100 (kN), LL = 50 (kN), and 

W = 40 (kN) at all nodes 

DL = 100 (kN), LL = 100 (kN), 

and W = 60 (kN) at all nodes 

DL = 100 (kN) and LL = 50 (kN) 

at all nodes on upper chord 

Load combination 
Strength: (1.2DL+1.6LL) and (1.2DL+0.5LL+1.6W) 

Serviceability: (1.0DL+0.5LL+0.7W) 

Strength: (1.25DL+1.75LL), 

Serviceability: (1.0DL+1.0LL) 

Constraints 
Strength: ULF ≥ 1.0 

Serviceability: ULF = 1.0 and interstory drift ≤ h/400 

Strength: ULF ≥ 1.0 

Serviceability: ULF = 1.0 and 

nodal displacement ≤ 43.1 (mm) 

Objectives 
F1 = total mass 

F2 = √𝑥1
2 + 𝑥3

2 

F1 = total mass 

F2 = √𝑥5
2 + 𝑥9

2 + 𝑥13
2 + 𝑥17

2  

F1 = total mass 

F2 = √𝑥5
2 + 𝑥9

2 + 𝑥13
2  

F1 = total mass 

𝐹2 = √𝑦1
2 + 𝑦2

2 with 𝑦1 and 𝑦2of 

two spans’s mid-points 

Ave. time computing 

(second) 
6,300 55,800 80,100 228,000 
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Table 2. Parameters for MOO algorithms 

Algorithm Parameter value 

NSGA2 
offspring_population_size = population_size; crossover=SBX; 

mutation = Polynomial; tournament selection 

GDE3 DE/rand/1; CR = 0.9; F = 0.1 

SPEA2 
offspring_population_size = population_size; crossover=SBX; 

mutation = Polynomial 

MOEA/D 
CR=1.0; F=0.5; DE/current/1 

mutation = Polynomial; neighbor_size=20; 

MOEA/D-EpDE 
crossover=EpDE_Crossover; External_archive = Enable; 

mutation = Polynomial; neighbor_size=25; 

Four metrics were utilized: GD, GD+, IGD+, and HV. GD calculates the overall distance from computed solutions 

to the theoretical Pareto front. This measure is further enhanced by GD+, which provides a more refined distance 

calculation. In contrast, IGD+ focuses on the shortest distance from any given point on the Pareto front to the closest 

solution within the analyzed set. The HV metric assesses the volume of the objective space that is dominated by the 

solutions in relation to a predetermined reference point. For these criteria, a more effective algorithm is characterized 

by achieving lower values in GD, GD+, and IGD+, alongside higher HV results. HV is calculated using a reference 

point with max objective values plus 1.1. The mathematical formulations for these indicators are detailed in Panagant et 

al. [34]. 

4.2. Results of Planar 10-Bar Truss 

In structural MOO problems, the true Pareto front is typically unknown, posing a challenge for evaluating the 

performance of optimization algorithms. To address this, it's a common practice to consider the approximate front 

constructed by aggregating all optimal solutions found. This aggregated set of solutions provides a comprehensive 

depiction of the potential Pareto front for the problem at hand. Accordingly, the approximate Pareto front derived from 

this particular case study is illustrated in Figure 8. This figure not only illustrates the approximate Pareto front but also 

presents all optimal solutions obtained during the experimental runs, providing a comprehensive visual representation 

of the solution space explored by the algorithms. The figure reveals variations in the quality of the optimal curves derived 

from the different runs, with several optimal points situated far from the expected Pareto curve, indicating the varying 

performance of the MOMHs. This visualization enhances the understanding of solution diversity and distribution, 

underscoring the optimization method's effectiveness in capturing trade-offs among conflicting objectives. Importantly, 

all identified optimal solutions comply with the specified constraints, reinforcing initial conclusions regarding the 

efficiency of the MOO algorithms in identifying optimal solutions for this example. This finding demonstrates the 

robustness and reliability of the algorithms in generating high-quality outcomes. 

 

Figure 8. Pareto-front of 10-bar truss 

Four indicators (GD, GD+, IGD+, and HV) as well as two anchor points corresponding to the smallest values of 

each objective were evaluated. Table 3 provides a summary of average GD, GD+, IGD+, HV values, and minimum 

objective values. Figure 9 presents detailed results for the indicators, while Figure 10 highlights the smallest values for 

each objective. 
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Table 3. Performance of MOO algorithms for 10-bar truss 

Results NSGA2 GDE3 SPEA2 MOEA/D MOEA/D-EpDE 

Ave. GD 47.451 89.336 39.343 18.082 16.807 

Ave. GD+ 47.444 89.334 39.332 18.064 16.781 

Ave. IGD+ 11.901 18.515 16.475 7.632 9.767 

Ave. HV 323,486.0 314,795.7 320,665.6 326,858.2 328,073.9 

Best Anchor 1 (Corresponding 
value of objective function 2) 

2,053.1 (46.236) 2,019.1 (47.394) 2,038.6 (46.406) 2,027.9 (47.465) 2,019.1 (4,739.4) 

Best Anchor 2 (Corresponding 

value of objective function 1) 
0.013 (5,051.1) 0.009 (4,875.3) 0.053 (4,940.1) 0.010 (6,243.3) 0.015 (5,876.3) 

 

  

Figure 9. Anchor points for 10-bar truss: a) First objective and b) Second objective 

The average GD (Ave. GD) indicates the closeness of the solutions to the Pareto front, with MOEA/D-EpDE 

achieving the best average GD of 16.807, followed closely by MOEA/D at 18.082, while NSGA2 and GDE3 

exhibited significantly larger distances. Similarly, the Ave. GD+ metrics reflect analogous trends. The Ave. IGD+ 

results further emphasize the superiority of MOEA/D, yielding the lowest average value of 7.632, thereby 

demonstrating its effectiveness in maintaining solution diversity. The Ave. HV metric, which measures the volume 

covered by the Pareto front in objective space, also highlights MOEA/D-EpDE as the top performer, with the highest 

value of 328,073.9. Both best Anchor metrics, which represent performance benchmarks, indicate competitive results 

among the algorithms, with GDE3 consistently demonstrating robust outcomes. Overall, the data suggest that 

MOEA/D-EpDE exhibit strong performance across multiple criteria, validating their efficacy as optimization 

methods in this context. 

The relationship between the two objective functions is elucidated in Figure 8 and Table 3. As illustrated in Figure 

8, the two objectives are inherently conflicting: reducing the value of objective function 1, which represents the total 

mass of the structure, necessitates an increase in the value of objective function 2, the squared value of nodal 

displacements. This inverse relationship is further corroborated by the anchor results presented in Table 3. Specifically, 

anchor point 1, which corresponds to the minimum value of objective function 1, exhibits a significantly large value for 

objective function 2. Conversely, anchor point 2, associated with the minimum value of objective function 2, results in 

a substantially large value for objective function 1. These findings highlight the trade-offs involved in selecting a design 

solution. Opting solely to minimize the structure's mass (objective function 1) leads to larger nodal displacements, 

thereby decreasing structural stiffness. In contrast, minimizing nodal displacements results in a heavier structure. This 

analysis underscores the importance of balancing these objectives to achieve an optimal design that meets both 

performance and efficiency criteria. 

Figures 9-a to 9-d illustrate MOEA/D-EpDE's top performance in all four indicators. Specifically, it recorded the 

smallest GD (the minimum and maximum values of 0.147 and 52.522, respectively), the smallest GD+ (the minimum 

and maximum values of 0.096 to 52.522, respectively), the lowest maximum IGD+ (27.943), the second-lowest 

minimum IGD+ (1.658), and the highest HV (336,772). Figs. 10a-b further affirm MOEA/D-EpDE’s efficiency with 

the lowest maximum anchor values (2,391.3 kg and 1.035 mm). Thus, MOEA/D-EpDE is conclusively the best 

algorithm in this study, followed by MOEA/D, NSGA2, GDE3, and SPEA2, respectively. 



Civil Engineering Journal         Vol. 10, No. 12, December, 2024 

3936 

 

  

  

Figure 10. Performance indicators for 10-bar truss: a) GD, b) GD+, c) IGD+, and d) HV 

4.3. Results of Spatial 72-Bar Truss 

Figure 11 illustrates the approximate Pareto front derived from this case study. Notably, all identified optimal 

solutions satisfy the established constraints, reinforcing initial conclusions regarding the effectiveness of the MOO 

algorithms used in this example. This outcome underscores the robustness and reliability of the algorithms in generating 

high-quality results within the constraints of the problem. 

 

Figure 11. Approximate Pareto-front for 72-bar truss 

Table 4 summarizes the performance metrics of the five optimization algorithms, including average GD, GD+, 

IGD+, HV values, and minimum objective values. Complementary results for these indicators are illustrated in Figure 

12, while Figure 13 highlights the smallest values attained for each objective. The data indicate that MOEA/D-EpDE 

exhibits superior overall performance, achieving the lowest average values for GD (0.509), GD+ (0.114), and IGD+ 

(0.325). These results suggest a closer approximation to the Pareto front and high-quality solutions. Additionally, 

MOEA/D-EpDE secures the highest average HV (670,619.5), which signifies the largest dominated objective space 

among the algorithms. Concerning anchor points, MOEA/D-EpDE also reports the lowest values for Best Anchor 1 

(1,364.800) and Best Anchor 2 (6.085), indicating its capability in identifying optimal solutions. MOEA/D performs 
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admirably, closely trailing MOEA/D-EpDE, especially in terms of GD. This is corroborated by the findings presented 

in Figures 12 and 13, which reveal that the distribution of GD, GD+, IGD+, and HV indicators for MOEA/D-EpDE is 

notably superior to those of other algorithms. In the rankings, NSGA2 and MOEA/D secure the second and third 

positions, respectively, with NSGA2 outperforming in GD, GD+, HV, and Best Anchor 1, while MOEA/D excels in 

IGD+ and Best Anchor 2. GDE3 and SPEA2 are identified as the least effective algorithms in this context. 

Table 4. Performance of MOO algorithms for spatial 72-bar truss 

Results NSGA2 GDE3 SPEA2 MOEA/D MOEA/D-EpDE 

Ave. GD 0.545 0.982 0.629 0.510 0.509 

Ave. GD+ 0.204 0.731 0.263 0.113 0.114 

Ave. IGD+ 0.447 1.193 7.715 1.126 0.325 

Ave. HV 669,340.3 666,425.4 661,324.0 668,437.8 670,619.5 

Best Anchor 1 (Corresponding value 

of objective function 2) 
1,374.5 (37.412) 1,422.5 (36.015) 1,623.6 (34.833) 1,430.6 (37.823) 1,364.8 (38.109) 

Best Anchor 2 (Corresponding value 

of objective function 1) 
6.139 (15,620.8) 6.092 (17,963.9) 6.135 (15,536.8) 6.091 (18,207.8) 6.085 (18,577.6) 

 

  

  

Figure 12. Performance indicators for 72-bar truss: a) GD, b) GD+, c) IGD+, and d) HV 

  

Figure 13. Anchor points for 72-bar truss: a) First objective and b) Second objective 
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Similar to the first example, the two objective functions are illustrated in Figure 11 and Table 4. The data reveal a 
fundamental conflict: reducing the total mass of the structure (objective function 1) leads to increased squared nodal 
displacements (objective function 2). Specifically, anchor point 1, representing the minimum mass, corresponds to a 

high value for objective function 2, while anchor point 2, indicating minimized nodal displacements, results in a 
significant mass increase. These findings emphasize the trade-offs in design choices, highlighting the need to balance 
mass reduction with nodal displacement to achieve an optimal, efficient structure.  

4.4. Results of Planar 39-Bar Truss 

Figure 14 illustrates the approximate Pareto front obtained from the analyzed structure, demonstrating that all 
identified optimal solutions comply with the established constraints. This outcome underscores the effectiveness of the 
optimization algorithms utilized in this study, as they not only generate high-quality solutions but also ensure adherence 
to the specified requirements. The ability of these algorithms to consistently meet the constraints while achieving optimal 
solutions further highlights their robustness and reliability in addressing complex optimization problems. 

 

Figure 14. Approximate Pareto-front for 39-bar truss 

Table 5 summarizes the performance metrics of the optimization algorithms, including average GD, GD+, IGD+, 

HV values, and minimum objective values. Figure 15 provides a detailed representation of these indicators, while Figure 

16 highlights the smallest values achieved for each objective. The data reveals that MOEA/D-EpDE excels with the 

lowest average GD (2.497) and GD+ (2.479), indicating its superior proximity to the Pareto front. Furthermore, it 

achieves the lowest average IGD+ (6.142) and the highest HV (392,809.3), reflecting a more extensive exploration of 

the objective space. MOEA/D-EpDE's exceptional performance is also evident in its Best Anchor 1 (2,740.300) and 

Best Anchor 2 (0.003) values, showcasing its capability to consistently identify optimal solutions. While NSGA2 and 

SPEA2 deliver competitive results in GD and GD+ metrics, they fall short in IGD+ and HV comparisons. Overall, 

MOEA/D-EpDE demonstrates remarkable effectiveness across the evaluated algorithms, a conclusion supported by the 

data presented in Figures 15 and 16. Notably, the distribution across the GD, GD+, IGD+, and HV indicators for 

MOEA/D-EpDE is superior to those of the other algorithms. NSGA2 and GDE3 follow in the second and third positions, 

respectively. In this analysis, SPEA2 and MOEA/D rank as the least effective algorithms, underscoring the robustness 

of the alternatives. Additionally, as seen in Figure 14 and Table 5, the two objective functions exhibit a fundamental 

conflict: minimizing the total mass of the structure (objective function 1) results in increased squared nodal 

displacements (objective function 2). Anchor point 1, which represents minimal mass, correlates with a high value for 

objective function 2, while anchor point 2, which minimizes nodal displacements, leads to a significant increase in mass. 

These findings underscore the trade-offs in design choices, necessitating a balance between mass reduction and nodal 

displacement for optimal efficiency. 

Table 5. Performance of MOO algorithms for planar 39-bar truss 

Results NSGA2 GDE3 SPEA2 MOEA/D MOEA/D-EpDE 

Ave. GD 4.780 5.461 4.027 7.938 2.497 

Ave. GD+ 4.774 5.452 4.018 7.934 2.479 

Ave. IGD+ 6.811 16.158 16.084 6.537 6.142 

Ave. HV 385,929.4 382,729.6 383,587.2 384,001.6 392,809.3 

Best Anchor 1 (Corresponding value 
of objective function 2) 

2,780.9 (32.389) 2,841.9 (32.428) 2,754.0 (31.496) 2,753.6 (34.901) 2,740.3 (32.965) 

Best Anchor 2 (Corresponding value 
of objective function 1) 

0.025 (6,466.2) 0.018 (6,952.0) 0.031 (5,586.4) 0.028 (11,276.8) 0.003 (8,874.4) 
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Figure 15. Performance indicators for 39-bar truss: a) GD, b) GD+, c) IGD+, and d) HV 

  

Figure 16. Anchor points for 39-bar truss: a) First objective and b) Second objective 

4.5. Results of 113-Bar Plane Truss Bridge 

Figure 17 depicts the approximate Pareto front constructed from all optimal solutions derived across all algorithms 
runs. The figure confirms that each identified solution complies with the established constraints, demonstrating the 
robustness and reliability of these algorithms in addressing this MOO problem. 

Table 6 summarizes the performance metrics of various optimization algorithms, presenting average values for GD, 

GD+, IGD+, HV, and minimum objective values. For a more granular analysis, Figure 18 displays detailed results for 
these performance indicators, while Figure 19 highlights the smallest values achieved for each objective. Consistent 
with previous findings, MOEA/D-EpDE emerges as the leading algorithm, achieving the lowest average GD of 2.614 
and GD+ of 0.171, indicating its superior closeness to the Pareto front. Additionally, MOEA/D-EpDE registers an 
impressive average IGD+ of 7.799 and the highest HV value of 3,886,832.0, signifying a comprehensive exploration of 
the objective space. In terms of anchor point performance, MOEA/D-EpDE also demonstrates competitiveness with 

values of 48,824.0 for Best Anchor 1 and 29.682 for Best Anchor 2. While MOEA/D also performs commendably with 
a solid average IGD+, other algorithms such as NSGA2, GDE3, and SPEA2 lag behind in these metrics, particularly in 
terms of HV and IGD+. Overall, the results affirm that MOEA/D-EpDE demonstrates the most effective performance 
across all evaluated criteria. This conclusion is further corroborated by the data illustrated in Figures 18 and 19, which 
distinctly show MOEA/D-EpDE's excellence in GD, GD+, IGD+, and HV metrics relative to its counterparts. Following 
MOEA/D-EpDE, the algorithms MOEA/D, NSGA2, and SPEA2 rank in the subsequent positions, showcasing relatively 

strong performance. However, GDE3 ranks the lowest among the evaluated algorithms in this study, indicating its lesser 
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effectiveness across the assessed indicators. This highlights the variability in performance outcomes among the 
algorithms and emphasizes the advantages of MOEA/D-EpDE in multi-objective optimization contexts. Furthermore, 
Figure 17 and Table 6 reveal a fundamental conflict between the objective functions: minimizing structure mass 

(objective function 1) increases squared nodal displacements (objective function 2). This highlights the trade-offs in 
design decisions, emphasizing the need to balance mass reduction with nodal displacement for optimal efficiency. 

 

Figure 17. Approximate Pareto-front for 113-bar truss bridge 

Table 6. Performance of MOO algorithms for 113-bar plane truss bridge 

Results NSGA2 GDE3 SPEA2 MOEA/D MOEA/D-EpDE 

Ave. GD 2.719 3.546 2.806 2.681 2.614 

Ave. GD+ 0.536 1.933 0.523 0.428 0.171 

Ave. IGD+ 39.764 73.474 94.668 41.750 7.799 

Ave. HV 3,499,574.7 3,640,618.7 3,504,528.0 3,841,450.7 3,886,832.0 

Best Anchor 1 (Corresponding value 

of objective function 2) 
48,809.0 (60.429) 49,592.0 (59.923) 50,656.0 (58.931) 49,795.0 (60.563) 48,824.0 (40.461) 

Best Anchor 2 (Corresponding value 

of objective function 1) 
32.762 (90,365.2) 30.335 (107,342.7) 32.915 (91,126.0) 29.686 (145,864.4) 29.682 (147,634.6) 

 

  

  

Figure 18. Performance indicators for 113-bar truss bridge: a) GD, b) GD+, c) IGD+, and d) HV 
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Figure 19. Anchor points for 113-bar truss bridge: a) First objective and b) Second objective 

5. Conclusion 

This study successfully evaluates the performance of MOMHs for truss MOO problems utilizing discrete design 

variables through direct analysis approaches. The primary focus of this research is on minimizing two conflicting 

objectives: the total mass of the structure and inter-story drift. Direct analysis is employed to rigorously evaluate 

constraints related to both strength and serviceability across various load combinations, ensuring that the design adheres 

to established safety and performance standards. To address these MOO challenges, five well-known and innovative 

MOO algorithms are utilized: NSGA2, GDE3, SPEA2, MOEA/D, and the novel MOEA/D-EpDE. The effectiveness of 

these algorithms is assessed on four popular truss structures, namely the 10-bar truss, 72-bar truss, 39-bar truss, and a 

113-bar truss bridge. The results of the optimization reveal a nonlinear, inverse relationship between the two objectives, 

highlighting the inherent trade-offs involved in structural design decision-making. 

The performance of each algorithm is evaluated using four key indicators: GD, GD+, IGD+, and HV, along with 

two anchor points. Notably, all algorithms successfully identified feasible solutions; however, MOEA/D-EpDE 

demonstrated superior performance by achieving the lowest values for GD, GD+, IGD+, and anchor points, as well as 

the highest HV values in the majority of scenarios. In terms of comparative performance, NSGA2 and MOEA/D 

surpassed GDE3 and SPEA2, indicating the effectiveness of the former algorithms in navigating the complexity of the 

MOO tasks. Looking ahead, prospective research should focus on the evaluation of additional algorithms to further 

deepen the understanding of MOO performance in the context of truss optimization. Moreover, several enhancements 

can be explored in future studies: (1) increasing the number of objectives beyond mass and inter-story drift to encompass 

other critical performance metrics, (2) investigating alternative structural systems, such as steel frames, which may 

present different optimization challenges, and (3) integrating complex loading scenarios, including fire and seismic 

forces, into the optimization framework. The authors are currently undertaking investigations into these aspects, which 

promise to refine and expand the scope of MOMHs in structural engineering applications. Ultimately, this study 

contributes valuable insights into the application of MOMHs for truss optimization, laying the groundwork for further 

advancements in this field. 
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